PPS @ HL-LHC: Status Report

LHC Forward Physics Meeting

25 October 2022

Mario Deile
on behalf of
The CMS Collaboration

PPS @ HL-LHC: Proposed Layout

(on both sides of IP5, shown here: Sector 5-6)

Locations from maximisation of accepted central mass range:

Total: 2×10 jaws (warm region) $+2 \times(1-2)$ jaws (420 m) = $22-24$ jaws
\rightarrow similar to present day (26) \rightarrow similar services (cables, cooling)

PPS @ HL-LHC: Project History

Dec. 2020:

Expression of Interest published as CMS NOTE-2020/008:
https://cds.cern.ch/record/2750358
http://arxiv.org/abs/2103.02752

Available on CMS information server
CMS NOTE -2020/008

The Compact Muon Solenoid Experiment

CMS Note
 Maling address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CERN

26 November 2020 (v3, 09 December 2020)

The CMS Precision Proton Spectrometer at the HL-LHC - Expression of Interest

The CMS Collaboration

- 4 locations on both sides of IP5 :
- just before TCL5 (~ 196 m): high masses
- just before TCL6 (~ 220 m): intermed. masses
- just after Q6 (~ 234 m): lower masses
- 420 m :
lowest masses

Station	$M_{\min }[\mathrm{GeV}] @ y=0$	$M_{\max }[\mathrm{GeV}] @ y=0$
196 m	$1100.87-1197.80$	2754.27
220 m	$519.89-533.18$	962.70
234 m	$264.96-132.80$	368.11
420 m	$43.38-47.04$	162.66

Mario Deile

PPS @ HL-LHC: Project History

Dec. 2020:
Expression of Interest published as CMS NOTE-2020/008: https://cds.cern.ch/record/2750358
http://arxiv.org/abs/2103.02752

Available on CMS information server

The Compact Muon Solenoid Experiment

CMS Note

Maling address: CMS CERN, CH-1211 GENEVA 23, Switzerland

26 November 2020 (v3, 09 December 2020)

The CMS Precision Proton Spectrometer at the HL-LHC - Expression of Interest

The CMS Collaboration

- 4 locations on both sides of IP5:
- just before TCL5 (~ 196 m): high masses
- just before TCL6 (~ 220 m): intermed. masses
- just after Q6 (234 m): lower masses
- 420 m :
lowest masses

Station	$M_{\min }[\mathrm{GeV}] @ y=0$	$M_{\max }[\mathrm{GeV}] @ y=0$
196 m	$1100.87-1197.80$	2754.27
220 m	$519.89-533.18$	962.70
234 m	$264.96-132.80$	368.11
420 m	$43.38-47.04$	162.66

- Detector technologies presently studied:
- Tracking: 3D silicon pixel detectors (like in Run 2/3)
- Time of Flight (to resolve pileup with multiplicity $\mu \leq 200$):
- Diamond detectors (like in Run 2/3)
- UFSD (LGAD) from CMS MTD-ETL

Run 2 Diamonds

PPS @ HL-LHC: Project History

2021:

- Continued collaboration with machine layout team
\rightarrow space reservations, preliminary integration studies now separately for sectors 4-5 and 5-6
\rightarrow identification of main difficulties, but no show-stoppers by principle
\rightarrow space for cables reserved

Difficulty: these stations (like all beamline elements between -Q5 and +Q5) needs to be on remote-controlled movable ($x-y$)-alignment platforms

- Only in this station: 2 vertical pairs for alignment and optics calibration
- To mounted on (manually adjusted) alignment platform

- Difficulty: this station needs DQR relocation;
different options under study by P. Fessia et al. (see e.g. TREX meeting 17 Dec. 2021)
- To mounted on (manually adjusted) alignment platform

PPS @ HL-LHC: Recent Evolution

2021:

