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Conclusions
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• We have presented new continuum extrapolated results of all the nd order 
cumulants calculated in ( ) QCD and compare them with various HRG 
models. 

•  nd order cumulants and correlations of conserved charge !uctuations 
calculated in Lattice QCD agree well with QMHRG model at  . 
Cumulants are sensitive to strangeness content of the spectrum as well as 
'fate of resonances’.  

• We have also shown that a single excluded volume parameter is not 
su"cient to describe all the -nd order cumulants involving baryon number 
!uctuation and/or correlations. 

• In viral expansion motivated calculations it is not su"cient to consider only 
two particle interactions.
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QCD phase diagram

QCD Lagrangian is symmetric under , 
 , 

 for .
SU(2)L × SU(2)R × U(1)A × U(1)V

mu = md = 0

For physical values of quark masses, , the 
transition is smooth analytic crossover.

mu = md ≠ 0



Thermodynamics using Lattice QCD

‣ The Taylor series of the QCD pressure at finite temperature and density: 

 

‣ Cumulants at vanishing chemical potential, 
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The partition function of QCD:

Real chemical potential makes the 
determinant complex,
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and their scaling properties are understood in terms of universal properties of the QCD partition function and its
derivatives in the vicinity of the QCD chiral phase transition [7, 20]. To make use of this knowledge in a quantitative
comparison with experimental results, lattice QCD calculations close to the continuum are needed.
In this paper we present an analysis of fluctuations in, and correlations among, conserved charges using numerical

calculations in (2+1)-flavor QCD at three values of the lattice cut-off 1. For these calculations we exploit an O(a2)
improved action consisting of a tree-level improved gauge action combined with the highly improved staggered fermion
action (HISQ/tree) [26, 27]. We discuss the cut-off dependence of our results in different temperature intervals
and consider two different zero-temperature observables for the determination of the temperature scale used for
extrapolations to the continuum limit. This allows us to quantify systematic errors in our calculation. In an appendix,
we discuss the relation between temperature scales deduced from different zero-temperature observables and the
propagation of their cut-off dependence into the cut-off dependence of thermodynamic observables.

II. FLUCTUATIONS OF CONSERVED CHARGES FROM LATTICE QCD; THE HADRON
RESONANCE GAS AND THE IDEAL GAS LIMIT

To calculate fluctuations of baryon number (B), electric charge (Q) and strangeness (S) from (lattice) QCD we
start from the QCD partition function with non-zero light (µu, µd) and strange quark (µs) chemical potentials. The
quark chemical potentials can be expressed in terms of chemical potentials for baryon number (µB), strangeness (µS)
and electric charge (µQ),
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The starting point of the analysis is the pressure p given by the logarithm of the QCD partition function,

p

T 4
≡

1

V T 3
lnZ(V, T, µB, µS , µQ) . (2)

Fluctuations of the conserved charges and their correlations in a thermalized medium are then obtained from its
derivatives evaluated at !µ = (µB, µQ, µS) = 0,
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with µ̂X ≡ µX/T and X, Y = B, Q, S. Explicit expressions for the calculation of these susceptibilities in terms of
generalized light and strange quark number susceptibilities are given in [20].
As all these derivatives are evaluated at !µ = 0, the expectation values of all net charge numbers δNX ≡ NX −NX̄ ,

with NX (NX̄), denoting the number of particles (anti-particles), vanish, i.e., 〈δNX〉 = 0. The susceptibilities, i.e.,
the quadratic fluctuations of the charges, are then given by

χ̂X
2 = 〈(δNX)2〉/V T 3 . (5)

A. The hadron resonance gas

We will compare results for fluctuations and correlations defined by Eqs. (3) and (4) with hadron resonance gas
model calculations. The partition function of the HRG model can be split into mesonic and baryonic contributions,

pHRG

T 4
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1 Preliminary results of this work had been presented at Quark Matter 2011 [24] and PANIC 2011 [25].
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The Taylor series of the QCD pressure at finite temperature 
and density: 

 

Cumulants at vanishing chemical potential, 
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Thermodynamics using Lattice QCD

1. Equilibrium Thermodynamics 
2. Calculations at μ = 0



Expansion coefficients of the Taylor series
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Equation of State for µQ = µS = 0
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p = p2μ2
B + p4μ4

B + …
nB = 2p2μB + 4p4μ3

B + …
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★ The current range of reliability of the expansions are different for 
different observables. Which is ,  for 

pressure, net-baryon number density and second order baryon 
number fluctuations close to the pseudo-critical temperature. 

★ The current updated estimate for radius of convergence is  
, close to the pseudo-critical temperature.

̂μB/T ∼ 3, 2.5 and 1.5

̂μc
B ∼ 3
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cumulants calculated in ( ) QCD and compare them with various HRG 
models. 

•  nd order cumulants and correlations of conserved charge !uctuations 
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HotQCD on Multi-GPU Systems D. Bollweg
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Figure 3: Top: Scaling of multi-RHS /⇡ with number of RHS for various numbers of GPUs on a single
JUWELS Booster node. Left: Scaling of /⇡, and RHMC with number of GPUS on a single JUWELS Booster
node. Right: Scaling of RHMC with multiple nodes with 4 A100 GPUs each.

understanding of GPU parallelization. On multiple modern clusters, we find that its performance
scales quite well with increasing number of GPUs on a single node. An open source release is
forthcoming; it will be available in the near future in the repository linked in Ref. [17].
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n(μ) = 2p2μ + 4p4μ3 + …ΔP = p2μ2 + p4μ4 + …
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Success and limitation of Taylor 
expansions
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Good control on lower order cumulants at 
Intermediate baryon chemical potential. 

Good control on higher order cumulants at 
smaller baryon chemical potential. 

Validity and reliability of Taylor expansion 
will be limited by its radius of convergence 

and on the number of terms. 
Calculating higher order terms using brute 

force method seems unreasonable. 


