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CONTEXT: THE TWO-BODY PROBLEM IN GR

Several methods to solve the 2BP in
GR
Large mass ratio: ϵ ≜ µ

M ≪ 1

EMRIs: 10−6 < ϵ < 10−4

IMRIs: 10−4 < ϵ < 10−2

[arXiv:1805.10385]
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SETUP AND CHALLENGE(S)

Motion of a small object in a (Kerr)
background gµν: find a pair (γ, gµν)
describing the resultant spacetime up
to some required precision (e.g. LISA:
∆φ ∼ O(1))

More pragmatic question: what are the gravitational waveforms detectable from
the Earth ?
At the level of EOMs, several corrections arise at O(ϵ):

Dzµ

dτ = ϵ fµ[gαβ, zα, Tαβ]

fµ = 0: geodesic motion fµ = f
µ
GSF: self-force corrections fµ = f

µ
MP : finite-size effects
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TEST BODIES: SKELETONIZATION AND MPD EQUATIONS

Test body ≡ finite size structure (spin. . . ) without backreaction

Motion of spinning test bodies in curved spacetime: MPD equations

Dpµ

dλ
= −

1

2
R
µ
ναβv

νSαβ +Fµ,
DSµν

dλ
= 2p[µvν] +Lµν

Astrophysical objects: perturbative treatment in S2 ≜ 1
2SαβS

αβ

Here: only spin-induced quadrupole

Jµνρσ =
3(1+ δκ)

µ
v[µSν]λS

[ρ
λ vσ] = O

(
S2

)
δκ = 0 for a Kerr BH and δκ ̸= 0 otherwise ⇒ nature of the object matters!
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CONSTANTS OF MOTION FOR TEST BODIES IN KERR

Geodesics
Symmetries: 2 Killing vectors + 1 rank-2 Killing tensor
4 conserved quantities: µ2, E, Lz and Q

Bounded geodesic motion in Kerr is triperiodic (in r, θ, ϕ), separable and
(Liouville) integrable
Allows to turn to action-angle variables (xµ,pµ) → (qλ, Jλ) such that

q̇λ = ωλ(J), J̇λ = 0

Extended bodies
E,Lz can be deformed and still exactly conserved [Dixon 1979]

Other quasi-constants of the motion investigated by Rüdiger in the 80s @ O
(
S1

)
[Rüdiger 1981-83] [Compère and AD 2020]

Linear invariant QY (NEW !)
Quadratic invariant QR (∼ generalization of Carter constant)

Integrability broken and chaos can arise, but shifts in fundamental frequencies can
be computed [Witzany 2019]

@ O
(
S2

)
, deformations of QY and QR still exist for BHs (δκ = 0), but not clear for

NS [Compère, AD and Vines, to appear]
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EVOLUTION OF EMRIS: TWO-TIMESCALE EXPANSION

For LISA, need to go up to O
(
ϵ2

)
and O

(
S2

)
Multiscale expansion: separate slow-time dynamics (∼ tr-r) from fast-time dynamics
(∼ to) [Flanagan and Hinderer 2008]

Fast-time equations ↔ triperiodicity of background geodesics
Slow-time equations ↔ drive the evolution of the constants of motion

EOMs read

dqα
dt

= ωα(Jλ) + ϵg
(1)
α (qA, Jλ) + ϵ2 g

(2)
α (qA, Jλ) +O(ϵ3),

dJλ
dt

= ϵG
(1)
λ (qA, Jρ) + ϵ2G

(2)
i (qA, Jρ) +O(ϵ3)

Still need the fundamental frequencies (possibly with finite-size corrections)

Obtaining a generic working waveform generation scheme is still a (long time)
community effort. . .
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OUTLOOKS

Studying the test body motion is still useful for understanding self-forced motion
(and thus GWs from EMRIs)!
Various problems still open

First goal: status of the NS conserved quantities @ O
(
S2

)
⇝ help from the “supersymmetric” formulation?
Treatment at higher orders in the multipole expansion
⇝ constraints on the form of the EOMs
Strong relation with separability of Hamilton-Jacobi equation at first order [Witzany
2019]
⇝ compute shifts in fundamental frequencies, action-angle variables. . .
Comparison with conserved quantities in the PN BBH system
[Tanay, Stein and Gálvez Ghersi 2020]
Covariant building blocks useful for other applications ?
⇝ BHP theory in Kerr spacetime in metric formalism

Thank you for listening !
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INTRODUCTION: CONSTANTS OF MOTION FOR TEST BODIES IN KERR

Geodesics
Killing vectors ξ = ∂t,∂ϕ:

