
Viacheslav Kucherenko, Kyiv Academic University

ML tracking
IRIS-HEP fellowship project presentation

Mentor: Dantong Yu, New Jersey Institute of Technology
28.09.2022

Agenda

Project description
Graph Neural Networks
Data analysis
Data preprocessing
Train overview
Results
Acknowledgment

Project description

Particles collision data
Simulated by sPHENIX project

• After beams’ collision

• Detection

• Analysis

Detection
MVTX & INTT detectors
• Complex detector geometry

• High dimensionality (9k x 9k x 3)

• Variational input data

• Solutions: models with flexible
data dimensionality + reduction of
the useless data

0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2 2 0 0
0 0 0 0 0 0 0 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 3 0 0 0 0 0
0 0 0 3 3 3 3 0 0 0 0

Tracks
& their representations

• Tracks ~ graphs

• Geometrical constraints:

• With each iteration we find
more relevant tracks and
automise the process of
matching the hits into
graphs

δ(ϕ) ≤
π
4

, δ(z) ≤ 300 mm

z, mm

1 detector

2 detector

3 detector

Pipeline overview
Track reconstruction

Clustering

Tra
ck constru

ction Geometrical

constraints

Graph Neural Networks

GNN idea
G = F(N, E)

• Predictions: node level,
edge level, graph-level

• Hyper parameters:
Embedding size, MPL
amount.

• Python lib for working
with GNN - PyG
(PyTorch geometrical)Embedding

Embedding

Embedding
Embedding

Embedding

Embedding

Embedding

Embedding
Embedding

Embedding

Message
Passing Layer

Graph Convolutional Network
graph level prediction

G
C

N
C

on
vo

lu
tio

n

num_features * emb_size

G
C

N
C

on
vo

lu
tio

n

emb_size* emb_size

N times

tanh() tanh()

C
on

ca
t (

M
ax

 +
 M

ea
n

PO
O

l)

emb_size * (2*emb_size)

Li
ne

ar

(2*emb_size)*1

YNodes
info

Edges
info

Input graph data

nodes *
num_features edges * 2

Graph Convolutional Network
node-level prediction - project task

Ed
ge

 N
et

w
or

k

N times

Nodes
info

Possible
edges

Input graph data

Geometrical data
M

LP
 n

et
w

or
k

N
od

e
ne

tw
or

k

Ed
ge

 N
et

w
or

k

Possible
edges

Probability

1 3 0.01
4 6 0.99
5 8 0.8
4 9 0.9

Data analysis + preprocessing

Raw data
Simulated by sPHENIX project

• Generated json samples containing
events

• Each event consist of: metadata,
detectors data/positions/ids, points
ids/pixel data/position/chip info,
particles energy/momentum info,
ground truth about vectors
(containing particle ids etc.)

Preprocessing part
Goals and steps

Main steps should be:

1) unpack json raw data2

2) read carefully points data by ids

3)concatenate points from INTT and MVTX

4) reconstruct tracks from ground truth

5) cluster points on 1 detector

6)calculate cylindrical coordinates

7)segment possible edges by geometrical
constraints

8) scale features

9) save in appropriate format.

0 1 0 0 0
1 1 1 1 0
0 1 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Clustering

Collect all nearby points -> calculate
mean euclidian (center) -> save
center coordinates and number of
pixels

Preprocessed data
Before training

Preprocessed data (per event), which can be considered to serve
as input for the model, consist of next characteristics:

1) Scaled geometrical data: r vector value, phi angle value, z
coordinate across cylindrical axe, amount of pixels on chip used in
clustering

2) Possible edge combinations between point ids

3) Ground truth - each track consist of some points

Train process overview

Technology stack for training
Tools and technologies

• Remote developing, ssh, linux, conda3

• Python software engineering (OOP) for constructing training class, data
loaders and models

• Torch, PyTorch geometrical, numpy, distributed programming

• Utils: wandb - for experiment tracking.

Training overview
Optimizer and model

• Optimizer - Adam, with 1e-4 learning rate, weight_decay 1e-4, and lr decay
schedule, starting from 60th epoch with 0.1 factor + l1+l2 regularisation

• Model: Graph Neural Network, consisting of MLP + Edge + Node networks
(num of parameters = 753 and 2,5k)

• Loss: Binary cross-entropy

• Accuracy: precision (correctly predicted edges/all edges)

• Data: 800 training events + 200 validation (2000, 400)

Training results
Process and performance

• 700 parameters, 800
training events ->

• 2,5k parameters,
2000 events ->

Example picture
Inference track reconstruction

Ideas for improving
Training and data preprocessing

• Any scaling of the raw parameters should be applied in the initial layers of
the network, since scaling parameters can harm feature importance and
should be fine-tuned by the model to maximise the performance

• Energy and momentum are not counted right now in the pipeline, which can
be a significant improve in results, because of extra input information.

• Hyperparameters tuning

• Models increasing + dataset expanding

Conclusion

Conclusion

• I learned Graph Neural Networks models from zero and implemented some
of their variations in the new library PyTorch geometrical

• I met new people, who taught me a lot on coding, data analysis, physics
context overview and nuclear physics itself.

• I expanded my thoughts about international scientific cooperation, by
directly participating in it.

• It is an honour to be a part of such interesting and cutting-edge project,
which combines classical scientific subjects, such as physics, together with
machine learning engineering.

Acknowledgment

• I would like to acknowledge help of
Dantong Yu in providing working
resources and inviting me for his
project.

• Also I would like thanks Tingting
Xuan for helping with pipeline and
sharing ideas of the
implementation.

Thanks for attention

