tmLQCD on GPUs: minimum effort performance-portability

Bartosz Kostrzewa

Marco Garofalo, Simone Romiti, Carsten Urbach

Simone Bacchio, Jacob Finkenrath, Ferenc Pittler

High Performance Computing & Analytics Lab,
Rheinische Friedrich-Wilhelms-Universitat Bonn

Efficient simulations on GPU hardware, October 24t to 27th, ETH Ziirich

©

HPC/A-LAB

UNIVERSITAT

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

Overview

@ This talk: field report on experience in ETMC trying to make use of GPU machines for ensemble production
given certain constraints

» diverse physics projects within collaboration: so far impossible to establish collaborative effort on common software
framework

» culture of every PhD student reinventing the wheel and Pls not really coordinating on a technical level doesn't help
» very limited number of people willing / able to work on production code (less than 1 FTE)

» lattice action not used by anyone else (at least non-degenerate part)

[Background & Motivation | [" Porting” our HMC OIS
@ the twisted clover action @ exploring the solution landscape o very dense GPU mach.lnes
@ physics and simulation goals e tmLQCD + QUDA @ modular supercomputing

architecure

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 2/27

The Ny =2+ 1+ 1 twisted clover action
[10.1103/PhysRevD.95.094515, 10.1051 /epjconf/201817502003, 10.1103/PhysRevD.98.054518]

S —/32[o{1 — SReTrP>1(z)} + b1 {1 — ReTrP1*2(2)}]

+ ng [(U) +m + ippys + CSWU/“’]:W(U)] xe(x)
LY e) [Dw (U) +m — ps7* + iys ot + Seswot™ F* (U)] xn(x)

@ by =1—8by, by = —0.331 [Iwasaki; 1983]

2

@ csw =1+ 0.113(3) P °> [Aoki,Frezzotti,Weisz; 1999; arXiv:hep-lat/9808007]

e Automatic O(a)-improvement of all physical observables & simplified mixing patterns of composite operators
(at m = me) [Frezzotti, Rossi; 2004; 10.1088/1126-6708/2004,/08,/007, 10.1088/1126-6708/2004,/10,/070]

@ Vastly reduced pion mass splitting compared to action without clover term (essentially zero for fine lattice
spacings)

o ¢ two-flavour light quark field — determinant reduces to usual M M7 form (up to taking into account sign of
twisted mass)

@ x strange and charm two-flavour quark field — no reduction: bona-fide two-flavour operators required

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 3/27

https://doi.org/10.1103/PhysRevD.95.094515
https://doi.org/10.1051/epjconf/201817502003
https://doi.org/10.1103/PhysRevD.98.054518
https://doi.org/10.1016/S0550-3213(98)00742-1
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1088/1126-6708/2004/10/070

The cost of ensemble generation at phys. M, on CPU machines

M, ~ 135 MeV 10° 1 integrator o7
84 ® 2MN g
7 E] = A 2MNFG p
sim. status = ¢- z
O done . A A £ 1074
A ongoing g 27 E] g
O planned 4- |:| O @ 0] z
a [fm] 3- R A
® 0.091 — | . ; g
® 0.068 RN § & S 3
® 0.057 NN N N N 4V ARERRINION
® 0.049 2 [f 2] 1
e fm=p 7 L @ ===a- 2"%rder + MG
103 4 —— [4%horder + MG

T T T T T T
L@@ @ ‘ % ‘ 1 . 1 48 64 80 96 12 128 144

@ State-of-the-art integrator & solvers — cost scales like (L/a)?/? at (roughly) constant acceptance
@ need several further ensembles at larger M, - L

» both at the finest and the coarsest lattice spacings
* more statistics needed due to autocorrelations (critical slowing down and pion mass splitting)

@ cost O(10%) core-hours & real time per trajectory > 6 hours at this stage

@ Absolutely need GPU implementations of everything

.

