
Accelerating Uproot with Awkward 
Forth

Aryan Roy
IRIS-HEP Fellow

Manipal Institute of Technology

Dr. Jim Pivarski
Mentor

Princeton University



Uproot: ROOT I/O in Python

● Uproot is a library for reading and writing ROOT files in Python and NumPy.
● It differs from PyROOT and root_numpy in that it is independent of ROOT.

2



But, isn’t Python slow?

● ROOT TTrees have columnar data (numeric data and ragged arrays)
and record-oriented data (everything else) .

● Python implementation is slow, except for columnar data where it can cast a whole block of 
data as arrays, achieving the objective in O(1) time.

● For record-oriented data, we cannot do better than O(n), however, O(n) in a compiled language 
is much better than O(n) in Python.

33



Minimizing Dependencies

● Problem: Python is slow, but compilation toolchains (like Cling/LLVM) are 
heavy dependencies.

● Idea: interpreted languages can be fast if specialized.

● AwkwardForth [arXiv:2102.13516] is a Domain Specific Language (DSL) for 
file I/O into Awkward Arrays based on Forth (an old programming language).

4

https://arxiv.org/abs/2102.13516


Maximizing speed

In a informal study, it was found that Python took on average 900 ns per 
instruction, compared to 5 ns for AwkwardForth on the same machine.

Like Python and Java, AwkwardForth instructions are turned into bytecode to be 
interpreted by a VirtualMachine. But…

● Python checks types at runtime, AwkwardForth has only one type (integers).
● Python follows object pointers at runtime, AwkwardForth has only one data 

structure (a stack of integers).
● AwkwardForth is a very minimal language.

I started this project by writing an Avro file reader with AwkwardForth.
It’s 8× faster than fastavro, the gold standard for reading Avro files.

5

https://github.com/scikit-hep/awkward/pull/648#issuecomment-761296216


Record-oriented data types are 400× faster

The final implementationAwkwardForth paper [arXiv:2102.13516]
(prediction)

6

https://arxiv.org/abs/2102.13516


The Implementation

The AwkwardForth code generation is interwoven with the current Python 
implementation because the type-dependent code for ROOT TTrees already exists. 
Python and AwkwardForth generation alternate line by line to ensure that they can 
be maintained together.

This is meta-programming: Python code that generates AwkwardForth code.

7



Then it gets more complicated…

ROOT specifies the data types in a file using TStreamerInfo, so even the Python 
code needs to be generated on the fly from this data.

This is meta-metaprogramming: Python that generates Python that generates 
AwkwardForth.

8



Conclusion

● We achieved the predicted performance (400× faster!) for an AwkwardForth 
based ROOT TTree reader.

● The new reader is extremely fast without having to install a compiler.
● The AwkwardForth code generation involves meta-programming and 

meta-meta-programming.
● Merged into main!

9


