
Efficient simulations of
ML and LQCD

Denis Boyda, ALCF

Efficient Simulations on GPU hardware, October 24-27, 2022

Argonne Leadership Computing Facility2

Outline

• One slide intro to ML

• Strategy for ML for LQCD software development

• Scaling the number of ML experiments / MLOPs

• Weak Scaling / Increasing Batch Size

• Towards larger memory limits:

❑ Checkpointing

❑ Model (pipeline/tensor) parallelism or strong scaling

• Efficient Simulations on one GPU

❑ Profiling PyTorch

❑ Move functions to GPU / Autograd function

❑ JIT compiler

❑Custom kernels

Forward path

• a layer get output from previous layer,

• does matmul with weights,

• applies activation function,

• sends data to the next layer.

• Computations repeated for all layers

Backward path

• Gradients are computed using chain

rule

• Weights are updated using gradients

Training is done in batches.

Stochastic gradient descent is used

Slide credit: Bethany Lusch, ALCF

One slide intro to ML

Strategy for ML for LQCD
software development

Argonne Leadership Computing Facility5

Strategy for ML for LQCD software development

Slides credit: Denis Boyda, Machine Learning techniques in lattice QCD, 2022 RHIC/AGS Annual Users' Meeting, June 7, 2022

Argonne Leadership Computing Facility6

Strategy for ML for LQCD software development

Argonne Leadership Computing Facility7

Strategy for ML for LQCD software development

Reduce time for one cycle

Argonne Leadership Computing Facility8

Scaling the number of ML
experiments / MLOPs

Argonne Leadership Computing Facility9

Scaling the number of ML experiments / MLOPs

Number of ML experiments in our data bases. Development of flow-base models for

Recent review of users of
Argonne Leadership
Computer Facility

Argonne Leadership Computing Facility10

Scaling the number of ML experiments / MLOPs - 2

MLOps (Machine Learning Model Operationalization Management) provides
• Hyperparameters/configuration tracking
• Live information (stdout, stderr, results)
• Artifacts (models, datasets) control and versioning
• Code control and versioning
• Environment configuration
• Fail trace

and an efficient way of analyzing experiments though
• Dashboard
• API to database

Argonne Leadership Computing Facility11

Scaling the number of ML experiments / MLOPs - 3

Argonne Leadership Computing Facility12

Scaling the number of ML experiments / MLOPs - 4

Argonne Leadership Computing Facility13

Scaling the number of ML experiments / MLOPs - 5

Argonne Leadership Computing Facility14

Scaling the number of ML experiments / MLOPs - 6

Argonne Leadership Computing Facility15

Weak Scaling
Increasing Batch Size

Argonne Leadership Computing Facility16

In ML one work with batch of
configurations at every moment
due to Stochastic Gradient Descent

Image credit to EPJ Web of Conferences 245, 09008 (2020), CC

In LQCD one deals with one
configuration 𝑈𝜇 at every moment

Image credit to EPJ Web of Conferences 245, 09008 (2020), CC

Introducing of Batch Size

Increasing Batch Size
• Speeds up training
• Increases GPU utilization
• Does not increase communications between GPUs

Increasing batch size is the most common way to increase GPU utilization and do distributed training in ML

Solver NN
(MatMul)

Argonne Leadership Computing Facility17

Scaling Batch Size Has Limits

C. J. Shallue et.al. Measuring the Effects of Data
Parallelism on Neural Network Training. Journal of
Machine Learning Research 20 (2019) 1-49, CC

Three scaling regimes:
• perfect scaling
• diminishing returns
• maximal data parallelism

Argonne Leadership Computing Facility18

Scaling Batch Size in Flow-based ML model for U(1) in 2D

ESS [0, 1] (effective
sample size) is

metric of quality of
generative model Horizontal slices of

training curves for
different target ESS
determine period of
training (# Epochs)

Argonne Leadership Computing Facility19

Distributed Training: Data parallelism

time

A batch of configurations
is spitted into mini-
batches

Mini-batches are
distributed among
workers (GPUs)

Every worker has its own copy of model on optimizer

Every iteration
workers all reduce
gradients and do
optimizer step

Argonne Leadership Computing Facility20

Scaling Data Parallelism

Horovod was scaled on
Summit up to 4600 nodes
(1 Summit node = 6 Nvidia
V100) with 93% efficiency

Horovod has knobs to tune for reaching high efficiency!