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 4/27

Our typical MD Hamiltonian

gauge and light sector

gauge monomial

o force evaluated several hundred times per

4 4
g Z U Z {1- Re(Ualz,,XA,ly)} +a Z {1- Re(U;jfy)} trajectory
* =1 pr=1 » must be offloaded to GPU
1<p<v n#v

asymmetric even-odd preconditioning

+ ; TRV
@ = 75(Maov £ipeys) = (Q7)' =@ @ support for asym. precon not a given in
det(QF) = det(Mee + ipueys) - det(QF) most frameworks
Qi =75 [(Moo + 'i,U/Z’YS) - Moe(Mee + iﬂZVS)ilMeo] @ issues with MG

degenerate determinant (ratios)

T . T 1 , ° V:Vi(p) = OF + ip s.t.
/D¢j D¢] €Xp {_¢j W*(pt)wf(pt) ¢J} W+(p)W_(p) — Q+Q— + p2 and clover
. 1 R inverse p-independent
/D(b;f D¢Z exp {_QSI W_(Pt) = = W+(pt) ¢z}

@ 3-4 preconditioning masses, 2-3

+ —
W (oo) W= (1) timescales, MG solves for smallest p

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 5/27

Our typical MD Hamiltonian

"heavy” sector

1

even-odd preconditioning in the heavy sector: 7 — need genuine two-flavour operators

Qh =75 [(Moo + iﬂa’757—3 - N&Tl) - Moe(Mee + /[::U’O"Y5T3 - N&Tl)_lMeo]

rational approximation partial fractions

@ N = 10, with R split across 2-3 monomials on 2-3
IJ_V[Q7 + azi—1 1 timescales (usually 3)
Q% + ag; - QQ @ on CPU machines, accelerate solution of smallest shifts
using DD-aAMG [Bacchio, Finkenrath, 2019,
Comput.Phys.Commun. 236 (2019) 51-64]

R(Q7) =

=1

rational approximation correction factor

det(|Qn|R)

o BBl = QiR

e B=(1+2)\ =" 2 =1+12 - 37% + 7% + .. with Z = QIR? — 1

@ contributes about 10 to 20% of total runtime on CPU machines (5 to 7 solves depending on volume) —
benefits from DD-aAMG acceleration

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich

6/27

https://doi.org/10.1016/j.cpc.2018.10.013

The tmLQCD software suite
[10.1016/j.cpc.2009.05.016, 10.22323/1.187.0416, 10.22323/1.187.0414, gh.com/etmc/tmLQCD]

@ current HMC production code of the Extended Twisted Mass [https://github.com /etmc/tmLQCD
Collaboration (ETMC)

e ~ 150k lines (C), MPI 4+ OpenMP, macro-based hardware
specialization (intrinsics or inline assembly for SSE4,

BlueGene[L,P,Q] with SPI comms -
e) @9 11
@ C. Urbach and 2 to 3 people over ~ 20 years) N
» major contributions by another 3 to 4 ‘9 6 a

» small contributions by another 10 or so

Contributors 15

+ 4 contributors
@ since around 2015, rely on (and extend) libraries

» QPhiX for AVX2, AVX512 (Bilint Jod et al.)
[10.1007/978-3-319-46079-6_30, gh.com/JeffersonLab/qphix]

» DD-aAMG for MG solver on CPU
[10.1137/130919507, 10.48550/arXiv.1307.6101,
10.1103/PhysRevD.94.114509, gh.com/sbacchio/DDalphaAMG]

» QUDA for GPU operators and solvers (Kate Clark et al.)

[10.1016/j.cpc.2010.05.002, 10.1145/2063384.2063478,
10.1109/SC.2016.67] ® Makefile 0.8% ® Assembly 0.7%

Languages

e ———
® C76.6% ® Cuda 15.4%
® C++3.6% Lex 2.1%

Other 0.8%

» tmLQCD used as a library driver to allow physics programs to make use of
QPhiX, DD-aAMG and QUDA

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 7/27

https://doi.org/10.1016/j.cpc.2009.05.016
https://doi.org/10.22323/1.187.0416
https://doi.org/10.22323/1.187.0414
https://www.github.com/etmc/tmLQCD
https://doi.org/10.1007/978-3-319-46079-6_30
https://github.com/JeffersonLab/qphix
https://doi.org/10.1137/130919507
https://doi.org/10.48550/arXiv.1307.6101
https://doi.org/10.1103/PhysRevD.94.114509
https://github.com/sbacchio/DDalphaAMG
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1145/2063384.2063478
http://dx.doi.org/10.1109/SC.2016.67
https://github.com/etmc/tmLQCD

State of the tmLQCD QUDA interface in 2018

One type of input file to control all aspects

of calling solvers.

