ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

usenix usenix susenix
'Asso:nmcm ’ sssssss é" AAAAAAAAAAA

REPRODUCED

AVAILABLE

Cachew
ML Input Data Processing as a Service

ETHzirich
Google

https://qithub.com/eth-easl/cachew

-

Systems @ ETH ziicn

https://github.com/eth-easl/cachew

Data Processing in ML Workloads

[Disk/S3/etc.]

Input Pipeline
pTTTTTTTTTT ; Train/tune model Cannot independently scale
C | Edract OO d preprocessing and training
Data Records i & i Tough to fix bottlenecks

CIE .

0 0

200 200

1
| ICIF:LIJI I : Accelerator
! 1
_____________ l_“"_““"“ | Same machine
N—
f 0 - 0 = 0 r
200 % 200 '% 200 i!E’
01
1 o ET o = o 20 0 20
0 i é |::> 200 % 200 j a 200 § E
20 xa Ei!

0 20 0 20 0 20

(= (
[3
o

Input Preprocessing Challenges

e \Waiting for batches costs time and money [1]

--#- ResNet-50 (GPU) w/ ImageNet
1000/ EfficientNetV2 (TPU) w/ ImageNet
_ —e— RetinaNet (TPU) w/ COCO
[2)
o |
£ 800
=]
3
g 600
L
4001
S
2 4 6 8 10 12

CPU Cores per GPU / TPU accelerator

e Small set of pipelines account for most computation [1]

e Preprocessing can consume more power than training [2]

[1] Murray et al. tf. data: A machine learning data processing framework. VLDB’21.
[2] Zhao et. al. Understanding and co-designing the data ingestion pipeline for industry-scale recsys training, ISCA’22.

Opportunities

e Waiting for batches costs time and money [1]

{
Scaling Out Caching

A

e Small set of pipelines account for most computation [1]

e Preprocessing can consume more power than training [2]

[1] Murray et al. tf. data: A machine learning data processing framework. VLDB’21.
[2] Zhao et. al. Understanding and co-designing the data ingestion pipeline for industry-scale recsys training, ISCA’22. 4

Current Landscape in ML Preprocessing

e Solutions for disaggregating input pipeline and model exist:
o tf.data service from Google

— However, resource allocation for data processing is complex

e Caching functionality already exist in many frameworks:

— However, caching decisions are complex

e Automating these decisions is essential

Main Contributions

How many resources should be assigned to preprocessing?

l

Autoscaling Autocaching
Policy Policy

A

When and Where should data be cached?

e Disaggregation available
. e Open-source
System Architecture s Lirgeseale
e Impactful
/ﬁ s Cachew t tf.data /T
.
Client #1 Worker #1
— — i
=== Y/
o
 Client#2) Dispatcher \ ULILOR Data Records
- [GCS/S3]
> Cache
%: L) [GlusterFS]
)
Client #m peke

Client-Service Interaction in Cachew

Cachew + tf.data (o N\
T

= =

Client #1

o

o

\ Worker #1),

»

Dispatcher _Worker#2) Data Records
[GCS/S3]

Cache
[GlusterFS]

@...

Worker #n

Client-Service Interaction in Cachew

Cachew + tf.data (o N\
T

= =

Client #1

o

o

\ Worker #1),

»

Dispatcher _Worker#2) Data Records
[GCS/S3]

Cache
[GlusterFS]

@...

Worker #n

Client-Service Interaction in Cachew

Cachew + tf.data (o N\
T

o

= =

Client #1

o

\\
\ Worker#1) |

T~)
L
Dispatcher _Worker#2) S Data Records
[GCS/S3]

Cache
[GlusterFS]

Worker #n

10

Client-Service Interaction in Cachew

Cachew + tf.data T~)
T

o

=28
--

Client #1
\[Dispatcher

o

\ Worker #1) \\
T~
LJ

G erer A Data Records
[GCS/S3]

Cache
[GlusterFS]

Worker #n

11

Client-Service Interaction in Cachew

Cachew + tf.data T~)
T

o

===
S

Client #1
\[Dispatcher

o

\ Worker #1) \\
T~
LJ

G erer TN Data Records
[GCS/S3]

Cache
[GlusterFS]

Worker #n

12

Client-Service Interaction in Cachew

\ Client #1)
o=
=28

=38 |

\ Client #2)

= =

Client #m

Cachew + tf.data

>[Dispatcher

)
N

0:C

W,
.

