Accelerating Awkward
Array Builders

Manasvi Goyal

IRIS-HEP Fellow
[anna Osborne Delhi Technological University Jim Pivarski
IRIS-HEP Mentor IRIS-HEP Mentor

Princeton University Princeton University

© 'r';'éc’p Awkward Arrays

e Awkward Array is a library for nested, variable-sized data, including
arbitrary-length lists, records, mixed types, and missing data, to manipulate
JSON-like data using NumPy-like idioms.

gz cabinetry

formulate

Modularity& | Declarative
interfaces | configuration

)

i
systematic uncertainties to likelihoods

® ([z=uf pekf

coffea

ServiceX
recast

yadage

5th Oct 2022 Accelerating Awkward Array Builders

https://github.com/scikit-hep/awkward

Evolution of Architecture

o H g overrides NumPy's ufuncs ."
user interface ak.Array n Python registered as a type in Numba ':'
— Python can "see"]
e }Symefﬁ'T ----- B S — down to this depth _
tree structures C++ classes Numba models

I S

------------------- extern "C" interface ------------------

/

cpu-kernels cuda-kernels

user interface

manipulation of
1D buffers

operate on CPU pointers operate on GPU pointers tree StrUCtUres

Architecture of Awkward 1.x

manipulation of
Lessons learned in Python-C++ integration 1D buffers

Jim Pivarski, Princeton University
ACAT 2021

Architecture of Awkward 2.x

overrides NumPy's ufuncs

ak.Array in Python registered as a type in Numba

Python can "see"

Ry o
MT \\ down to this depth

Python classes % | Numba models

S

L 3
. o
he .

------------------- extern "C" interface ------------------

ik

cpu-kernels

cuda-kernels

operate on CPU pointers

operate on GPU pointers

-

5th Oct 2022 Accelerating Awkward Array Builders

About the Project

e My project concentrates on accelerating the performance of the Awkward
Array Layout Builders by preventing unnecessary memory copies, optimised
allocation of memory and improving the speeds.

« Modifying Growable Buffer to use multi-panels approach.

o To develop compile-time, templated, header-only C++ libraries which can be
dropped into any external project.

e Writing unit tests in C++, documentation and a user guide.

5th Oct 2022 Accelerating Awkward Array Builders 4

F\ 1S
@ hep Python-C++ Integration

« Binding Python and C++ to get advantage of best features of both languages.

o The header-only implementation allows using Awkward Arrays in an external
project without linking to the awkward libraries.

» Minimal code, no specialised data types.

o This facilitates dynamically generating
Layout Builder from strings in Python
and then compiling it with Cling.

5th Oct 2022 Accelerating Awkward Array Builders

Previous Growable Buffer

size t reserved = 5, resize = 1.5;
double data[ll] = {(1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, 2.1, 2.2};

1.111.211.211.4]115

11.5x
11112113114 115)116]1.71]11.8

11.5x) g
1112113114115)116 27118119121)2.2

template <typename T>
void GrowableBuffer<T>: :append (T datum) {
if (length == reserved)
set_reserved((size_t)ceil (reserved * resize));
ptr_.get() [length] = datum;
length_++;

template <typename T>
void GrowableBuffer<T>::set_ reserved(size_t minreserved) {
if (minreserved > reserved) {
UniquePtr ptr(reinterpret cast<T*>(awkward malloc(

(int64_t) (minreserved * sizeof(T)))));

memcpy (ptr.get (), ptr_.get(), length * sizeof(T));
ptr_ = std::move (ptr);
reserved = minreserved;

5th Oct 2022

Accelerating Awkward Array Builders

https://github.com/scikit-hep/awkward/blob/main/src/libawkward/builder/GrowableBuffer.cpp
https://github.com/scikit-hep/awkward/blob/main/src/libawkward/builder/GrowableBuffer.cpp

Ifrllesp Growable Buffer with Panels

HEAD

current_ptr current_ptr current_ptr

! ! !

