Exclusive vector meson production in the dipole picture

Jani Penttala

University of Jyväskylä

Department of Physics

Centre of Excellence in Quark Matter

LHC Forward Physics Meeting
October 24th 2022

Exclusive vector meson production

$$\gamma^* + A \rightarrow V + A$$
 where $V = \rho$, ϕ , J/ψ , Υ . . .

- ullet This talk: focus on heavy mesons ${\mathrm J}/\psi$ and Υ
- Ryskin, Z.Phys.C 57 (1993) 89-92:

$$\frac{\mathrm{d}}{\mathrm{d}t}\sigma(\gamma^* + A \to V + A) \sim [xg(x)]^2$$

- ⇒ Very sensitive to the gluon structure of the target!
- Exclusive process:

The total momentum transfer Δ can be measured

- Conjugate of the impact parameter b
 - \Rightarrow Measures spatial distribution of small-x gluons

Coherent and incoherent vector meson production

Coherent production

$$\sigma_{\rm coherent} \sim |\langle \mathcal{A} \rangle|^2$$

- Target stays intact
- Probes the average interaction

Incoherent production

$$\sigma_{\rm incoherent} \sim \langle |\mathcal{A}|^2 \rangle - |\langle \mathcal{A} \rangle|^2$$

- Target dissociates
- Probes Event-by-Event fluctuations

This talk: focus on coherent production

 $\langle \ldots \rangle$ = average over target configurations

Mäntysaari, Salazar, Schenke, 2207.03712

Vector meson production at the leading order in the dipole picture

• Factorization in the high-energy limit:

Invariant amplitude for exclusive vector meson production

$$-i\mathcal{A}^{\lambda} = 2\int \mathrm{d}^{2}\mathbf{b} \mathrm{d}^{2}\mathbf{r} \frac{\mathrm{d}z}{4\pi} e^{-i\mathbf{b}\cdot\mathbf{\Delta}} \Psi_{\gamma^{*}}^{q\bar{q}}(\mathbf{r},z) N(\mathbf{r},\mathbf{b},Y) \Psi_{V}^{q\bar{q}*}(\mathbf{r},z), \qquad t = -\mathbf{\Delta}^{2}$$

- $\Psi^{q\bar{q}}_{\gamma^*}$: Photon light-front wave function
- N: Dipole-target scattering amplitude
- $\Psi_V^{q\bar{q}}$: Vector meson light-front wave function

The dipole amplitude

 $\sigma^{\gamma^* p \to Vp} \sim |\text{dipole amplitude } N|^2$

Optical theorem:

 $\sigma^{\gamma^*p} \sim$ dipole amplitude *N*

Universal dipole amplitude

The same dipole amplitude $N=1-\frac{1}{N_c}\operatorname{Tr}ig[V(\mathbf{x})V^\dagger(\mathbf{y})ig]$ appears in different processes

- ullet Inclusive DIS, exclusive VM production, single inclusive particle production in p+A...
- Degrees of freedom at high energy: Wilson lines V(x) and the dipole amplitude N

Rapidity evolution of the dipole amplitude

Perturbative evolution equation in rapidity $Y = \ln \frac{1}{x}$

JIMWLK equation

 $\stackrel{\text{large}}{\Rightarrow}^{N_c}$ Balitsky-Kovchegov (BK) equation:

$$\begin{split} \frac{\partial}{\partial Y} \mathsf{N}(\mathbf{x}_{01}) &= \frac{\mathsf{N}_{c} \alpha_{s}}{2\pi^{2}} \int \mathrm{d}^{2}\mathbf{x}_{2} \frac{\mathbf{x}_{01}^{2}}{\mathbf{x}_{20}^{2} \mathbf{x}_{21}^{2}} \\ &\times \left[\mathsf{N}(\mathbf{x}_{02}) + \mathsf{N}(\mathbf{x}_{12}) - \mathsf{N}(\mathbf{x}_{01}) - \mathsf{N}(\mathbf{x}_{02}) \mathsf{N}(\mathbf{x}_{12}) \right] \end{split}$$

Needs a nonperturbative initial condition

Saturation at high energy (large Y):

Color Glass Condensate

Initial condition for the dipole amplitude

Lappi, Mäntysaari, 1309.6963

 Common ansatz for the initial condition: the MV model and its generalizations

$$N_{\mathsf{MV}}(\mathbf{r}) = 1 - \mathsf{exp} \left[-rac{1}{4} \mathbf{r}^2 Q_s^2 \ln \left(rac{1}{\Lambda_{\mathsf{QCD}}^2 \mathbf{r}^2} + e
ight) \right]$$

 $Q_s = \text{saturation scale}$

- The initial condition can be fitted to HERA F₂ data Albacete et al., 1012.4408
 - Gives a very good description of the data

Back to vector meson production: Vector meson wave function

Invariant amplitude for exclusive vector meson production

$$\operatorname{Im} \mathcal{A}^{\lambda} = 2 \int \mathrm{d}^{2}\mathbf{b} \mathrm{d}^{2}\mathbf{r} \frac{\mathrm{d}z}{4\pi} e^{-i\mathbf{b}\cdot\mathbf{\Delta}} \Psi_{\gamma^{*}}^{q\bar{q}}(\mathbf{r},z) \mathsf{N}(\mathbf{r},\mathbf{b},Y) \Psi_{V}^{q\bar{q}*}(\mathbf{r},z)$$

