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Outline

• One slide intro to ML

• Strategy for ML for LQCD software development

• Scaling the number of ML experiments / MLOPs

• Weak Scaling / Increasing Batch Size

• Towards larger memory limits:

❑ Checkpointing

❑ Model (pipeline/tensor) parallelism or strong scaling

• Efficient Simulations on one GPU

❑ Profiling PyTorch

❑ Move functions to GPU / Autograd function

❑ JIT compiler

❑Custom kernels



Forward path

• a layer get output from previous layer,

• does matmul with weights,

• applies activation function,

• sends data to the next layer.

• Computations repeated for all layers

Backward path

• Gradients are computed using chain 

rule

• Weights are updated using gradients

Training is done in batches.

Stochastic gradient descent is used

Slide credit: Bethany Lusch, ALCF

One slide intro to ML



Strategy for ML for LQCD 
software development
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Strategy for ML for LQCD software development

Slides credit: Denis Boyda, Machine Learning techniques in lattice QCD, 2022 RHIC/AGS Annual Users' Meeting, June 7, 2022
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Strategy for ML for LQCD software development
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Strategy for ML for LQCD software development

Reduce time for one cycle 
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Scaling the number of ML 
experiments / MLOPs
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Scaling the number of ML experiments / MLOPs

Number of ML experiments in our data bases. Development of flow-base models for

Recent review of users  of 
Argonne Leadership 
Computer Facility
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Scaling the number of ML experiments / MLOPs - 2

MLOps (Machine Learning Model Operationalization Management ) provides
• Hyperparameters/configuration tracking
• Live information (stdout, stderr, results)
• Artifacts (models, datasets) control and versioning
• Code control and versioning
• Environment configuration
• Fail trace

and an efficient way of analyzing experiments though
• Dashboard
• API to database
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Scaling the number of ML experiments / MLOPs - 3
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Scaling the number of ML experiments / MLOPs - 4
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Scaling the number of ML experiments / MLOPs - 5
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Scaling the number of ML experiments / MLOPs - 6
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Weak Scaling 
Increasing Batch Size
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In ML one work with batch of 
configurations at every moment 
due to Stochastic Gradient Descent

Image credit to EPJ Web of Conferences 245, 09008 (2020), CC

In LQCD one deals with one 
configuration 𝑈𝜇 at every moment

Image credit to EPJ Web of Conferences 245, 09008 (2020), CC

Introducing of Batch Size

Increasing Batch Size
• Speeds up training
• Increases GPU utilization
• Does not increase communications between GPUs

Increasing batch size is the most common way to increase GPU utilization and do distributed training in ML 

Solver NN 
(MatMul)
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Scaling Batch Size Has Limits

C. J. Shallue et.al. Measuring the Effects of Data 
Parallelism on Neural Network Training. Journal of 
Machine Learning Research 20 (2019) 1-49, CC

Three scaling regimes:
• perfect scaling
• diminishing returns
• maximal data parallelism
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Scaling Batch Size in Flow-based ML model for U(1) in 2D

ESS [0, 1] (effective 
sample size) is 

metric of quality of 
generative model Horizontal slices of 

training curves for 
different target ESS 
determine period of 
training (# Epochs)
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Distributed Training: Data parallelism

time

A batch of configurations 
is spitted into mini-
batches

Mini-batches are 
distributed among 
workers (GPUs)

Every worker has its own copy of model on optimizer

Every iteration 
workers all reduce 
gradients and do 
optimizer step
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Scaling Data Parallelism

Horovod was scaled on 
Summit up to 4600 nodes 
(1 Summit node = 6 Nvidia 
V100) with 93% efficiency 

Horovod has knobs to tune for reaching high efficiency!

• Scales out of the box without proper knobs 
tuning

• Up to my best knowledge there are no numerical 
demonstrations of scaling up to 4-5k nodes, but 
there is no reason not to scale

PyTorch DDP should scale out of the box



Towards larger memory limits:
❑ Checkpointing
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Memory Allocation sources in ML

There are two main sources of memory allocations in ML
• Storing weights and gradients for model as well as optimizer states
• Storing activations

bottleneck for large models

bottleneck for large configurations, LQCD!

layer n-1 layer n layer n+1
- get input from previous layer 𝑥 and save it
- compute 𝑦 = 𝑓(𝑥)
- Sent 𝑦 to next layer

… …

𝑥 𝑦

Forward path

layer n-1 layer n layer n+1

- restore input 𝑥

- compute 𝑔′ =
𝑑𝑓

𝑑𝑥
(𝑥) at point 𝒙

- Apply chain rule and send full gradient 𝑥 to previous layer

… …

𝑥’ 𝑦′

Backward path

Storing activations allows to 
save compute. 

Without storing activations
compute ~𝑂(𝑛2)

With storing activations 
compute ~𝑂(𝑛)
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Gradients checkpointing - 1

Tianqi Chen, Bing Xu, Chiyuan Zhang, Carlos Guestrin, Training Deep Nets with 

Sublinear Memory Cost, arXiv:1604.06174

Through recomputation of activations during backward path 

memory cost can be reduced to 𝑶 𝒏 , where 𝑛 is number 

of layers of NN with only extra forward path (30% of 
computation time)

layer n-4

layer n-3

layer n-2

layer n-1

layer n

layer n+1

layer n+2

layer n+3

layer n+4

…
…

Section i-1

Section i

Section i+1
Forward Path
• Input to every section is saved in memory
• Activations inside sections are not saved
Backward path
• Recompute forward path inside a section with 

storing intermediate activations
• Do backward path as usual inside the section
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Gradients checkpointing - 2

