
Features Extension,
Inclusion & Rectification
for boost-histogram

FELLOW:
JAY GOHIL

MENTORS:
HENRY SCHREINER
HANS DEMBINSKI

Objective
Add new features to boost-histogram

Rectify bugs on boost-histogram

Add an accumulator in Boost.Histogram

Work on documentation for both

Boost.Histogram is one of the most extensive
and powerful histogram libraries in C++ which
provides easy-to-use, fast, and extensible
multi-dimensional histograms and profiles.

boost-histogram is the python package that
provides bindings for Boost.Histogram in
python with plotting tools, operations, axes
manipulation, and much more.

Introduction

boost-histogram: Link
Boost.Histogram: Link

https://boost-histogram.readthedocs.io/en/latest/
https://www.boost.org/doc/libs/1_80_0/libs/histogram/doc/html/index.html

Better error for empty AND
incorrect sample #782

Addressed #734 issue.

Added error messages for:

empty sample

incompatible type sample

incorrect dimension sample

import boost_histogram as bh
values = [10]*10
histogram = bh.accumulators.Mean()
histogram.fill(values, sample="")

https://github.com/scikit-hep/boost-histogram/issues/734

Histogram Comparison
(Draft) #778 #779

Addresses #157 issue.

Compare two histograms based on:

Values

Public #778

Addresses #157 issue, but for internal use.

All checks similar to #778.

Private #779

Edges
Dimension
Storage type
Axes

Added ufunc for numpy's allclose
Has a boolean return type instead of pretty-string.

import boost_histogram as bh
import numpy as np
histogram1.allclose(histogram2)

https://github.com/scikit-hep/boost-histogram/issues/734

Minor Updates
#760 #781 #783 #786

Added storage_type function and property, with deprecation warning for _storage_type()

Updated numpy.testing asserts with pytest.approx (with complete tests' swap under draft)

Cleared reset() usage confusion with a small doc update

Patch Release v1.3.2

Fraction Accumulator #361
Added new Fraction accumulator on boost.histogram.

+ fraction

Fraction Accumulator #361
Accumulator has the following:

successes() and failures()

count()

value()

variance()

successes() -> fetch quantity of success/true/1
failures() -> fetch quantity of failure/false/0
count() -> fetch total quantity
value() -> fetch value (fraction of successes)
variance() -> fetch BN based variance

Accumulator has the following:

confidence_interval(), and of following default:

wald interval

wilson interval

clopper pearson interval

jeffreys interval

A binomial proportion confidence interval
is an interval estimate of a success
probability p.

Wald Interval :

Wilson Interval :

Fraction Accumulator #361

Other external classes' intervals:

Added tests for accumulator and intervals

Added documentation

Fraction Accumulator #361

/**
 Accumulate boolean samples and compute the fraction of true
samples.

 This accumulator should be used to calculate the efficiency or
success fraction of a
 random process as a function of process parameters. It returns
the fraction of
 successes, the variance of this fraction, and a two-sided
confidence interval with 68.3
 % confidence level for this fraction.

 There is no unique way to compute an interval for a success
fraction. This class returns
 the Wilson score interval, because it is widely recommended in
the literature for
 general use. More interval computers can be found in
`boost/histogram/utility`, which
 can be used to compute intervals for other confidence levels.
*/

Merged now!

Next Steps
Merge histogram comparison

Add fraction accumulator to boost-histogram

Work on python and c++ end in open source capacity

Thank you for
listening!

