ATLAS Roman Pots Present and Future Running

Maciej Trzebiński

Institute of Nuclear Physics Polish Academy of Sciences

LHC Forward Physics meeting CERN, 25th October 2022

Forward Detectors @ IP1 (ATLAS)

Intact protons \rightarrow natural diffractive signature \rightarrow usually scattered at very small angles (μ rad) \rightarrow detectors must be located far from the Interaction Point.

- Absolute Luminosity For ATLAS
- 240 m from ATLAS IP
- soft diffraction (elastic scattering)
- special runs (high β^* optics)
- vertically inserted Roman Pots
- tracking detectors, resolution: $\sigma_x = \sigma_y = 30 \ \mu \text{m}$

- ATLAS Forward Proton
- 210 m from ATLAS IP
- hard diffraction
- nominal runs (collision optics)
- horizontally inserted Roman Pots
- tracking detectors, resolution: $\sigma_x = 6 \mu \text{m}, \ \sigma_y = 30 \mu \text{m}$
- timing detectors, resolution: $\sigma_t \sim 25 \text{ ps}$

AFP: Silicon Trackers (SiT)

- Four detectors in each station.
- Technology: slim-edge 3D ATLAS IBL pixel sensors bonded with FE-I4 readout chips.
- Pixel size: $50x250 \mu m^2$.
- Tilted by 14^0 to improve resolution in x.
- Resolution: \sim 6 μ m in x and \sim 30 μ m in y.
- Trigger: majority vote (2 out of 3; two chips in FAR station are paired and vote as one).
- No major changes between Run 2 and Run 3 detector setups.

From JINST **11** (2016) P09005; JINST **12** (2017) C01086

Time-of-Flight Detectors (ToF) in 2017

Setup and performance shown above are from test-beam (Opt. Express 24 (2016) 27951, JINST 11 (2016)

- 4x4 quartz bars oriented at the Cherenkov angle with respect to the beam trajectory.
- Light is directed to Photonis MCP-PMT.
- Expected resolution: \sim 25 ps.
- Installed in both FAR stations.

2016

- Conditions: $\sqrt{s} = 13$ TeV, $\beta^* = 0.4$ m
- Only two stations installed (ATLAS side C).
- Only single tagged events.
- Data taken during BBA:
 - two runs,
 - closer to the beam than during standard collisions.
 - very useful for alignment and optics studies
- Data taken during special runs:
 - μ ~ 0.03:
 - int. lumi.: \sim 40 nb⁻¹.
 - AFP triggers: ~2 kHz stored,
 - main goal: soft diffraction.
 - μ ~ 0.3:
 - int. lumi.: \sim 500 nb⁻¹,
 - AFP triggers: ~2 kHz stored,
 - main goal: low- p_T jets.
- Data taken during standard runs:
 - AFP was inserted only when number of bunches was not greater than 600 (ramp-up).

2017

- \bullet $\sqrt{s}=13$ TeV, $\beta^*=0.3$ and 0.4 m
- Full system ready.
- Single and double tagged events.
- Data taken during BBA:
 - two runs.
- Data taken during special runs:
 - $\mu \sim 0.05$:
 - int. lumi.: \sim 65 nb⁻¹,
 - AFP triggers: ~2 kHz stored,
 main goal: soft diffraction.
 - $\mu \sim 1$:
 - int. lumi.: \sim 640 nb⁻¹,
 - AFP triggers: ~2 kHz stored,
 - main goal: low-p_T jets.
 - \bullet $\mu\sim$ 2:
 - int. lumi.: ~150 pb⁻¹,
 - AFP triggers: ∼300 Hz stored,
 - goals: medium- p_T jets, W/Z.
- Data taken during standard runs:
 - AFP was inserted on regular basis, usually few minutes after stable beams.

- This is only ATLAS and AFP recorded there are no corrections due to efficiency of subsystems, etc.
- ullet ToF trigger and detector were suffered very low efficiency o analysis should base on proton tagging rather than on ToF background reduction.

Performance of Time-of-Flight Detectors in 2017

- Performance analysis based on 2017 data (taken with $\mu \approx$ 2): ATL-FWD-PUB-2021-002.
- Poor efficiency of few percent due to fast PMT degradation; effect not expected during Run 3 due to new PMTs.
- Very good timing resolution: 20 50 ps for single bar.
- Overall time resolution of each ToF detector:
 - 20 ± 4 ps for side A,
 - \bullet 26 \pm 5 ps for side C,
 - note: systematic uncertainties dominate.

