Correcting biases from overlapping signals in the third generation era: parameter estimation methods

Tomasz Baka, Justin Janquart, Anuradha Samajdar, Tim Dietrich, and Chris Van Den Broeck

Overlapping signals

Signal A

Overlapping signals

Signal A + Signal B

Overlapping signals

Signal A + Signal B = Overlapping signal

How parameter estimation works?

Parameterize each possible signal in the detector Assign likelihood to the data given parameters

> Run nested sampling / MCMC algorithm to obtain probability of parameters given data

A

Assign prior to each parameter

How joint parameter estimation works?

Double the parameter space so that it covers both signals

Modify likelihood to model both signals

Time-order the signals in post-processing

Run the sampling algorithm

Overlapping signal on which 1st parameter estimation is performed

Overlapping signal and the waveform recovered from the 1st parameter estimation

The signal on which the 2nd parameter estimation is performed

The signal and the 2nd recovered waveform

Setup

Number of simulated signals	55
Separation of signals	0.1s
Detector Network	Einstein Telescope + Cosmic Explorer
Detector noise	Stationary Gaussian; zero noise
Data segment duration	8s
Sampling rate	2048 Hz
Minimum frequency	20 Hz
Sampler	Dynesty
Injected masses distribution	Power law + Peak, restricted to 30-60 solar masses
Signal to Noise Ratio	8-50

Waveform recovery

- define match between 2 signals as:

$$\bar{M} = \frac{\langle h_1 | h_2 \rangle}{\sqrt{\langle h_1 | h_1 \rangle \langle h_2 | h_2 \rangle}}$$

- HS hierarchical subtraction
- JPE joint parameter estimation
- SPE single signal parameter estimation

Posteriors

Example of well recovered HS posterior

Example of a badly recovered HS posterior

Posteriors

JPE posterior closely matching SPE posterior

JPE posterior narrower than SPE posterior

JPE posterior narrower than SPE posterior, but concentrated away from the injection

Bias in recovered parameters

- Bias = | median – injection | / injection

- HS shows higher bias in 71% of loud events and 51% of quiet ones compared to SPE

15

Bias in recovered parameters

- JPE shows higher bias in 55% of events compared to SPE

16

Bias in recovered parameters

- HS shows higher bias in 65% of events compared to JPE

17

Spread of recovered parameters

- 90% confidence interval normalized by injected value

Conclusions

- JPE produces largely unbiased posteriors
- Width of this posterior varies compared with SPE
- JPE is very slow speed-ups nessercary to aply it in practice
- HS leads to bias, but the recovery of the quieter signal is still possible