• Scales out of the box without proper knobs
tuning

• Up to my best knowledge there are no numerical
demonstrations of scaling up to 4-5k nodes, but
there is no reason not to scale

PyTorch DDP should scale out of the box

Towards larger memory limits:
❑ Checkpointing

Argonne Leadership Computing Facility22

Memory Allocation sources in ML

There are two main sources of memory allocations in ML
• Storing weights and gradients for model as well as optimizer states
• Storing activations

bottleneck for large models

bottleneck for large configurations, LQCD!

layer n-1 layer n layer n+1
- get input from previous layer 𝑥 and save it
- compute 𝑦 = 𝑓(𝑥)
- Sent 𝑦 to next layer

… …

𝑥 𝑦

Forward path

layer n-1 layer n layer n+1

- restore input 𝑥

- compute 𝑔′ =
𝑑𝑓

𝑑𝑥
(𝑥) at point 𝒙

- Apply chain rule and send full gradient 𝑥 to previous layer

… …

𝑥’ 𝑦′

Backward path

Storing activations allows to
save compute.

Without storing activations
compute ~𝑂(𝑛2)

With storing activations
compute ~𝑂(𝑛)

Argonne Leadership Computing Facility23

Gradients checkpointing - 1

Tianqi Chen, Bing Xu, Chiyuan Zhang, Carlos Guestrin, Training Deep Nets with

Sublinear Memory Cost, arXiv:1604.06174

Through recomputation of activations during backward path

memory cost can be reduced to 𝑶 𝒏 , where 𝑛 is number

of layers of NN with only extra forward path (30% of
computation time)

layer n-4

layer n-3

layer n-2

layer n-1

layer n

layer n+1

layer n+2

layer n+3

layer n+4

…
…

Section i-1

Section i

Section i+1
Forward Path
• Input to every section is saved in memory
• Activations inside sections are not saved
Backward path
• Recompute forward path inside a section with

storing intermediate activations
• Do backward path as usual inside the section

Argonne Leadership Computing Facility24

Gradients checkpointing - 2

Tianqi Chen, Bing Xu, Chiyuan Zhang, Carlos Guestrin, Training Deep Nets with

Sublinear Memory Cost, arXiv:1604.06174

Through recomputation of activations during backward path

memory cost can be reduced to 𝑶 𝒏 , where 𝑛 is number

of layers of NN with only extra forward path (30% of
computation time)

layer n-4

layer n-3

layer n-2

layer n-1

layer n

layer n+1

layer n+2

layer n+3

layer n+4

…
…

Section i-1

Section i

Section i+1
Forward Path
• Input to every section is saved in memory
• Activations inside sections are not saved
Backward path
• Recompute forward path inside a section with

storing intermediate activations
• Do backward path as usual inside the section

Argonne Leadership Computing Facility25

Memory cost

𝐶𝑡𝑜𝑡𝑎𝑙 ~ 𝑠 𝐴 +
𝑛

𝑠
𝐴

when we identical layers and equal splitting of NN to integer number of sections
𝑠 - number of sections (checkpoints)
𝑛 – number of layers in NN
𝐴 – activation size of one layer

with 𝐬 = 𝐧 total memory cost

𝐶𝑡𝑜𝑡𝑎𝑙 ~ 𝑛

when sections contain different layers optimal number of checkpoints

𝑠 = 𝐶𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒/𝐶𝑖𝑛𝑝𝑢𝑡

Gradients checkpointing – memory cost

layer n-4

layer n-3

layer n-2

layer n-1

layer n

layer n+1

layer n+2

layer n+3

layer n+4

…
…

Section i-1

Section i

Section i+1

Every section stores
input activations

At every moment we need to
store activations for one entire

section, i.e. all layers in it

Argonne Leadership Computing Facility26

Memory cost

𝐶𝑡𝑜𝑡𝑎𝑙 ~ 𝑠 𝐴 +
𝑛

𝑠
𝐴

when we identical layers and equal splitting of NN to integer number of sections
𝑠 - number of sections (checkpoints)
𝑛 – number of layers in NN
𝐴 – activation size of one layer