11112113 114 |15 =p»]1.6|1.7]11.8 119 |2.1]| =p]2.2

I I I

ptr Panel 0 ptr Panel 1 ptr Panel 2
next NULL

5th Oct 2022 Accelerating Awkward Array Builders 7

Growable Buffer Unit Tests

void test complex() {

int data_size = 9;

std: :complex<double> data[9] = {{1.1, 0.1}, {2.2,
{4.4, 0.4}, (5.5,
{7.7, 0.7}, {8.8,

awkward ::BuilderOptions options { 3, 1 };

auto buffer =

for (int64_t i = 0; i < data_size; i++)

buffer.append(data[i]) ;

std: :complex<double>* ptr =

buffer.concatenate (ptr) ;

for (inté64_t at = 0; at < buffer.length(); at++)

assert(ptr[at] == datalat]):

{

0.2},
0.5},
0.8},

{3.3,
{6.6,
{9.9,

0.3},
0.6},
0.9}};

GrowableBuffer<std: :complex<double>>: :empty (options) ;

new std::complex<double>[data_size];

void test_extend() {

size_t data_size = 15;

double data[1l5] = {1.1, 1.2, 1.3, 1.4, 1.5,
1.6, 1.7, 1.8, 1.9, 2.1,
2.2, 2.3, 2.4, 2.5, 2.6};

awkward::BuilderOptions options { 5, 1 };

auto buffer = awkward: :GrowableBuffer<double>

: :empty (options) ;

buffer.extend(data, data_size);

double* ptr = new double[buffer.length()];

buffer.concatenate (ptr) ;

for (size_t i = 0; i < buffer.length(); i++)

assert(ptr[i] == datal[i]);

{

5th Oct 2022

Accelerating Awkward Array Builders

https://github.com/scikit-hep/awkward/blob/main/tests-cpp/test_1542-growable-buffer.cpp

<SSVME
hep Layout Builders

o Layvout Builder is a templated static C++ code, implemented entirely in header
files, and easily separable from the rest of the Awkward C++ codebase.

o It uses header-only GrowableBuffer.

o Three phases:

o Constructing a Layout Builder: from variadic templates!

o Filling the Layout Builder: while repeatedly walking over the raw
pointers within the LayoutBuilder

o Taking the data out to user allocated buffers: Then user can pass them to
Python if they want.

5th Oct 2022 Accelerating Awkward Array Builders 9

https://github.com/scikit-hep/awkward/blob/main/src/awkward/cpp-headers/awkward/GrowableBuffer.h
https://github.com/scikit-hep/awkward/blob/main/src/awkward/cpp-headers/awkward/LayoutBuilder.h

N\ I1S
hep User Interface

o A Layout Builder provides information about :

o What's the Awkward Form and its form keys?

o What are the names, size (in bytes) and number of the buffers?

= Map the node names to the numbers of bytes on the buffer nodes .

o What data is filled in the buffers?

= Foraform key and a user-given pointer, fill data into this pointer.

5th Oct 2022 Accelerating Awkward Array Builders 10

Record Builder Example

x_builder.append(1.1) ;

enum Field : std::size_t {x, y};

auto& y subbuilder

y_builder.begin list();

UserDefinedMap fields map ({
{Field::x, "x"},
{Field::y, "y"}}):

x_builder.append(2.2) ;

y_subbuilder.append (1) ;
y_builder.end list();

RecordBuilder< y_builder.begin_list();
RecordField<Field: :x, NumpyBuilder<double>>, y_builder.end list();

RecordField<Field::y, ListOffsetBuilder<inté4_t,
NumpyBuilder<int32_ t>>>
> builder;

x_builder.append(3.3);

y_builder.begin_list();

y_subbuilder.append (1) ;

y_subbuilder.append(2) ;

builder.set field names(fields map) ;

auto& x builder = builder.field<Field::x>(); [{rxm: 1.1
auto& y builder = builder.field<Field::y>(); {"x": 2.2,
{"x": 3.3,

1

Meptl o
Yy

n.

