Nonlinear effects in the black hole ringdown: absorption-induced mode excitation

Pablo Bosch Gómez

GRavitation AstroParticle Physics Amsterdam Universiteit van Amsterdam

Belgian-Dutch GW Meeting, Ghent October 14, 2022

GRavitation AstroParticle Physics Amsterdam

Punchline

• We find that nonlinear effects have a significant contribution to BBH ringdown

General Motivation for Ringdown Studies

- Astrophysics
 - Spectroscopically characterize the final black hole
 - Test GR in an extremely dynamical scenario
 - Deviations from GR [LVK,ET,CE]
 - Degree of nonlinear mode interaction in astrophysical mergers
- Classical General Relativity

 - Consistency with no-hair theorems and final state conjecture [Penrose, Israel, Carter]
- (Holography)

Quasi-Normal Frequencies

- \cdot QN Spectrum
 - characterized by
 - $\omega = \omega_{\rm R} + i\omega_{\rm I}$
 - $\omega_{\rm R}$ are the oscillations
 - $\omega_{\rm I}$ decaying timescale of the mode
 - higher overtones (larger n) decay faster

Looking for nonlinearities Using a 'toy' model

- Can nonlinear effects take place during ringdown?
 - Can a mode present at early times excite additional modes
- Nonlinearities after $t t_{h_{\text{peak}}} = 0$ might still be important

Our Model

- Fields
 - g_{ab} Metric
 - ϕ Complex scalar
- ${\boldsymbol{\cdot}}$ Lagrangian

$$16G_{\rm N}\mathcal{L} = R + \frac{6}{L^2} - |\partial_a \phi|^2$$

• We set L = 1 through tout

QNM Initial Data

To prepare n^{th} overtone initial data

- We obtain target ovetone frequency with Leaver's method
- We solve the radial equation for the radial mode function

(both are numerical operations)

Results

Fully Nonlinear Evolution

Results

Fit to Nonlinear Evolution

Results

Absorption-Induced Mode Excitation

 $A_{n\neq\bar{n}}\sim A_{\bar{n}}^3$

Towards Astrophysical BH Schwarzschild-AF

- The perturbing mode is the fundamental mode n = 0
- Using amplitudes inferred from a fit to GW150914
- Percent level corrections

Conclusion & Outlook

Summary

- Ringdown is an ideal testbed for GR
 - some time after merger the signal can be described by perturbation theory
- We explored the dynamics of perturbed black holes beyond linear order
- We identify a high order secular effect AIME
 - expect it to be more relevant than mode doubling (for GW)
- Overtones are excited generically and dynamically due to the flux across the horizon