- Now we have:
 - Photon wave function Ψ_{γ^*} (perturbative, calculate using light-cone perturbation theory)
 - Dipole amplitude N (nonperturbative initial condition + perturbative evolution)
- Final ingredient: vector meson light-front wave function
- The vector meson wave function is nonperturbative a major source of uncertainty
- Heavy vector mesons: common assumption is the nonrelativistic limit
 - $q\bar{q}$ at rest $\Psi_V^{q\bar{q}}(\vec{k}) \sim \delta^{(3)}(\vec{k}) \Leftrightarrow \Psi_V^{q\bar{q}}(\mathbf{r},z) \sim \delta(z-\frac{1}{2})$

${ m J}/\psi$ production at LO as a function of the photon virtuality Q^2

Lappi, Mäntysaari, JP, 2006.02830

- *Delta* = nonrelativistic limit
- NRQCD expansion = include v² relativistic corrections using NRQCD matrix elements (developed in Lappi, Mäntysaari, JP, 2006.02830)
- Boosted Gaussian, BLFQphenomenological wave functions
- Nonrelativistic limit: disagreement with data at low Q^2
- Data described well by the other wave functions

Nuclear suppression for J/ψ production at LO

Lappi, Mäntysaari, J.P, 2006.02830

Quantified by the ratio

$$\frac{\sigma^{\gamma^*A o \mathrm{J}/\psi A}}{\frac{1}{2} A^{4/3} \sigma^{\gamma^*p o \mathrm{J}/\psi p}}$$

- Identically 1 without non-linear effects
- Wave function effects do not cancel at low Q^2
- ⇒ Important to use a realistic wave function when studying nuclear effects

Exclusive vector meson production at NLO

Invariant amplitude for exclusive vector meson production

$$\begin{split} &-i\mathcal{A}_{t=0} = 2\int \mathrm{d}^2\mathbf{x}_0\,\mathrm{d}^2\mathbf{x}_1 \int \frac{\mathrm{d}z_0\,\mathrm{d}z_1}{(4\pi)} \delta(z_0+z_1-1) \Psi_{\gamma^*}^{q\bar{q}} N_{01} \Psi_{V}^{q\bar{q}*} \\ &+2\int \mathrm{d}^2\mathbf{x}_0\,\mathrm{d}^2\mathbf{x}_1\,\mathrm{d}^2\mathbf{x}_2 \int \frac{\mathrm{d}z_0\,\mathrm{d}z_1\,\mathrm{d}z_2}{(4\pi)^2} \delta(z_0+z_1+z_2-1) \Psi_{\gamma^*}^{q\bar{q}g} N_{012} \Psi_{V}^{q\bar{q}g*} \end{split}$$

- Also contribution from the $q\bar{q}g$ state
- Need the wave functions for $q\bar{q}$ state at NLO
- Mean field limit: $N_{012} \approx \frac{N_c}{2C_F} \left[N_{02} + N_{12} N_{02}N_{12} \frac{1}{N_c^2}N_{01} \right]$
- Consider only $t = -\Delta^2 = 0$ case:

No need to model **b**-dependence of N_{01}

Perturbative corrections to the wave functions

 $\label{lem:meson} \textit{Meson wave function: nonperturbative part (leading-order wave function)} + \textit{perturbative part}$

- In principle: also contribution from the nonperturbative part
- ullet Heavy mesons: suppressed by the velocity v of the quark $\Rightarrow \mathcal{O}(lpha_{
 m s} v^2)$
 - \Rightarrow Can be neglected at this order in perturbation theory

Escobedo, Lappi, 1911.01136

Photon wave function: Completely perturbative

Beuf, 1606.00777, 1708.06557; Hänninen, Lappi, Paatelainen, 1711.08207

Beuf, Lappi, Paatelainen, 2103.14549, 2112.03158, 2204.02486

Initial condition fit for the dipole amplitude at NLO

- Fit the initial condition of the dipole amplitude to the HERA structure function data
- NLO calculation: needs an NLO fit
- NLO BK: numerically heavy
 - Use different approximations:
 KCBK, ResumBK, TBK
 - Two starting points for the BK evolution: $Y_{0,\mathrm{BK}}=0.00$ and $Y_{0,\mathrm{BK}}=4.61$
- $3 \times 2 = 6$ different NLO dipole amplitude fits
- Note: only massless quarks in this fit

Beuf et al, 2007.01645

Total ${\mathrm J}/\psi$ production – dependence on the photon virtuality Q^2

With $\alpha_s^0 v^2$ relativistic corrections

NLO corrections moderate

Mäntysaari, JP, 2204.14031

ullet Good agreement with the data, v^2 corrections important at low Q^2

Total J/ψ production – dependence on the center-of-mass energy W

With $\alpha_s^0 v^2$ relativistic corrections

• $Y_{0,BK} = 0.00$: unphysical results at low W

Mäntysaari, JP, 2204.14031

⇒ Additional constraints for the dipole amplitude fit from vector meson production

Total Υ production – dependence on center-of-mass energy W

- $\Upsilon pprox bar{b}$:
 Relativistic effects expected to be smaller than for ${\mathrm J}/\psi pprox car{c}$
- $\alpha_{\rm s}(M_\Upsilon)$ smaller \Rightarrow better convergence of the power series
- Good agreement with the data

Mäntysaari, JP, 2204.14031

Summary

- Exclusive vector meson production is highly sensitive to the target structure
- Some theoretical uncertainty coming from the meson wave function
 - For J/ψ : Relativistic effects important at small Q^2
- NLO corrections moderate
 - NLO effects can be mostly captured by the LO dipole amplitude fit
- Future considerations
 - NLO with nuclear targets more sensitive to saturation effects
- Important developments: precise measurements expected from ultra-peripheral collisions at the LHC and DIS measurements at the future Electron-Ion Collider