Qξ ≜ ξµv
µ, vµ ≜

dxµ

dλ

conserved along geodesic motion
Separation of Kerr geodesic equations by Carter [Carter 1968] :

QC = Kµνv
µvν, ∇(αKβγ) = 0

also conserved along geodesic motion
Spinning bodies

Motion of multipolar test bodies: Mathisson-Papapetrou-Dixon equations
Qξ = ξµv

µ + 1
2∇µξνS

µν exactly conserved [Dixon 1979]

For astrophysically realistic EMRIs: S
µM ≤ µ2

µM = µ
M ≪ 1

Other constants of the motion investigated by Rüdiger in the 80s @ O
(
S1

)
[Rüdiger 1981-83]

Linear invariant QY (NEW !)
Quadratic invariant QR (∼ generalization of Carter constant)

What happens @O
(
S2

)
, including quadrupole corrections ?
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THE SETUP: MATHISSON-PAPAPETROU-DIXON EQUATIONS

Motion of spinning test bodies in curved spacetime: MPD equations

Dpµ

dλ
= −

1

2
R
µ
ναβv

νSαβ +Fµ

DSµν

dλ
= 2p[µvν] +Lµν.

pµ ≜
∫
x0=cst d3x

√
−gTµ0, Sµν ≜

∫
x0=cst d3x

√
−g

(
δxµTν0 − δxνTµ0

)
Conserved spin magnitude: S2 ≜ 1

2SαβS
αβ

Quadrupole approximation:

Fµ = −
1

6
Jαβγδ∇µRαβγδ, Lµν =

4

3
R
[µ

αβγ
Jν]αβγ

Spin-induced quadrupole:

Jµνρσ =
3(1+ δκ)

µ
v[µSν]λS

[ρ
λ vσ] = O

(
S2

)
δκ = 0 for a Kerr BH (“BH case”) and δκ ̸= 0 otherwise (“NS case”)
Tulczyjew spin supplementary condition

Sµνpµ = 0 ⇒ Sµν = −ϵµναβ p̂α︸︷︷︸
≜pα/µ

Sβ, vµ = vµ(pα,Sα)
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CONSERVED QUANTITIES [Rüdiger 1981-83]

Basic idea: enforce directly the (quasi-)conservation

Q̇(A) = vλ∇λQ
(A) !

= O
(
Sk

)
Historically: homogeneous Ansätze in the number of p’s and S’s

Q(1) = Aµp
µ +BαβS

αβ,

Q(2) = Kµνp
µpν + Lµνρp

µSνρ +MµνρσS
µνSρσ

Relaxed spin vector: Sα =
(
δαβ + p̂αp̂β

)
sβ

All the terms of the constraints take the form

Tα1...αnsβ1...βnp
sα1 . . . sαnS p̂β1 . . . p̂βnp

All the contributions of different gradings [ns,np] should vanish independently

Nevertheless, one should deal with cumbersome PDEs. . .
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COVARIANT BUILDING BLOCKS FOR KERR

Define

R ≜ r+ ia cos θ, Nαβ ≜ −iGαβµνl
µnν, G

γδ
αβ ≜ 2δ

[γ
α δ

δ]
β − iϵ

γδ
αβ

All the Kerr spacetime quantities can be expressed in terms of
(gµν, ϵµνρσ,R, ξα,Nαβ) and their conjugated. Examples:

Yαβ = −Re
(
RNαβ

)
, Rαβγδ = MRe

(
3NαβNγδ −Gαβγδ

R3

)
.

Closed differential relations:

i∇αR = Nαβξ
β, i∇γ

(
RNαβ

)
= Gαβγδξ

δ,

i∇αξβ = −
M

2

(
Nαβ

R2
−

N̄αβ

R̄2

)
.

Only non-trivial contraction: hµν ≜ N
α

µ N̄να.

NαβN
β
γ = −gαγ, NαβN̄

αβ = 0, NαβN
αβ = 4 . . .
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“SCALAR” CONSTRAINT EQUATION

Generating set of contractions for the constraint equations:

S2 ≜ sαs
α, P2 ≜ −p̂αp̂

α, A ≜ sαp̂
α, A ≜ Nλµξ

λp̂µ,

B ≜ Nαµs
αp̂µ, C ≜ Nλαξ

λsα, D ≜ hλαξ
λsα, E ≜ −ξαp̂

α,

Es ≜ −ξαs
α, F ≜ hλµξ

λp̂µ, G ≜ hαµs
αp̂µ, H ≜ hµνp̂

µp̂ν,

I ≜ hαβs
αsβ, J ≜ hαβξ

αξβ.

