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Input Preprocessing Challenges 

3

● Small set of pipelines account for most computation [1]

● Preprocessing can consume more power than training [2]

● Waiting for batches costs time and money [1]  

[1] Murray et al. tf. data: A machine learning data processing framework. VLDB’21.
[2] Zhao et. al. Understanding and co-designing the data ingestion pipeline for industry-scale recsys training, ISCA’22.



Opportunities 
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● Small set of pipelines account for most computation [1]

● Preprocessing can consume more power than training [2]

[1] Murray et al. tf. data: A machine learning data processing framework. VLDB’21.
[2] Zhao et. al. Understanding and co-designing the data ingestion pipeline for industry-scale recsys training, ISCA’22.

CachingScaling Out

● Small set of pipelines account for most computation [1]

● Preprocessing can consume more power than training [2]

● Waiting for batches costs time and money [1]  ● Waiting for batches costs time and money [1]  



Current Landscape in ML Preprocessing
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● Solutions for disaggregating input pipeline and model exist:

○ tf.data service from Google

→ However, resource allocation for data processing is complex

● Caching functionality already exist in many frameworks:

→ However, caching decisions are complex

● Automating these decisions is essential



Main Contributions

6

How many resources should be assigned to preprocessing?

When and Where should data be cached?

Autoscaling 
Policy

Autocaching 
Policy



System Architecture
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Client-Service Interaction in Cachew
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Main Features of Cachew
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Autoscaling Policy
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● Two steps are executed when processing a batch:

~0 if local buffer is populated, else must wait Bound by the accelerator → Constant

Batch processing time

● Intuition: add workers to preprocessing until Batch Processing Time converges



Autoscaling Policy Example

19

Add worker

Add worker

Add worker

Add worker

Remove worker

Converge

● Add workers until convergence



Evaluation: Autoscaling Policy  
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● Deep Learning Image Classification workload:

○ ResNet input pipeline (GCE n2-standard-8 instance) 

○ ResNet50 model (4 Nvidia V100 GPUs)

○ ImageNet dataset (approx. 140 GBs in GCS)

Full cachingSource caching

● Compare Autoscale Policy decision and Kubernetes HPA decision



Evaluation: Autoscaling Policy  
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GCS throughput 
scales with number of 

workers

Cachew finds right 
scale



Conclusion
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● Data preprocessing is essential in ML workloads

● Often bottleneck causing expensive accelerator stalls

● We propose Cachew, an Input-Pipeline-as-a-Service system:

○ Autocaching and Autoscaling Policies with Multi-tenancy 

● Open source: https://github.com/eth-easl/cachew

● Rich platform for future research

https://github.com/eth-easl/cachew