- Continued collaboration with machine layout team
\rightarrow space reservations, preliminary integration studies now separately for sectors 4-5 and 5-6
\rightarrow identification of main difficulties, but no show-stoppers by principle
\rightarrow space for cables reserved
- Update of performance studies:
- optics/layout version $1.3 \rightarrow 1.5$
- new operational scenario (levelling scheme, collimation strategy)
\rightarrow more detailed acceptance numbers (year by year), but no drastic changes
\rightarrow Eol assessments still valid
- Using HL-LHC fluence maps: Refinement of requirements on
- detector vessel (pot)
- detector segmentation (via occupancy arguments)
- vertical shifts of detector packages for radiation dilution

Need for New Detector Vessels

Fluence maps (after $1 \mathrm{fb}^{-1}$)
for vertical crossing angle

- defines detector coverage needed (larger for vertical beam crossing)
- quantification of required vertical detector shifts inside pots from radiation hardness of detector candidates (tracking: 3D silicon pixels, timing: LGAD or diamonds) \rightarrow requirements on size of thin window
\rightarrow new detector vessels: shape and size identical to present pots, only thin window changes \rightarrow developments ongoing

PPS @ HL-LHC: Recent Evolution

2022:

- January / February:
presentations @ Chamonix meeting and in the HL-LHC Executive Committee with CERN directorate
- Tight funding situation \rightarrow New strategy:

Most components of present Roman Pot system can be reused without significant loss in performance.

PPS @ HL-LHC: Reuse of Present Roman Pots

Inventory: enough RP units available to equip the 2×3 "warm" locations.

Being studied in detail:mandatory component replacements. Examples:

- precision screws of motorization
- detector packages
- detector vessels (new requirements on thin window geometry)
\rightarrow all "transparent" from machine integration point of view

Machine Integration

Most urgent activity!

PPS integration now following the standard HL-LHC process for new experiment equipment:

idea, concept, no evident
showstoppers
feasibility and
initial budget
assessment
detailed design and final budget

Appropriate forum: TREX meetings ("Tunnel Region EXperiments")
\rightarrow Aims:

- Engineering Change Request document (ECR) as commonly used by the machine, for CMS purposes: ECR embedded in a larger document with updated performance numbers
- detailed integration with future optics version 1.7 (present version: 1.5)
- after integration of XRP units:
adaptation of service components (e.g. patch panels) to available space
- material and work for integration \rightarrow budget assessment for machine interface

TREX: First Round

June 2022: first TREX meeting focussing on PPS@HL-LHC:
PPS input: integration drawing iteration 0 based on optics 1.5 and RP drawings

Detailed integration process deferred to dedicated subgroup meetings:

1. Vacuum group (TE-VSC): establish exact XRP positions, beam pipe connections, vacuum equipment
2. Survey + Alignment group (BE-GM-ASG): movable alignment platforms, wire alignment, XRP compliance with new alignment procedures
\rightarrow two rounds of meetings done

Highlight from Survey \& Alignment Meeting: Movable Platforms

All stations need to be on movable alignment platforms.

- 196 m stations: remote-controlled platform versions
- 220, 234 m stations: manually adjusted platform versions

Amplitude $= \pm 2.5 \mathrm{~mm}$ needed
Received toolkit for custom-design of Universal Adjustment Platform (UAP), i.e. (x,y)-Table
Example: D2-TAXN collimators support

UAP = design framework with standard components, adaptable to individual beamline elements (a bit like LEGO)

Summary

- Reuse most components of present-day Roman Pots to adapt to funding limitations
- Performance calculations updated from Eol \rightarrow no major changes
- Machine integration studies now in the framework of TREX meetings

Discussions on integration details ongoing with

- vacuum group
- survey \& alignment group
\rightarrow aiming at ECR document
- Internal development of new RP detector vessel with identical outer specs as the present vessels \rightarrow transparent for machine integration
- Later: TDR combining all aspects of the project

The End.

Appendix

Reminder on PPS Physics: Central Exclusive Production (CEP)

 $p_{1}^{\prime}\left(\xi_{1}=\Delta \mathrm{p}_{1} / \mathrm{p}\right)$

Surviving protons \rightarrow redundant kinematic information on the central system X.