Powers of R introduced through

α
(n,p)
K ≜ Re

(
KR̄n

Rp

)
, ω

(n,p)
K ≜ Im

(
KR̄n

Rp

)
.

Differential operator

∇̂T ≜ p̂λ∇λ(Tµ1...µk
)ℓµ1 . . . ℓµk ,

T ≜ Tµ1...µk
ℓµ1 . . . ℓµk (ℓµ = p̂µ or sµ)

In this formulation, the constraints become purely algebraic relations!
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THE LINEAR CONSTRAINT

Q(1) ≜ Xµp
µ +WµνS

µν, Q̇(1) !
= O

(
S3

)
[0, 2] : ∇µXνp̂

µp̂ν = O
(
S3

)
,

[1, 2] : ∇µYανs
αp̂µp̂ν −

1

2
XλR∗λνβρs

βp̂νp̂ρ = O
(
S3

)
,

[2, 2] :
κ

2µ
Xλ∇λRναβρs

αsβp̂νp̂ρ + YµνL∗µν = O
(
S3

)
,

[2, 4] :
(
∇λXµ − 2Wλµ

)(
µDλ

ν −Lλ
ν

)
p̂µp̂ν = O

(
S3

)
For any Killing vector Xµ,

QX = Xµp
µ +

1

2
∇µXνS

µν,

is conserved ∀δκ
For any Killing-Yano tensor ∇(µYν)α = 0, the constraint boils down to

[2, 4] : δκ
(
AH+P2G

)
ω

(1,3)
B = O

(
S3

)
⇒ QY = Y∗αβS

αβ is only conserved for BHs (δκ = 0). . .
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THE QUADRATIC CONSTRAINT

Q(2) = Kµνp
µpν + Lµνρp

µSνρ +MµνρσS
µνSρσ, Q̇(2) !

= O
(
S3

)
First order in S

Non-trivial conserved quantity at linear order: Rüdiger quadratic invariant
[Rüdiger 1983]

Kµν = YµλY
λ
ν, Lαβγ =

2

3
∇[αKβ]γ +

4

3
ϵαβγδ∇δZ , Z ≜ 1

4
Y∗αβY

αβ

Holds in any RF spacetime admitting a KY tensor & unique in Kerr [Compère and AD

2021]

Second order in S [Compère, AD and Vines, to appear soon]

Using an appropriated Ansatz & the formalism introduced before

Mαβγδ = −gαγ

(
ξβξδ −

1

2
gβδξ

2

)
+

1

2
Y λ
α

(
Y

κ
γ Rλβκδ +

1

2
Y κ
λ Rκβγδ

)
is conserved @ O

(
S2

)
for the spin induced quadrupole for δκ = 0

Proof carried out in Kerr using CBB + uniqueness demonstrated
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∇[αKβ]γ +

4

3
ϵαβγδ∇δZ , Z ≜ 1

4
Y∗αβY

αβ

Holds in any RF spacetime admitting a KY tensor & unique in Kerr [Compère and AD

2021]

Second order in S [Compère, AD and Vines, to appear soon]

Using an appropriated Ansatz & the formalism introduced before

Mαβγδ = −gαγ

(
ξβξδ −

1

2
gβδξ

2

)
+

1

2
Y λ
α

(
Y

κ
γ Rλβκδ +

1

2
Y κ
λ Rκβγδ

)
is conserved @ O

(
S2

)
for the spin induced quadrupole for δκ = 0

Proof carried out in Kerr using CBB + uniqueness demonstrated
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SOME INSIGHTS ABOUT NEUTRON STARS (δκ ̸= 0 CASE)

Adding a deformation

Q = QBH → QBH + δκQNS

allows to separate NS constraint from BH one ⇒ independent treatment
Linear invariant: must be supplemented by a [2, 3] piece
Q

(1)
NS = δκMαβµγδS

αβSγδpµ such that (N ≜ ∗M∗)

∇̂N =
3M

4

(
AH+P2G

)
ω

(1,3)
B

Quadratic invariant: must be supplemented by a [2, 2] piece
Q

(2)
NS = δκMαβγδS

αβSγδ such that

∇̂N = Υ

Υ = −
3M

4

(
A2 +P2S2

)(
ω

(0,2)
A

+ω
(2,4)
A

+2ω
(1,3)
Ā

)
+

3M

2

(
AE+P2Es

)(
ω

(0,2)
B

+ω
(2,4)
B

)
−

15M

4

(
ω

(0,2)

AB2
+ω

(2,4)

AB2

)
−

15M

2
ω

(1,3)

ĀB2
−3M

(
AF+P2D

)
ω

(1,3)
B

Using CBB: purely enumerative, algebraic problem (work in progress)
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