4

Accelerating Uproot with Awkward ‘
Forth

Aryan Roy
IRIS-HEP Fellow
Manipal Institute of Technology

Dr. Jim Pivarski
Mentor

O i ri S Princeton University



Uproot: ROOT I/0 in Python

e Uprootis a library for reading and writing ROOT files in Python and NumPYy.
e It differs from PyROOT and root_numpy in that it is independent of ROOT.

Analysis scn;}tﬂ I:I

hist
Vector
111
Analysis scripts Uproot: only ROOT I/O, everything else in other libs
S I -
11
AnaIyS|s scripts root_pandas Awkward Array zstandard
1z4 & xxhash
PyROOT root_numpy Pandas
XRootD
ROOT NumPy




But, isn't Python slow?

e ROOT TTrees have columnar data (numeric data and ragged arrays)
and record-oriented data (everything else) .

e Python implementation is slow, except for columnar data where it can cast a whole block of
data as arrays, achieving the objective in O(1) time.

e For record-oriented data, we cannot do better than O(n), however, O(n) in a compiled language
is much better than O(n) in Python.

Offset 0 Offset 4 Offset 8
Avro —r
. BN coumn: | Coumn2 |
length 6 sign M ar t imn
00001100 Oc 4d 61 72 74 69 6e 1337
010100111001 Offset 12 Offset 16 Offset 20
union branch 1 (long, not null)
00000010 02 f2 14 sign AR
: 11110010 0jcoi1o0100 Column 1 Column 2 D
2 array items follow
00000100 04
length 11 d aydr e aming Offset 28 Offset 32
00010110 16 64 61 79 64 72 65 61 6d 69 6e 67
h a ¢ kK in Column 1 Column 2
length 7 [¢] end of array
00001110 Qe 68 61 63 6b 69 6e 67 00
total: 32 bytes C 3




Minimizing Dependencies

e Problem: Python is slow, but compilation toolchains (like Cling/LLVM) are
heavy dependencies.

e Idea: interpreted languages can be fast if specialized.

e AwkwardForth [arXiv:2102.13516] is a Domain Specific Language (DSL) for

file I/0 into Awkward Arrays based on Forth (an old programming language).



https://arxiv.org/abs/2102.13516

Maximizing speed

In a informal study, it was found that Python took on average 900 ns per
instruction, compared to 5 ns for AwkwardForth on the same machine.

Like Python and Java, AwkwardForth instructions are turned into bytecode to be
interpreted by a VirtualMachine. But...

Python checks types at runtime, AwkwardForth has only one type (integers).
e Python follows object pointers at runtime, AwkwardForth has only one data
structure (a stack of integers).
e AwkwardForth is a very minimal language.

| started this project by writing an Avro file reader with AwkwardForth.
It's 8x faster than fastavro, the gold standard for reading Avro files.



https://github.com/scikit-hep/awkward/pull/648#issuecomment-761296216

Record-oriented data types are 400x faster

AwkwardForth paper [arXiv:2102.13516] The final implementation
(prediction)
104 3
Uncompressed ROOT files — Awkward Arrays (warm cache) = CH-ROOK,
] —— Python (Uproot 4)
A C++ROOT m Python (current Uproot) @ AwkwardForth (future Uproot) 4 RNTuple E 5 @ AwkwardForth (Uproot 5)
103 4
% TS ) ]
< 1000 s ~f
2 —a ® 3
g = © 102 5
2 100 c ]
o e
o ® ]
s N
S 10 T 10! 4
3 57
.g $
2 1 = 1
[
e 10° 4 Il
float std::vector<float> doubly nested triply jagged ]

float std::vector<float> doubly nested triply nested



https://arxiv.org/abs/2102.13516

The Implementation

The AwkwardForth code generation is interwoven with the current Python
implementation because the type-dependent code for ROOT TTrees already exists.
Python and AwkwardForth generation alternate line by line to ensure that they can
be maintained together.

This is meta-programming: Python code that generates AwkwardForth code.

length = cursor.field(chunk, stl container size, context)
f helper obj.is forth():
key = forth obj.get keys(1)
form key = node{key}-offsets
helper obj.add to header(
helper obj.add to init(

helper obj.add to pre(

K\N dup
)




Then it gets more complicated...

ROOT specifies the data types in a file using TStreamerInfo, so even the Python
code needs to be generated on the fly from this data.

This is meta-metaprogramming: Python that generates Python that generates
AwkwardForth.

read members.append(

.strip




Conclusion

e We achieved the predicted performance (400x faster!) for an AwkwardForth
based ROOT TTree reader.

e The new reader is extremely fast without having to install a compiler.

e The AwkwardForth code generation involves meta-programming and
meta-meta-programming.

e Merged into main!

feat: Finalizing AwkwardForth reader for Uproot #644

¥~ Merged