"

"

n.

y_builder.end list();

[11},

[1},
[1,

2]},

Record 1

Record 2

Record 3

5th Oct 2022 Accelerating Awkward Array Builders

11

https://github.com/scikit-hep/awkward/blob/main/tests-cpp/test_1494-layout-builder.cpp

Record Builder User Interface

L Layout Builder Form
- Check the validity of the buffer {
"class": "RecordArray",
std: :string error; "contents": ({
assert (builder.is wvalid(error) == true); "xt o
- "class": "NumpyArray",
"primitive": "floaté64",
> Retrieve the names and the size of the buffers in bytes : "form key": "nodel”
std: :map<std::string, size t> names nbytes = {}; "yt {1 e
. - - class": "ListOffsetArray",
builder.buffer nbytes(names_nbytes) ; noffsets": "i64",
assert (names nbytes.size() == 3); "content": {
"class": "NumpyArray",
. . "primitive": "int32",
- Allocate the buffers, map using the same names/sizes as "form key": "node3"

above, and fill them.

auto buffers = empty buffers(names nbytes) ;

b,

b,

"form key": "node2"

} AL

builder.to_buffers (buffers) ; "form key": "nodeO"

5th Oct 2022 Accelerating Awkward Array Builders

12

(@ Irs . . o
2 hep Builders for Records with No Fields

Empty Record Layout Builder Tuple Layout Builder
{
. I — "class": "RecordArray",
Ifis_tuple = false - N\ "contents": [!
{
{ Record "class": "NumpyArray",
"class": "RecordArray", "primitive": "float64",
" n. "form key": "nodel"
tents": , . -
"‘c‘::n e ". [5|| " no flelds" } 4
orm key": "node0 {
} class": "ListOffsetArray",
/7 [{}, {}, {}] "offsets": "i64",
"content": {
. I "class": "NumpyArray",
Ifis tuple=true ~ "primitive": "int32",
o i "form key": "node3"
{ Tuple b,
"elass": "RecordArray" , :: form_key" : "node2"
"contents": (), } }
""form key": "nodeO" "form key": "node0"
} }
// 10, O, 01 // (.1, [11), (2.2, [1, 2]), (3.3, [1, 2, 3])]
5th Oct 2022 Accelerating Awkward Array Builders 13

Classes in Layout Builders

There are 14 Classes in Layout Builder namespace -

=> Numpy Layout Builder ->
ListOffset Layout Builder
List Layout Builder
Empty Layout Builder
Record Layout Builder

Empty Record Layout Builder

N 20 25 B R
\ 20 25 B 2 2

Tuple Layout Builder

Regular Layout Builder
Indexed Layout Builder
Indexed Option Layout Builder
Unmasked Layout Builder
ByteMasked Layout Builder
BitMasked Layout Builder

Union Layout Builder

5th Oct 2022 Accelerating Awkward Array Builders

14

to_buffers in Layout & Array Builders

const std::string

Float64 Float64Builder::to_buffers (BuffersContainer& container, int64_té& form key id) const {
std::stringstream form key;
ArrayBuilder form key << "node" << (form key id++);

buffer .concatenate(
(COI’lCdl‘él’ldl‘@S data, reinterpret_cast<double*>(

container.empty buffer (form key.str() + "-data",
typecast, returns form) buffer .length() * (int64_t)sizeof (double))));

return "{\"class\": \"NumpyArray\", \"primitive\": \"float64\", \"form key\": \""
+ form_key.str() + "\"}";

void : :
to_buffers(std: :map<std::string, void*>& buffers) const noexcept { LIStOffset LayoutBullder
offsets_.concatenate(static_cast<PRIMITIVE*>

(buffers["node" + std::to_string(id) + "-offsets"])); (Concatenates data and fills it in a map)
content_.to_buffers(buffers);

