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Project description



Particles collision data
Simulated by sPHENIX project

• After beams’ collision


• Detection


• Analysis 



Detection
MVTX & INTT detectors
• Complex detector geometry


• High dimensionality (9k x 9k x 3)


• Variational input data


• Solutions: models with flexible 
data dimensionality + reduction of 
the useless data
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Tracks
& their representations

• Tracks ~ graphs


• Geometrical constraints:  



• With each iteration we find 
more relevant tracks and 
automise the process of 
matching the hits into 
graphs

δ(ϕ) ≤
π
4

, δ(z) ≤ 300 mm

z, mm

1 detector

2 detector

3 detector



Pipeline overview
Track reconstruction

Clustering
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Graph Neural Networks



GNN idea
G = F(N, E)

• Predictions: node level, 
edge level, graph-level


• Hyper parameters: 
Embedding size, MPL 
amount.


• Python lib for working 
with GNN - PyG 
(PyTorch geometrical)Embedding
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Graph Convolutional Network
graph level prediction
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Graph Convolutional Network
node-level prediction - project task
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Data analysis + preprocessing



Raw data
Simulated by sPHENIX project

• Generated json samples containing 
events


• Each event consist of: metadata, 
detectors data/positions/ids, points 
ids/pixel data/position/chip info, 
particles energy/momentum info, 
ground truth about vectors 
(containing particle ids etc.)



Preprocessing part
Goals and steps

Main steps should be: 


1) unpack json raw data2

2) read carefully points data by ids

3)concatenate points from INTT and MVTX

4) reconstruct tracks from ground truth

5) cluster points on 1 detector

6)calculate cylindrical coordinates

7)segment possible edges by geometrical 
constraints 

8) scale features 

9) save in appropriate format.
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Clustering


Collect all nearby points -> calculate 
mean euclidian (center) -> save 
center coordinates and number of 
pixels



Preprocessed data
Before training

Preprocessed data (per event), which can be considered to serve 
as input for the model, consist of next characteristics:


1) Scaled geometrical data: r vector value, phi angle value, z 
coordinate across cylindrical axe, amount of pixels on chip used in 
clustering


2) Possible edge combinations between point ids


3) Ground truth - each track consist of some points




Train process overview



Technology stack for training
Tools and technologies

• Remote developing, ssh, linux, conda3


• Python software engineering (OOP) for constructing training class, data 
loaders and models


• Torch, PyTorch geometrical, numpy, distributed programming


• Utils: wandb - for experiment tracking.



Training overview
Optimizer and model

• Optimizer - Adam, with 1e-4 learning rate, weight_decay 1e-4, and lr decay 
schedule, starting from 60th epoch with 0.1 factor + l1+l2 regularisation


• Model: Graph Neural Network, consisting of MLP + Edge + Node networks 
(num of parameters = 753 and 2,5k)


• Loss: Binary cross-entropy


• Accuracy: precision (correctly predicted edges/all edges)


• Data: 800 training events + 200 validation (2000, 400)



Training results
Process and performance

• 700 parameters, 800 
training events ->


• 2,5k parameters, 
2000 events ->



Example picture 
Inference track reconstruction



Ideas for improving
Training and data preprocessing

• Any scaling of the raw parameters should be applied in the initial layers of 
the network, since scaling parameters can harm feature importance and 
should be fine-tuned by the model to maximise the performance


• Energy and momentum are not counted right now in the pipeline, which can 
be a significant improve in results, because of extra input information.


• Hyperparameters tuning


• Models increasing + dataset expanding



Conclusion



Conclusion

• I learned Graph Neural Networks models from zero and implemented some 
of their variations in the new library PyTorch geometrical


• I met new people, who taught me a lot on coding, data analysis, physics 
context overview and nuclear physics itself.


• I expanded my thoughts about international scientific cooperation, by 
directly participating in it.


• It is an honour to be a part of such interesting and cutting-edge project, 
which combines classical scientific subjects, such as physics, together with 
machine learning engineering.
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