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How parameter estimation works?

Parameterize each 
possible signal in the 

detector

Assign likelihood to 
the data given 

parameters

Assign prior to each 
parameter

Run nested sampling / 
MCMC algorithm to obtain 
probability of parameters 

given data
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How joint parameter estimation 
works?

Modify likelihood to 
model both signals

Double the parameter 
space so that it covers 

both signals

Run the sampling 
algorithm

Time-order the signals 
in post-processing
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How hierarchical subtraction works
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How hierarchical subtraction works

Overlapping signal and the waveform recovered from the 1st parameter estimation
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The signal on which the 2nd parameter estimation is performed
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How hierarchical subtraction works

The signal and the 2nd recovered waveform 
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Setup
● 55 simulated pairs of BBH signals
● Each pair separated by 0.1s
● Injected into 3G detector network (Einstein Telescope + Cosmic Explorer)
● Injections both into zero noise and stationary Gaussian noise
● 8s data segments, 2048 Hz sampling rate, 20 Hz minimum frequency
● Component masses sampled from Power law + peak distribution, kept 
only if in 30-60 solar mass range

● Signals rescaled to SNRs in 8-50 range

Number of simulated signals 55

Separation of signals 0.1s

Detector Network Einstein Telescope + Cosmic Explorer

Detector noise Stationary Gaussian; zero noise

Data segment duration 8s

Sampling rate 2048 Hz

Minimum frequency 20 Hz

Sampler Dynesty

Injected masses distribution
Power law + Peak, restricted to 30-60 solar 

masses

Signal to Noise Ratio 8-50
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Waveform recovery
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Posteriors
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JPE noise
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Bias in recovered parameters
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- Bias = | median – injection | / injection
- HS shows higher bias in 71% of loud events and 51% of quiet ones compared to SPE
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Bias in recovered parameters
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- JPE shows higher bias in 55% of events compared to SPE
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Bias in recovered parameters
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- HS shows higher bias in 65% of events compared to JPE



  18

Spread of recovered parameters
- 90% confidence interval normalized by injected value
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Conclusions
● JPE produces largely unbiased posteriors
● Width of this posterior varies compared with SPE
● JPE is very slow – speed-ups nessercary to aply 
it in practice

● HS leads to bias, but the recovery of the quieter 
signal is still possible
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