BeginExternalInverter QUDA
MGCoarseMuFactor = 1.0, 1.0, 60.0
MGNumberQOfLevels = 3
@ Basic structure due to Mario Schrock (around 2015) with ﬁggﬁig;gig:ﬁtzrig 24, %2
extensions by BK [...]
EndExternalInverter

e Full interface to QUDA MG since about 2017/2018 with regular

maintenance to follow QUDA development BeginOperator CLOVER
kappa = 0.1394267
@ Wiring up of components required for HMC non-trivial 2KappaMu = 0.000200774448
» really worth the effort knowing that it's a suboptimal (and ephemeral) CSw = 1.69
solution? SolverPrecision = 1.e-21

MaxSolverIterations = 80

solver = mg

useexternalinverter = quda

usesloppyprecision = single
EndOperator

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich

8/27

Finding the right framework for the job

Debates since around 2015 on how to approach the performance-portability problem with limited person-power.
The following are impressions / opinions that we collected in this process. (and may well be wrong)

Grid

+ Excellent vector data
structures, easy to extend

+ Very good performance on
SIMD architectures

- Unclear multi-node
performance on GPU machines
(back in 2018)

- Unclear (to us) how
DD-aAMG-implementation
performs on GPU machines (to
this day)

» would probably need to wire up
QUDA interface for QUDA-MG
- Significant effort required to
support degenerate
twisted-clover & especially
non-degenerate doublet

Chroma + QDP-JIT + QUDA

QUDA

+

+

Excellent whole-program
performance

QUDA interface — acccess to
QUDA-MG

Significant effort required to
support non-degenerate
twisted-clover doublet

Hard to compile, lots of effort
to run on new machines as they
come online (at least for us)

XML input: steep learning
curve for students

Performance-portability to
future non-NVIDIA GPUs
unclear (back in 2019)

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

|

Excellent performance on
NVIDIA hardware

QUDA-MG

Quite a bit of QUDA
experience in the ETMC

Effort to add non-degenerate
twisted-clover reasonable

Gauge force easy to wire up
Need driver code which itself
needs to be future-proof

Unclear performance-portability
(back in 2019)

Implementation of fermionic
forces incomplete, neeeds
extension to support
non-degenerate twisted-clover

J

October 2022, ETH Zuerich 9/27

tmLQCD + QUDA in the HMC

@ Work on interface for HMC started in 2018, first running version
in 2021 (motivated by QUDA performance-portability efforts)

— gh.com/etmc/tmLQCD /tree/quda_work

BeginExternalInverter QUDA # equivalents of QUDA tests
MGCoarseMuFactor = 1.0, 1.0, 60.0 # command line parameters
MGNumberQOfLevels = 3
MGNumberOfVectors = 24, 32
MGSetupSolver = cg
[...]

EndExternallInverter

BeginMonomial CLOVERDETRATIO
Timescale = 3
kappa = 0.1394267
2KappaMu = 0.000200774448

rho = 0.0
rho2 = 0.0018
CSW = 1.69

AcceptancePrecision = 1.e-21
ForcePrecision = 1.e-18
Name = cloverdetratio3light
MaxSolverIterations = 500
solver = mg
useexternalinverter = quda
usesloppyprecision = single

EndMonomial

driver for this monomial

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

QUDA

gh.com/lattice/quda

enable QUDA pathway in solver

Contributors 33

“s 4P

.I.I- G

SE @

+ 22 contributors

Environments 1

& github-pages

Languages

| |||
® C++68.2% ® Cuda 24.9%
® C36% ® CMake 2.0%
® Python 0.8% Shell 0.3%
Other 0.2%

October 2022, ETH Zuerich

10/27

https://github.com/etmc/tmLQCD/tree/quda_work
https://github.com/lattice/quda

Hybrid CPU/GPU HMC

@ gauge field and conjugate
momenta in host memory

@ solvers and gauge term
derivative on device

@ need to keep track of gauge
field state

» solution: tag host and device
objects

» using checksum too restrictive

» — simply use trajectory time
(real number)

» when host and device tags

disagree, update device copy
(optional: use thresholds)

> nice side-effect: natural
mechanism to track MG setup

@ incremental port: need good
mechanisms to identify
hotspots and their causes

gauge field

\

U()T>U1—>U2—>U3""
\

\

\

/AR AR
x

/N

P0—>P1%P2%P3""

conjugate
momenta

simulation time

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

-

October 2022, ETH Zuerich

11/27

The problem with profiling tools
time

invert_eo_degenerate_suda
9218.7 s (38.3 %)

solve_mms_nd
827.6s
(3.4 %)

