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Nonequilibrium phenomena require QFT formulated on a Keldysh contour:

Decompose gauge fields on     into classical and quantum fields: 

Keep in action on     only terms up to quadratic order in       , then integrate out       in path integrals.

Then:

with solution of classical eom. for gauge theory with given ini. conditions.

Approximation is good for small couplings and many gauge bosons.

[Kadanoff & Baym, 1962; Keldysh, 1965; 

Berges, 2004; Calzetta & Hu, 2008]

[Hebenstreit et al., 2013; Kasper et al., 2014]

[Aarts & Berges, 2002; Berges & Gasenzer, 2007]
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SU(2) Hamiltonian including improved Wilson fermions:

Classical-statistical reweighting: solve Heisenberg eoms. for

electric field, link and fermion operators using this Hamiltonian, 

sample over Gaussian initial conditions.

Lattice improvements vastly improve large-volume convergence!
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with fermions

Lattice improvements (LO, NLO and NNLO below) for fermion

production from initial chromoelectric field zero mode, compared to

analytic one-loop predictions.

[DS & Berges, 2019]
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Lattice improved Hamiltonians facilitate study of plasma oscillations and 

string breaking, and make computation of fourth-order correlations feasible.

Connected color charge correlator:

Plasma oscillations and string breaking

Connected charge-charge correlator in string

breaking scenario.

String breaking between fermion and anti-fermion: chromoelectric field, color charge, 

local fermion numbers (from left to right).
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characterized by dynamical self-similar scaling.

Experiments can probe thermalization of quantum systems in detail.

Universal behavior across initial conditions and theories, demanding for 

refined classification schemes.

Usually study correlation functions up to high orders. 

Can non-local, geometric and topological structures help?

[Micha & Tkachev, 2004; Berges et al., 2008;

Prüfer et al., 2018; Erne et al., 2018; 

Eigen et al., 2018]
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Point cloud generation via amplitude sublevel sets
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Birth statistics of holes
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Proposed scaling ansatz for persistent homology kernel:

Describes power-law blow-up of persistence length scales (sizes of topological features) in time, 

for instance:

Exponent 0.2 known from correlations.

Peak new, refining universality?

Why                 ?

Dynamical self-similarity in persistent homology

Found scaling exponent spectrum.

[DS, Berges, Oberthaler, Wienhard, 2021]

[Simula et al., 2014; Karl & Gasenzer, 2017; Deng et al., 2018]
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holds as a manifestation of a constant system volume bounding the number of homology classes.

Have proven this packing relation rigorously using the theory of point processes, via the notion of bounded total 

persistence.

Aside, we

• introduced notions of ergodicity and intensive/extensive functional summaries to persistent homology,

• formalized self-similar scaling for persistence diagram expectation measures,

• generalized a strong law of large numbers for persistent Betti numbers on asymptotically large cubes to arbitrary 

convex averaging sequences. [Hiraoka et al., 2018]

[Daley & Vere-Jones, 2003 & 2008; Cohen-Steiner et al., 2010; DS & Wienhard, 2021]
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SU(2) lattice gauge theory simulations

Goal: Can we gauge-invariantly and without a bias towards particular field configurations 
observe properties of excitations related to confinement via persistent homology?

Carried out Hybrid Monte Carlo simulations on 4d Euclidean              lattice with periodic 
boundary conditions. No gauge fixing applied. Samples are SU(2)-valued links           , following 
Wilson action,                :

Compare multiple times to cooled configurations (partially removed UV fluctuations), using 
standard gradient flow:

with ini. cond.                given by sampled field configuration without cooling.

14

[Lüscher, 2010]

[Duane et al., 1987;
Gattringer & Lang 2010]

[DS, Urban, Pawlowski, 2022]
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Theory is confining at low    as signalled by zero Polyakov loop:

Spontaneous center symmetry breaking in Polyakov loop traces above :

Evidence for driving via topological excitations, require interactions with Polyakov loops. 

Monopole constituents of calorons, instanton-dyons, yield non-trivial Polyakov loops at infinity. 

Ensembles can account for confinement in theories with trivial gauge group center.

Common pheno of SU(2) confinement

[Kraan & van Baal 1998; Lee & Lu 1998; Diakonov & Petrov, 2011] 15
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Usual topological density often contains strong UV fluctuation signatures. Rewrite top. charge as integral 

over 3-torus with integrand the Polyakov loop top. density:

Confinement features from different filtrations

Spontaneously broken center symmetry in Polyakov loop sublevel sets.PH of cubical complex superlevel sets, dim. 0 (left), dim. 1 (right).

Persistences of Polyakov loop topological density

sublevel sets reveal monopole structures. 

Exponential tails reminiscent of instanton-dyons.

16

[Ford et al., 1998]

[e.g., Larsen & Shuryak 2016]
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Find in number of lately born homology classes 

manifestation of instanton appearance probability

with temperature dependence from one-loop beta function,

[e.g., Larsen & Shuryak 2015]

Number homology classes with large birth [DS et al., 2022].

Further filtrations: 

• Differences between and                filtrations due to electric (Debye) screening

outpacing magnetic screening, both showing clear kink at phase transition.

• Usual top. density reveals local lumps reminiscent of monopoles, too.
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• Persistent homology provides sensitive order parameters for universal and critical

phenomena in scalar and gauge theories.

• Self-similarity at nonthermal fixed points is detected by persistent homology; mathematical

analyses allow for insights into geometric effects.

• Confinement-deconfinement transition can be detected gauge-invariantly via persistent 

homology observables with interesting characteristics, including links to instantons and 

dyons.
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• With regard to neural network architectures for sampling field configurations: Can topological 

layers substantially improve these, exploiting the high sensitivity of persistent homology to 

non-local structures?

• Persistent homology for experimental data, for instance, to learn about the relation to top. 

defects for thermalization?

• How far can an independent physical interpretation of “homological excitations’’ go?
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