\\
\ Worker#1) |

\ Worker#2)

Worker #n

S \
S
N
\\\

Cache
[GlusterFS]

Data Records
[GCS/S3]

13

Main Features of Cachew

Multi-tenancy

-

oo)
s =
\ Client #1)

(=38

\ Client #2)

===

Client #m

g= [N

N
E

Cachew + tf.data

Dispatcher

)
N

0:C

\ Worker#1) \\
R
)

\ Worker#2)

Cache

[GlusterFS]

Worker #n

Data Records

[GCS/S3]

14

Main Features of Cachew

Disaggregation

4 N\
e .) Cachew + tf.data)
% O,
T &
_ Client#1) 17~ \ Worker#1)
"N Tt)
=22 W,
ﬂ\\ i i:E:l}
Cllent#2 DISpatCher Worker#2 Data Records
[GCS/S3]
Cache
%j) [GlusterFS]
"""""""""""
Client #m Worker #n
—

15

Main Features of Cachew

=
=8

\ Client #1)

=
=8

\ Client #2)

===

Client #m

Autoscaling

Cachew + tf.data

Dispatcher

Worker #1

~—

T

L

Worker #2

Worker #n

Cache
[GlusterFS]

Data Records
[GCS/S3]

16

Main Features of Cachew

\ Client #1)
o=
=28

=38 |

\ Client #2)

= =

Client #m

Autocaching

Cachew + tf.data

Dispatcher

Worker #1

~—

T

L

Worker #2

Cache
[GlusterFS]

Worker #n

Data Records
[GCS/S3]

17

Autoscaling Policy

e Two steps are executed when processing a batch:

Batch processing time

A
4 A

Fetch batch from local buffer Model training on batch

N A J
Y Y

~0 if local buffer is populated, else must wait Bound by the accelerator — Constant

e Intuition: add workers to preprocessing until Batch Processing Time converges

18

Autoscaling Policy Example

e Add workers until convergence

Fetch batch from
local buffer

Model training on batch

Fetch
batch ...

Model training on batch

Model training on batch

Model training on batch

Model training on batch

Add worker

Add worker

Add worker

Add worker

Converge

Remove worker

19

Evaluation: Autoscaling Policy

e Deep Learning Image Classification workload:
o ResNet input pipeline (GCE n2-standard-8 instance)
o ResNet50 model (4 Nvidi
aset (approx. 140 GBs in GCS) \

Source caching Full caching

o ImageNet

ReadOp —r‘ AutocacheOp H—> DecodeOp —> RandomCropOp —> . —> BatchOp —7 AutocacheOp ‘-—>

e Compare Autoscale Policy decision and Kubernetes HPA decision

20

Evaluation: Autoscaling Policy

Epoch time (seconds)

-#- Compute

GCS throughput —4&—- Source cache
scales with number of Full h
workers el Gathe

Bl Kubernetes HPA

Cachew
Cachew finds right
scale
\\
.\. \\E\~
....................................... 6‘":~;-Dwm-—-—ﬁ—‘—:;—_u;—.;—._—_nu. ..—..—:...—.:D
1 2 3 4 5 6 7 8

Number of workers

21

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

susenix susenix
f’ ASSOCIATION él’ AAAAAAAA ION

Conclusion

REPRODUCED

AVAILABLE

e Data preprocessing is essential in ML workloads

e Often bottleneck causing expensive accelerator stalls

e \We propose Cachew, an Input-Pipeline-as-a-Service system:
o Autocaching and Autoscaling Policies with Multi-tenancy

e Open source: https://github.com/eth-easl/cachew

® Rich platform for future research

22

https://github.com/eth-easl/cachew