@ HMC with many monomials and MG is kinda complicated: would like to profile real-world examples to get
a feel for real-world balance of hot-spots
» same functions called in multiple places, sometimes even at different depths of the call tree
» profiling tools (without tagging or markup) do not give sufficient context
» unclear if profile is physically sensible or result of specific problems with certain parameter combinations or algorithms

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

tmLQCD's profiler

tm_stopwatch_push (&g_t imers, __func

[...]
tm_stopwatch_pop(&g_timers, 0, 0, "TM_QUDA");

_—— "");

@ introduced stack-based profiler into
tmLQCD (and accompanying
analysis scripts)

» output simply to stdout with
levelO/levell/level2/. .. tags

» analysis parses log file (176 lines of R)
and renders Rmarkdown report

» Tables and plots with context and
identification of call tree depth

» Visualize also QUDA's finalisation
profile

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

tmLQCD's profiler

@ combine view on physical and
computational hotspots

e focus on splitting of the MD
Hamiltonian at this global level =

5000

reorder(monomial, prop)
GAUGE

ndcloverratcor

other and unaccounted for
cloverdetratiollight
cloverdetlight
ndcloverrat2

ndcloverrat3
cloverdetratio3light
ndcloverratl

cloverdetratio2light

(profile from 643 - 128 physical point simulation on 16 Marconi 100 nodes)

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

GPU-dominated parts

cloverdetratio2light derivative

derivative:2 derivative:3 derivative:4

4000 - 40004

20004 invert_eo_degenerate_quda 100.0 % 2000+

0~ other 0.0 % 0-

1000

3000+ 30004

3000 1

invertQuda 60.7 %

2000 A solve_degenerate 91.3 %

1000 - 1000 -

call tree level

@ Good: more than 90% of time spent in solver or unavoidable MG " overheads”

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

CPU-dominated parts

ndcloverratl derivative

derivative:2 derivative:3 derivative:4
4000
800 -
750
3000 1
600 -
500 -
()]
2000
g invert_eo_quda_twoflavour_mshift 99.3 % 400 4
2504
1000 4 200 4

call tree level

@ Bad: only slightly more than 20% of time spent in solver — currently working on implementing remainder in
QUDA

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

What about host-device transfers?
GAUGE derivative

derivative:2 derivative:3
500 -
400 A 4004
300 300+
[}
2
=1
e her00 oy o]
200 2001 T R
1007 1001
04 0+
call tree level

@ host-device transfers not a big deal even for gauge derivative, but we should move our field reordering
completely to QUDA

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA

QUDA's finalisation profile

@ Same analysis script also visualises
QUDA's finalisation profile

@ On Marconi 100, spend about 50 to
70% of time in QUDA

e of that, spend about 70 to 80% of
time in compute

@ host-device memory traffic is a tiny
overhead (for now)

@ our poor decisions: too much time
spent in memory allocations and
frequent reinitialisations (init and
preamble)

@ — some potential for future
improvement here

B. Kostrzewa (HPC/A-Lab, Bonn U.)

(5.9%) [\ Yo.6%]

10000

reorder(name, prop)
a epilogue

free

upload

comms

download

init

preamble

QOO O D D D

compute
5000

tmLQCD + QUDA

October 2022, ETH Zuerich

18/27

MG solver in the light sector

| | .
- i | | In practice we employ
2 100+ : : Solver | | @ 2 to 3 p-shifts (shifting the EO-operator)
%O] : : ca : @ 3-4 time scales
'g 1 : : + MG : — per trajectory need to solve systems with:
= 103 .
= 1 | | e p =0 about O(100) times
O 4
% 1_" m: @ p = 0.001 about O(100) times
> § | | |
g] :mu,d :ms :mc e p~ 0.01 about O(200) times
0.001 0.010 0.100 e p~ 0.1 about O(400) times
ap MG requires two solves in derivative and an update of
Comparison between MG-preconditioned-GCR and the coarse operator (due to twisted mass sign change),
mixed-precision CG (GPU) but easily wins up to p &~ am.
MG timing: two inversions + unavoidable overheads from We employ both MG and CG to minimize total cost.
coarse operator updates between D and DT inversions