5th Oct 2022 Accelerating Awkward Array Builders

15

O

Layout Builders in RDataFrame

NumpyBuilder = cppyy.gbl.awkward.LayoutBuilder.Numpy[data_type]
builder = NumpyBuilder()

form = ak. v2.forms.from json(form_str)

builder_type = type(builder).__cpp_name__

cpp_buffers_self.fill from[builder_ type](builder)
names_nbytes = cpp_buffers_self.names_nbytes[builder_type](builder)

buffers = empty buffers(cpp_buffers_self, names_nbytes)
cpp_buffers_self.to_char_buffers[builder_type, data_type](builder)

array = ak._v2.from_buffers(
form,
builder.length(),
buffers,

)

return _wrap_as_record_array(array)

5th Oct 2022

Accelerating Awkward Array Builders 16

https://github.com/scikit-hep/awkward/blob/main/src/awkward/_connect/rdataframe/from_rdataframe.py

UE
hep Key Insights

e Minimum Requirements of Layout Builders is C++14.

o The C++ tests are configured to be built by using CMakeLists.txt.

e« Memory Management - std::unique ptr owns and manages the memory of the
multiple panels.

o ArrayBuilder is now using the
GrowableBuffer with multi-panels, so
now the only full copy of the data is
allocated and owned by NumPy.

5th Oct 2022 Accelerating Awkward Array Builders 17

Closing Remarks

e Documentation of the Layout Builder and

GrowableBuffer.

Main Page

Classes~ | Files ~ |

1

Classes | Functions

awkward::LayoutBuilder Namespace

Reference

Classes

class

class

class

e User Guide - How to use header-only Lavout

Builder

class

class

class

o This project is selected for an Oral Presentation =

at ACAT 2022 - The Awkward World of Python

class

and C++.

class

class

class

class

BitMasked

Builds a BitMaskedArray in which mask values are packed into a bitmap. More

ByteMasked

Builds a ByteMaskedArray using a mask which is an array of booleans that determines whether the
corresponding value in the contents array is valid or not. More.

Empty

Builds an EmptyArray which has no content in i. It is used whenever an array's type is not known because it is
empty. More..

EmptyRecord

Builds an Empty RecordArray which has has zero contents. It still represents a non-empty array. In this case, its
length is specified by length. More.

Field

Helper class for sending a pair of field names (as enum) and field type as template parameters in Record. More.
Indexed

Builds an IndexedArray which consists of an index buffer. It is a general-purpose tool for changing the order of
andlor duplicating some content. More..

IndexedOption

Builds an IndexedOptionArray which consists of an index buffer. The negative values in the index are interpreted
as missing. More.

List

Builds a ListArray which generalizes ListOffsetArray. Instead of a single offsets array, ListArray has - starts which is
the starting index of each list and stops which is the stopping index of each list. More.

ListOffset

Builds a ListOffsetArray which describes unequal-length lists (often called a ‘jagged” or “ragged" array). The
underlying data for all lists are in a BUILDER content. It is subdivided into lists according to an offsets array, which
specifies the starting and stopping index of each list. More.

Numpy

Builds a NumpyArray which describes multi-dimensional data of PRIMITIVE type. More.

Record

Builds a RecordArray which represents an array of records, which can be of same or different types. Its contents
is an ordered list of arrays with the same length as the length of ts shortest content; all are aligned element-by-
element, associating a field name to every content. More..

Regular

Builds a RegularArray that describes lists that have the same length, a single integer size. Its underlying content is
aflattened view of the data; that is, each listis not stored separately in memory, but s inferred as a subinterval of
the underlying data. More,

5th Oct 2022

Accelerating Awkward Array Builders

18

https://github.com/scikit-hep/awkward/blob/manasvi/layout-builder-user-guide/docs-sphinx/user-guide/how-to-use-header-only-layoutbuilder.md
https://github.com/scikit-hep/awkward/blob/manasvi/layout-builder-user-guide/docs-sphinx/user-guide/how-to-use-header-only-layoutbuilder.md
https://indico.cern.ch/event/1106990/contributions/4991252/
https://indico.cern.ch/event/1106990/contributions/4991252/