with 𝐬 = 𝐧 total memory cost

𝐶𝑡𝑜𝑡𝑎𝑙 ~ 𝑛

when sections contain different layers optimal number of checkpoints

𝑠 = 𝐶𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒/𝐶𝑖𝑛𝑝𝑢𝑡

Gradients checkpointing – memory cost

layer n-4

layer n-3

layer n-2

layer n-1

layer n

layer n+1

layer n+2

layer n+3

layer n+4

…
…

Section i-1

Section i

Section i+1

Every section stores
input activations

At every moment we need to
store activations for one entire

section, i.e. all layers in it

Spoiler: with normalizing flows or any other
invertible architecture no inputs must be

saved which makes total memory cost
constant as the number of layers increases

Argonne Leadership Computing Facility27

Towards larger memory limits:
❑ Model (pipeline/tensor)
parallelism or strong scaling

Argonne Leadership Computing Facility28

Distributed training: Model vs Data parallelism

Image source is Huihuo Zheng Talk at Argonne Training Program on Extreme-Scale Computing 2019
https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_2019_Track-8_6_8-9_130pm_Zheng-Data_Parallel_DL.pdf

Argonne Leadership Computing Facility29

Tensor parallelism

• For fully-connected layers and attention heads amount of communications is proportional to number of layers and
layer size

• Collective required

Argonne Leadership Computing Facility30

Tensor parallelism for LQCD – halo exchange

• Only halo needs to be exchanged
• Point-to-point communications

In LQCD just split configuration and do halo exchange

Argonne Leadership Computing Facility31

Pipeline parallelism

Argonne Leadership Computing Facility32

Pipeline parallelism: efficient training

Efficient implementation is possible and requires advanced pipeline schedulers
Yanping Huang et. al. GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism. 2018.
arXiv:1811.06965

Pipeline
Bubble

Buble time ration =
bubble time

computation time
=

number of devices pipeline stages −1

number of micro batches
=

𝑝 −1

𝑚

Memory cost per device ~ number of micro batches ~ m

micro batch

Argonne Leadership Computing Facility33

Pipeline parallelism: advanced scheduling

More efficient pipeline scheduling allows to reduce bubble time ration and memory allocation

Bubble time ration Activations memory cost

GPipe
Y. Huang et. al. GPipe: Efficient Training of Giant Neural

Networks using Pipeline Parallelism. 2018. arXiv:1811.06965

𝑝 − 1

𝑚

𝑂(𝑚)

PipeDream-Flush
D. Narayanan et.al. Memory-Efficient Pipeline-Parallel DNN

Training. arXiv:2006.09503

𝑝 − 1

𝑚

𝑂(𝑝)

Interleaved Stages
D. Narayanan et.al. Efficient Large-Scale Language Model

Training on GPU Clusters Using Megatron-LM.
arXiv:2104.04473

1

𝑣

𝑝 − 1

𝑚

𝑂(𝑝)

𝑝 - number of pipeline stages (devices)
𝑚 - number of micro-batches
𝑣 - number of model chuncs

Argonne Leadership Computing Facility34

Efficient Simulations on one GPU

❑ Profiling PyTorch

❑ Move functions to GPU / Autograd function

❑ JIT compiler

❑Custom kernels, Sycl/cupy/Numba, DLpack

Argonne Leadership Computing Facility35

Profiling PyTorch

Argonne Leadership Computing Facility36

Move all functions to GPU / Autograd function

Argonne Leadership Computing Facility37

Just in time (JIT) Pytorch compiler

Fuse a lot of small cuda kernels to one kernel
PYTORCH_NVFUSER_ENABLE=complex

Argonne Leadership Computing Facility38

Custom Kernels

Write custom CUDA or SYCL kernels
https://pytorch.org/tutorials/advanced/cpp_extension.html

or bind to existing LQCD codes

or use NUMBA

https://pytorch.org/tutorials/advanced/cpp_extension.html

Argonne Leadership Computing Facility39

Summary:
Invest time in

development only
when necessary

Acknowledgment
This work is supported by the
Argonne Leadership Computing
Facility, which is a U.S. Department of
Energy Office of Science User Facility
operated under contract DE-AC02-
06CH11357