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 19/27

Multi-shift solver for the 1 + 1 sector

Rational Approximation Correction Term
iy o 643 - 128 lattice
precision / refinement
20 o double e CPU: 3072 cores Intel Platinum 8168 (64 Juwels nodes)
-= single / single e GPU: 32 A100 (8 Juwels Booster nodes)
Ty A“*,‘A“ -A- single / half
Q157 Machine / Algorithm HB ACC
Yy
o)
.g (CPU) QPhiX multi-shift CG 810s b550s
o 107 (CPU) DD-aAMG accelerated multi-shift CG 590 s 400 s
= (GPU) QUDA mshift CG (double) 1455 93s
® (GPU) QUDA mshift CG (single / single) 127s 79s
5 (GPU) QUDA mshift CG (single / half) 103s 66s
@ Similar real time improvements in the derivative terms
0 | : | | @ mixed-precision refinement really helps with the expensive
10 20 30 solves (factor ~ 1.5)
call # @ Further improvement expected through developments
presented by Kate at LAT'22

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 20 /27

Current state of the port

machine real time node-hours (CPU) / kWh
GPU-hours
64 nodes 2.61 h 167 ~ 84

@ 3072 cores Intel Xeon Platinum 8168 (64 nodes)

A . (Juwels)

32 NVIDIA A100 + 384 cores AMD EPYC Rome 7402 (8 nodes)

104 4 32 GPUs 1.58 h 50.6 ~ 24

o]

= (Juwels Booster)

gm"-

» @ CPU strong scaling to 64 nodes okay, not great beyond
é 102 - that — real throughput limitation

=)

& @ gets (much) worse for larger volumes where many more
}10 v —— (4" order + MG (CPU)) nodes are required (depends on machine though)

=]

S Ath .. .

£ | i [J‘I Oldml s M? <GPIU” @ Improvement factor CPU/GPU in energy usage already

48 64 80 96 112 128 144 ~35
L/a ’

(real trajectories at M ~ 135 MeV on 64° - 128 lattice) @ Expect another factor of ~ 2 (remaining parts of fermion

derivative)

@ Finally we will be able to run a trajectory in less than one
hour again!

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 21/27

Current state of the port
HMC Strong scaling

64° - 128 @ M, ~ 135 MeV 1123 .224 @ M, ~ 135 MeV
84 . s 4 - P 7
d ”
/.' ideal . - < /.' ideal . - -
| ® Juwels Booster P ® Juwels Booster P ®
.0 - S 3- e
? -7 [? L7
3 gl I .
a 44 PRg a e <
»n -7 n27 -
2 @ e i -, - =
-, ‘< -
ns 140"
T T T T T T T T T
4 8 16 32 28 49 56 98 112
Nodes Nodes

@ see excellent whole-program scalability on Juwels Booster and very good absolute per trajectory times
@ Scalability will get worse as we move the CPU-dominated parts fully to GPU

» more of the scaling behaviour will depend on the MG, which does not scale well by definition

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

October 2022, ETH Zuerich 22 /27

What about performance-portability?

Single-node comparison on a 323 x 64 lattice on
o Juwels Booster (4x A100)
e Jureca DC-MI200 (4x AMD MI-250, ROCm 5.2.0, still being fine-tuned!).

1.0

time per trajectory [h]

0.4+

(full HMC run, thermalised configuration, comparable

o
o]
]

o
o
1

GPU type
-© A100
9 MI250

(M /ME™*)2 | time A100 [h] time MI250 [h] ratio

3.75 0.411 0.546 1.33
2.25 0.478 0.762 1.59
1.50 0.487 0.798 1.64
1.00 0.542 0.975 1.80

e Time investment (for us)®:

» 2-3 hours to adjust tmLQCD build system & compile code
» few hours with JSC admins and AMD experts to resolve a
few ROCm issues

I get an HMC which runs on MI-250 and is at most a factor

! 2
(M /MEM®)?

acceptance rate)

B. Kostrzewa (HPC/A-Lab, Bonn U.)

of 2 slower even at the physical point (at least on a single
node) — excellent!

“major thanks to Balint Joé and QUDA devs for many hundreds
of hours of effort which make this possible!

tmLQCD + QUDA October 2022, ETH Zuerich 23 /27

Lessons learned and outlook?

@ Saved by QUDA's performance-portability push
> enabled us to implement reasonably efficient HMC on current generation of GPU machines (~ 50% GPU usage now,
somewhat more soon when fermionic forces fully available)
@ lower device memory footprint than a full GPU port
» we can run a 643 - 128 HMC (including MG) on just 16 A100 (40GB)

* can run MG at close to optimal number of GPUs
* advantage will evaporate on machines with larger GPU memories and/or fewer CPU cores / GPU

Biggest regrets?

