
Cachew
ML Input Data Processing as a Service

Dan Graur1, Damien Aymon1, Dan Kluser1, Tanguy Albrici1, Chandu Thekkath2 and Ana Klimovic1

[1] Systems Group, D-INFK, ETH Zürich
[2] Google

Efficient simulations on GPU hardware, October 24, 2022

https://github.com/eth-easl/cachew

https://github.com/eth-easl/cachew

Data Records
[Disk/S3/etc.]

Train/tune model

Extract Load
Transform

CPU Accelerator

Input Pipeline

Same machine

Data Processing in ML Workloads

Cannot independently scale
preprocessing and training

↓
Tough to fix bottlenecks

2

Input Preprocessing Challenges

3

● Small set of pipelines account for most computation [1]

● Preprocessing can consume more power than training [2]

● Waiting for batches costs time and money [1]

[1] Murray et al. tf. data: A machine learning data processing framework. VLDB’21.
[2] Zhao et. al. Understanding and co-designing the data ingestion pipeline for industry-scale recsys training, ISCA’22.

Opportunities

4

● Small set of pipelines account for most computation [1]

● Preprocessing can consume more power than training [2]

[1] Murray et al. tf. data: A machine learning data processing framework. VLDB’21.
[2] Zhao et. al. Understanding and co-designing the data ingestion pipeline for industry-scale recsys training, ISCA’22.

CachingScaling Out

● Small set of pipelines account for most computation [1]

● Preprocessing can consume more power than training [2]

● Waiting for batches costs time and money [1] ● Waiting for batches costs time and money [1]

Current Landscape in ML Preprocessing

5

● Solutions for disaggregating input pipeline and model exist:

○ tf.data service from Google

→ However, resource allocation for data processing is complex

● Caching functionality already exist in many frameworks:

→ However, caching decisions are complex

● Automating these decisions is essential

Main Contributions

6

How many resources should be assigned to preprocessing?

When and Where should data be cached?

Autoscaling
Policy

Autocaching
Policy

System Architecture

7

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Client #1

Client #2

Client #m

...
Cache

[GlusterFS]

● Disaggregation available
● Open-source
● Large-scale
● Impactful

Client-Service Interaction in Cachew

8

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Cache
[GlusterFS]

Client #1

9

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Cache
[GlusterFS]

Client #1

Client-Service Interaction in Cachew

10

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Cache
[GlusterFS]

Client #1

Client-Service Interaction in Cachew

11

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Cache
[GlusterFS]

Client #1

Client-Service Interaction in Cachew

Cache
[GlusterFS]

12

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Client #1

Client-Service Interaction in Cachew

13

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Client #1

Client #2

Client #m

...
Cache

[GlusterFS]

Client-Service Interaction in Cachew

Main Features of Cachew

14

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Client #1

Client #2

Client #m

...

Multi-tenancy

Cache
[GlusterFS]

15

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Client #1

Client #2

Client #m

...
Cache

[GlusterFS]

Main Features of Cachew
Disaggregation

16

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Client #1

Client #2

Client #m

...

Main Features of Cachew Autoscaling

Cache
[GlusterFS]

17

Data Records
[GCS/S3]

Worker #1

...

Worker #2

Worker #n

Dispatcher

Cachew + tf.data

Client #1

Client #2

Client #m

...
Cache

[GlusterFS]

AutocachingMain Features of Cachew

Autoscaling Policy

18

● Two steps are executed when processing a batch:

~0 if local buffer is populated, else must wait Bound by the accelerator → Constant

Batch processing time

● Intuition: add workers to preprocessing until Batch Processing Time converges

Autoscaling Policy Example

19

Add worker

Add worker

Add worker

Add worker

Remove worker

Converge

● Add workers until convergence

Evaluation: Autoscaling Policy

20

● Deep Learning Image Classification workload:

○ ResNet input pipeline (GCE n2-standard-8 instance)

○ ResNet50 model (4 Nvidia V100 GPUs)

○ ImageNet dataset (approx. 140 GBs in GCS)

Full cachingSource caching

● Compare Autoscale Policy decision and Kubernetes HPA decision

Evaluation: Autoscaling Policy

21

GCS throughput
scales with number of

workers

Cachew finds right
scale

Conclusion

22

● Data preprocessing is essential in ML workloads

● Often bottleneck causing expensive accelerator stalls

● We propose Cachew, an Input-Pipeline-as-a-Service system:

○ Autocaching and Autoscaling Policies with Multi-tenancy

● Open source: https://github.com/eth-easl/cachew

● Rich platform for future research

https://github.com/eth-easl/cachew

