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Uproot: ROOT I/0 in Python

e Uprootis a library for reading and writing ROOT files in Python and NumPYy.
e It differs from PyROOT and root_numpy in that it is independent of ROOT.
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But, isn't Python slow?

e ROOT TTrees have columnar data (numeric data and ragged arrays)
and record-oriented data (everything else) .

e Python implementation is slow, except for columnar data where it can cast a whole block of
data as arrays, achieving the objective in O(1) time.

e For record-oriented data, we cannot do better than O(n), however, O(n) in a compiled language
is much better than O(n) in Python.
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Minimizing Dependencies

e Problem: Python is slow, but compilation toolchains (like Cling/LLVM) are
heavy dependencies.

e Idea: interpreted languages can be fast if specialized.

e AwkwardForth [arXiv:2102.13516] is a Domain Specific Language (DSL) for

file I/0 into Awkward Arrays based on Forth (an old programming language).



https://arxiv.org/abs/2102.13516

Maximizing speed

In a informal study, it was found that Python took on average 900 ns per
instruction, compared to 5 ns for AwkwardForth on the same machine.

Like Python and Java, AwkwardForth instructions are turned into bytecode to be
interpreted by a VirtualMachine. But...

Python checks types at runtime, AwkwardForth has only one type (integers).
e Python follows object pointers at runtime, AwkwardForth has only one data
structure (a stack of integers).
e AwkwardForth is a very minimal language.

| started this project by writing an Avro file reader with AwkwardForth.
It's 8x faster than fastavro, the gold standard for reading Avro files.



https://github.com/scikit-hep/awkward/pull/648#issuecomment-761296216

Record-oriented data types are 400x faster
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https://arxiv.org/abs/2102.13516

The Implementation

The AwkwardForth code generation is interwoven with the current Python
implementation because the type-dependent code for ROOT TTrees already exists.
Python and AwkwardForth generation alternate line by line to ensure that they can
be maintained together.

This is meta-programming: Python code that generates AwkwardForth code.

length = cursor.field(chunk, stl container size, context)
f helper obj.is forth():
key = forth obj.get keys(1)
form key = node{key}-offsets
helper obj.add to header(
helper obj.add to init(

helper obj.add to pre(

K\N dup
)




Then it gets more complicated...

ROOT specifies the data types in a file using TStreamerInfo, so even the Python
code needs to be generated on the fly from this data.

This is meta-metaprogramming: Python that generates Python that generates
AwkwardForth.

read members.append(

.strip




Conclusion

e We achieved the predicted performance (400x faster!) for an AwkwardForth
based ROOT TTree reader.

e The new reader is extremely fast without having to install a compiler.

e The AwkwardForth code generation involves meta-programming and
meta-meta-programming.

e Merged into main!

feat: Finalizing AwkwardForth reader for Uproot #644

¥~ Merged