@ QUDA interface should have been implemented directly in QUDA rather than in tmLQCD
» major source of pain due to inability of using QUDA objects directly where it makes sense

\.

e HMC with 70 % efficiency sufficient for current generation (Juwels Booster, Marconi 100, Leonardo, LUMI-G)
» problem on future machines with low-power CPUs driving dense high-power GPU configurations (Jupiter?)

@ Some workloads have massive memory requirements — need to scale to a number of GPUs where the MG is
not that efficient any more
» Maybe a targeted hybrid approach is required? Needs co-design effort!

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 24 /27

Hybrid GPU-CPU perambulators

In the context of the HISKP / ETMC effort on spectroscopy and scattering using stochastic distillation:
[10.1103/PhysRevD.96.054516, 10.1103/PhysRevD.99.034511, 10.1103/PhysRevD.96.034510, 10.1103/PhysRevD.98.114511,
epja/s10050-020-00057-4, 10.1016/j.physletb.2021.136449]

o Perambulator: Tos(t',t) = VI(t')M_ 4 (', t)V (t)
[Peardon et al., Phys. Rev. D 80, 054506]

@ i M2

8

I : ‘:
g |3
&2

» invert Dirac operator on sources d,sV (), multiply by
Vi) vt

inversion driving thread

» V(t): N first eigenvectors of gauge-covariant 3D
Laplacian for each time-slice ¢ (several hundred GB on
483 - 96 lattice)

* impractical, difficult or impossible to fit into GPU
memory when MG is most efficient (2-3 nodes of Juwels
Booster)

* |nstead: have one thread driving GPU inversions while all
other threads do V! multiplication in the background

J0je|nguiesad oy "ppe uo Supjiom spealys

* Result: Essentially 100% GPU utilisation (cost: doubling
of host buffers for propagators and pointer swapping)

. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 25 /27

https://doi.org/10.1103/PhysRevD.96.054516
https://doi.org/10.1103/PhysRevD.99.034511
https://doi.org/10.1103/PhysRevD.96.034510
https://doi.org/10.1103/PhysRevD.98.114511
https://doi.org/10.1140/epja/s10050-020-00057-4
https://doi.org/10.1016/j.physletb.2021.136449
https://doi.org/10.1103/PhysRevD.80.054506

Future workloads and machines?

@ Indications that lattice gauge theory will continue to play an important role in the coming decade
» R ratio, (¢ — 2),, heavy flavour physics, S-decay, nuclear structure, non-perturbative BSM, ...

[Snowmass 2021 LGT report]

@ Massive statistics, many lattice spacings, large volumes — will eventually reach a situation where we can't

even store all gauge configurations

Gauge Configuration Generation

Scalable Booster Module

U0—>U1—>U2—>U3""
NS\

<

ML Booster
ML HMC Acceleration

HTC Booster Computing
High Statistics
Observables

Reductions and
Combinatorics

General Purpose

Module

Post-processing /
Storage

Hypothetical future LGT workflow running on MSA with many different

modules.

B. Kostrzewa (HPC/A-Lab, Bonn U.)

tmLQCD + QUDA

@ In Europe, Juelich Supercomputer Center
is strongly pushing the idea of a Modular
Supercomputing Architecture (MSA)
Suarez, Eicker, Lippert, Kreuzer et al., [Cont. High
Perf. Comp, 2019], [FZ Juelich, 2021]

o Exploiting the MSA will require thinking

about task parallelism and workflow
management in addition to performance
engineering.

October 2022, ETH Zuerich 26 /27

https://doi.org/10.48550/arXiv.2209.10758
http://hdl.handle.net/2128/22212
http://hdl.handle.net/2128/22212
http://hdl.handle.net/2128/30498

Conclusions and Outlook

o thanks to QUDA devs, we were able to improve our HMC's energy efficiency by factor of ~ 3 already, another
factor of & 2 remaining

o will allow us to complete ensemble set on current & upcoming machines

@ probably the end of the line for tmLQCD
» C is too limiting, data layouts too inflexible

@ time to join forces with others and / or redesign our toolset completely
» excellent performance of QUDA-MG means that it will play a role no matter what

@ prepare for modular exascale machines
» people problem: need to be able to offer attractive positions

» perhaps work with labs and/or HPC centers to provide these positions

Thanks for your attention!

B. Kostrzewa (HPC/A-Lab, Bonn U.) tmLQCD + QUDA October 2022, ETH Zuerich 27 /27

