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Cachew
ML Input Data Processing as a Service
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Data Processing in ML Workloads
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Input Preprocessing Challenges

e \Waiting for batches costs time and money [1]
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e Small set of pipelines account for most computation [1]

e Preprocessing can consume more power than training [2]

[1]  Murray et al. tf. data: A machine learning data processing framework. VLDB’21.
[2] Zhao et. al. Understanding and co-designing the data ingestion pipeline for industry-scale recsys training, ISCA’22.



Opportunities

e Waiting for batches costs time and money [1]

{
Scaling Out Caching

A

e Small set of pipelines account for most computation [1]

e Preprocessing can consume more power than training [2]

[1]  Murray et al. tf. data: A machine learning data processing framework. VLDB’21.
[2] Zhao et. al. Understanding and co-designing the data ingestion pipeline for industry-scale recsys training, ISCA’22. 4



Current Landscape in ML Preprocessing

e Solutions for disaggregating input pipeline and model exist:
o tf.data service from Google

— However, resource allocation for data processing is complex

e Caching functionality already exist in many frameworks:

— However, caching decisions are complex

e Automating these decisions is essential



Main Contributions

How many resources should be assigned to preprocessing?

l

Autoscaling Autocaching
Policy Policy

A

When and Where should data be cached?




e Disaggregation available
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Client-Service Interaction in Cachew

Cachew + tf.data ( o N\
T

= =

Client #1

o

o

\ Worker #1 ),

»

Dispatcher \_Worker#2 ) Data Records
[GCS/S3]

Cache
[GlusterFS]

@...

Worker #n




Client-Service Interaction in Cachew

Cachew + tf.data ( o N\
T

= =

Client #1

o

o

\ Worker #1 ),

»

Dispatcher \_Worker#2 ) Data Records
[GCS/S3]

Cache
[GlusterFS]

@...

Worker #n




Client-Service Interaction in Cachew

Cachew + tf.data ( o N\
T

o

= =

Client #1

o

\\
\ Worker#1 ) |

T~ )
L
Dispatcher \_Worker#2 ) S Data Records
[GCS/S3]

Cache
[GlusterFS]

Worker #n

10



Client-Service Interaction in Cachew
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Client-Service Interaction in Cachew
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Client-Service Interaction in Cachew
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Main Features of Cachew

Multi-tenancy
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Main Features of Cachew

Disaggregation
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Main Features of Cachew
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Main Features of Cachew
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Autoscaling Policy

e Two steps are executed when processing a batch:

Batch processing time

A
4 A

Fetch batch from local buffer Model training on batch

N A J
Y Y

~0 if local buffer is populated, else must wait Bound by the accelerator — Constant

e Intuition: add workers to preprocessing until Batch Processing Time converges
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Autoscaling Policy Example

e Add workers until convergence

Fetch batch from
local buffer

Model training on batch

Fetch
batch ...

Model training on batch

Model training on batch

Model training on batch

Model training on batch

Add worker

Add worker

Add worker

Add worker

Converge

Remove worker

19




Evaluation: Autoscaling Policy

e Deep Learning Image Classification workload:
o ResNet input pipeline (GCE n2-standard-8 instance)
o ResNet50 model (4 Nvidi
aset (approx. 140 GBs in GCS) \

Source caching Full caching

o ImageNet

ReadOp —r‘ AutocacheOp H—> DecodeOp —> RandomCropOp —> . —> BatchOp —7 AutocacheOp ‘-—>

e Compare Autoscale Policy decision and Kubernetes HPA decision
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Evaluation: Autoscaling Policy
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Conclusion

REPRODUCED

AVAILABLE

e Data preprocessing is essential in ML workloads

e Often bottleneck causing expensive accelerator stalls

e \We propose Cachew, an Input-Pipeline-as-a-Service system:
o Autocaching and Autoscaling Policies with Multi-tenancy

e Open source: https://github.com/eth-easl/cachew

® Rich platform for future research
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