Tianqi Chen, Bing Xu, Chiyuan Zhang, Carlos Guestrin, Training Deep Nets with 

Sublinear Memory Cost, arXiv:1604.06174

Through recomputation of activations during backward path 

memory cost can be reduced to 𝑶 𝒏 , where 𝑛 is number 

of layers of NN with only extra forward path (30% of 
computation time)

layer n-4

layer n-3

layer n-2

layer n-1

layer n

layer n+1

layer n+2

layer n+3

layer n+4

…
…

Section i-1

Section i

Section i+1
Forward Path
• Input to every section is saved in memory
• Activations inside sections are not saved
Backward path
• Recompute forward path inside a section with 

storing intermediate activations
• Do backward path as usual inside the section
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Memory cost

𝐶𝑡𝑜𝑡𝑎𝑙 ~ 𝑠 𝐴 +
𝑛

𝑠
𝐴

when we identical layers and equal splitting of NN to integer number of sections
𝑠 - number of sections (checkpoints)
𝑛 – number of layers in NN
𝐴 – activation size of one layer

with 𝐬 = 𝐧 total memory cost

𝐶𝑡𝑜𝑡𝑎𝑙 ~ 𝑛

when sections contain different layers optimal number of checkpoints

𝑠 = 𝐶𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒/𝐶𝑖𝑛𝑝𝑢𝑡

Gradients checkpointing – memory cost

layer n-4

layer n-3

layer n-2

layer n-1

layer n

layer n+1

layer n+2

layer n+3

layer n+4

…
…

Section i-1

Section i

Section i+1

Every section stores 
input activations

At every moment we need to 
store activations for one entire 

section, i.e. all layers in it
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Memory cost

𝐶𝑡𝑜𝑡𝑎𝑙 ~ 𝑠 𝐴 +
𝑛

𝑠
𝐴

when we identical layers and equal splitting of NN to integer number of sections
𝑠 - number of sections (checkpoints)
𝑛 – number of layers in NN
𝐴 – activation size of one layer

with 𝐬 = 𝐧 total memory cost

𝐶𝑡𝑜𝑡𝑎𝑙 ~ 𝑛

when sections contain different layers optimal number of checkpoints

𝑠 = 𝐶𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒/𝐶𝑖𝑛𝑝𝑢𝑡

Gradients checkpointing – memory cost

layer n-4

layer n-3

layer n-2

layer n-1

layer n

layer n+1

layer n+2

layer n+3

layer n+4

…
…

Section i-1

Section i

Section i+1

Every section stores 
input activations

At every moment we need to 
store activations for one entire 

section, i.e. all layers in it

Spoiler: with normalizing flows or any other 
invertible architecture no inputs must be 

saved which makes total memory cost 
constant as the number of layers increases
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Towards larger memory limits:
❑ Model (pipeline/tensor) 
parallelism or strong scaling
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Distributed training: Model vs Data parallelism

Image source is Huihuo Zheng Talk at Argonne Training Program on Extreme-Scale Computing 2019
https://extremecomputingtraining.anl.gov/files/2019/08/ATPESC_2019_Track-8_6_8-9_130pm_Zheng-Data_Parallel_DL.pdf
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Tensor parallelism

• For fully-connected layers and attention heads amount of communications is proportional to number of layers and 
layer size

• Collective required
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Tensor parallelism for LQCD – halo exchange

• Only halo needs to be exchanged
• Point-to-point communications

In LQCD just split configuration and do halo exchange
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Pipeline parallelism
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Pipeline parallelism: efficient training

Efficient implementation is possible and requires advanced pipeline schedulers
Yanping Huang et. al. GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism. 2018. 
arXiv:1811.06965

Pipeline 
Bubble

Buble time ration = 
bubble time

computation time
=

number of devices pipeline stages −1

number of micro batches
=

𝑝 −1

𝑚

Memory cost per device ~ number of micro batches ~ m

micro batch
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Pipeline parallelism: advanced scheduling

More efficient pipeline scheduling allows to reduce bubble time ration and memory allocation

Bubble time ration Activations memory cost

GPipe
Y. Huang et. al. GPipe: Efficient Training of Giant Neural 

Networks using Pipeline Parallelism. 2018. arXiv:1811.06965

𝑝 − 1

𝑚

𝑂(𝑚)

PipeDream-Flush
D. Narayanan et.al. Memory-Efficient Pipeline-Parallel DNN 

Training. arXiv:2006.09503

𝑝 − 1

𝑚

𝑂(𝑝)

Interleaved Stages
D. Narayanan et.al. Efficient Large-Scale Language Model 

Training on GPU Clusters Using Megatron-LM. 
arXiv:2104.04473

1

𝑣

𝑝 − 1

𝑚

𝑂(𝑝)

𝑝 - number of pipeline stages (devices)
𝑚 - number of micro-batches
𝑣 - number of model chuncs
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Efficient Simulations on one GPU

❑ Profiling PyTorch

❑ Move functions to GPU / Autograd function

❑ JIT compiler

❑Custom kernels, Sycl/cupy/Numba, DLpack
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Profiling PyTorch



Argonne Leadership Computing Facility36

Move all functions to GPU / Autograd function
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Just in time (JIT) Pytorch compiler 

Fuse a lot of small cuda kernels to one kernel
PYTORCH_NVFUSER_ENABLE=complex
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Custom Kernels

Write custom CUDA or SYCL kernels
https://pytorch.org/tutorials/advanced/cpp_extension.html

or bind to existing LQCD codes

or use NUMBA

https://pytorch.org/tutorials/advanced/cpp_extension.html
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Summary:
Invest time in 

development only 
when necessary
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