- Fractional momentum losses $\left(\xi_{1}, \xi_{2}\right)$ via proton tracking
\rightarrow Reconstruction of mass and rapidity of central system

$$
\mathrm{M}_{\mathrm{X}}{ }^{2}=\xi_{1} \xi_{2} \mathrm{~s} \quad y_{\mathrm{X}}=\frac{1}{2} \ln \frac{\xi_{1}}{\xi_{2}}
$$

- Transverse momenta ($p_{T, 1}, p_{T, 2}$) via proton tracking
\rightarrow momentum balance with central system useful for event selection:

$$
\mathbf{p}_{\mathrm{T}, \mathrm{X}}+\mathbf{p}_{\mathrm{T}, 1}+\mathbf{p}_{\mathrm{T}, 2}=\mathbf{0}
$$

- Longitudinal vertex position via proton time of flight (ToF)
\rightarrow important for resolving pileup (up to $\mu=200$ at the HL-LHC)

Central Exclusive Production at Different Mass Scales

The PPS and AFP HL-LHC projects are for standard beam optics and conditions, no special runs, except alignment and calibration fills (few hours)

Acceptance in the Mass - Rapidity Plane

Labels (1A), (1Z), (2A), (2Z) = start and end points of any vertical and the simplest horizontal trajectory

Note on p_{T} :

The M-y plot is for proton $p_{T, 1}=p_{T, 2}=0$
Fixed non-zero p_{T} would shift the contours.

For each point ($\alpha_{x} / 2, \beta_{x}{ }^{*}$):
Acceptance for central exclusive events is defined in 2-dim space (ξ_{1}, ξ_{2}) or equivalently - after basis rotation - in (M, y):

$$
\begin{array}{cr}
M^{2}=\xi_{1} \xi_{2} s & y=\frac{1}{2} \ln \frac{\xi_{1}}{\xi_{2}} \\
\ln \frac{M}{\sqrt{s}}=\frac{1}{2}\left(\ln \xi_{1}+\ln \xi_{2}\right) & y=\frac{1}{2}\left(\ln \xi_{1}\right.
\end{array}
$$

Acceptance in Mass - Rapidity Plane (new settings)

Vertical crossing in IP5

$$
\ln \frac{M}{\sqrt{s}}=\frac{1}{2}\left(\ln \xi_{1}+\ln \xi_{2}\right)
$$

$$
y=\frac{1}{2}\left(\ln \xi_{1}-\ln \xi_{2}\right)
$$

Horizontal crossing in IP5

Large gaps!

PPS Mass Acceptance (new settings)
assuming flat rapidity distribution in region $\xi_{1}, \xi_{2}<0.3$

Vertical crossing in IP5 (decided for implementation)

Evolution along the Fill
(luminosity levelling)

Horizontal crossing in IP5 (for comparison)

Evolution along the Fill
("baseline" luminosity levelling trajectory)

Dispersion:
$D_{x}=D_{x}(0)-D_{x}^{\prime} \quad \alpha_{x} / 2$
(X-angle reduces D_{x} !)

Comparison Mass-Rapidity Acceptance Run 2 / HL-LHC

2018 Nominal Optics

HL-LHC (vertical crossing):
without $420 \mathrm{~m}: 133 \mathrm{GeV}-2.7 \mathrm{TeV}$ with $420 \mathrm{~m}: \quad 43 \mathrm{GeV}-2.7 \mathrm{TeV}$

Physics programme allows a staged installation (420 m later)

The 420 m Station

Necessary for masses < 200 GeV (e.g. exclusive Higgs production)

- Region with an empty cryostat ("missing magnet")
- Signal proton tracks are between the 2 beampipes (positive dispersion)
\rightarrow Not suitable for present Roman Pot technology \rightarrow needs special development

Ideas:

- Re-use connection cryostat from TCLD integration or cryostat designed for the old FP420 project

Second-stage project for installation in LS4