7/17

PHYSICAL REVIEW LETTERS 125, 261801 (2020)

Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS

G. Aad et al.*

(ATLAS Collaboration)

(Received 2 October 2020; revised 30 October 2020; accepted 23 November 2020; published 23 December 2020)

- Exclusive di-muons, $pp \rightarrow pl^-l^+p$:
 - proton(s) measured in AFP,
 - leptons ($\mu^+\mu^-$ or e^+e^-) measured in ATLAS.
- 2017 data; $\sqrt{s} = 13$; $L = 14.6 \text{ fb}^{-1}$.
- Powerful background rejection due to AFP:
 - proton tagging,
 - kinematics match: proton vs lepton system.
- 57 (123) candidates in the $ee + p (\mu \mu + p)$ final state.
- Background-only hypothesis rejected with a significance exceeding 5σ in each channel.
- Measured cross sections:

$$\sigma_{ee+p} = 11.0 \pm 2.6 \text{(stat)} \pm 1.2 \text{(syst)} \pm 0.3 \text{(lumi)},$$

 $\sigma_{uu+p} = 7.2 \pm 1.6 \text{(stat)} \pm 0.9 \text{(syst)} \pm 0.2 \text{(lumi)}.$

- Improvement in silicon detector cooling (new heat exchangers).
- Production of new tracking modules.
- New design of detector flange: Out-of-Vacuum solution for ToF detectors
- New trigger module: possibility to trigger on single train.
- New photo-multipliers: address inefficiency issues from Run2 data-taking.
- Above items were successfully tested at DESY in 2020.

Both NEAR and FAR station have been successfully installed:

- laser survey (positioning wrt. LHC) done,
- ullet interlock validation done o Roman pots qualified to be inserted to take data,
- SiT readout and trigger commissioned,
- ToF commissioning ongoing,
- ullet successful data-taking during high- and low- μ runs in 2022.

LHCf Runs

The position of the track reconstructed in AFP SiT (FAR station) events in which a single-train signal in ToF detector was observed for side A (left plot) side C (right and plot). differences in the $x_{\text{AFP FAR}}$ between sides are due to global alignment corrections not being applied).

Correlation between the x position of reconstructed tracks in AFP NEAR stations and the total energy measured by the ATLAS Calorimeters for side A and C.

Correlation between the x position of reconstructed tracks in AFP NEAR stations and the charged track multiplicity in the ATLAS Inner Detector for Side A and C.

Positions of tracks reconstructed in AFP. Coordinate system: center of the beampipe at (x, y) = (0, 10 mm)

- According to HL-LHC machine layout only few locations are possible:
- RP1A at 195.5 m
 RP1B at 198.0 m
- RP2A at 217.0 m
- RP2B at 219.5 m
- RP3A at 234.0 m
- RP3B at 237.0 m
- RP3C at 245.0 m
- Collimators are also relocated:
- TCLPX4 at 136 m
- TCL5 at 199 m
- TCL6 at 221 m
- Studies were done using newest available HL-LHC optics.
- Assumption:
 - $\sqrt{s} = 14 \text{ TeV}, \ \beta^* = 15 \text{ cm},$
 - ullet crossing angle of 250 μ rad with phase: $\phi=$ 0,
 - emittance $\varepsilon = 2.5 \ \mu \text{m} \cdot \text{rad}$.

Region of interest: 210-250m/IP5 → 220m

HL-LHC: Key Factor – Detector Acceptance

- \bullet Proton relative energy loss: $\xi = 1 \frac{\textit{E}_{\textit{proton}}}{\textit{E}_{\textit{beam}}}.$
- High- ξ limit on acceptance is due to beampipe elements and TCL collimators between collision point and Roman pot.
- Low-\(\xi\) limit is due to detector-beam distance, which depends on settings of collimators ("hierarchy"; machine protection rules).
- \bullet Yellow area corresponds to > 90% of proton tag chance.
- ullet Scattered protons usually (distribution is process-dependent) have p_T around 0.2 GeV.
- Left: detectors located around 195 m: $0.17 \lesssim \xi \lesssim 0.31$.
- Center: detectors located around 217 m: $0.1 \lesssim \xi \lesssim 0.19$.
- Right: detectors located around 234 m: $0.06 \lesssim \xi \lesssim 0.09$.

- Acceptance in ξ translates into the acceptance in mass (note: process dependent as integral sensitive to p_T).
- Figure: mass acceptance of all pots and all pots combinations for the case of horizontal crossing angle (φ=0):
 - "RP1" indicates that both the protons are tagged at the pot RP1A and RP1B (similarly for RP2 and RP3),
 - "RP1+RP2" means both protons are tagged at any two of the four pot locations RP1A, RP1B, RP2A and RP2B (similarly "RP1+RP3" and "RP2+RP3"),
 - "RP1+RP2+RP3" indicates that protons are tagged at any two stations on each side

HL-LHC Roman Pots at IP1

14/17

HL-LHC: Physics Case (Very Briefly)

- I was asked to 'squeeze' physics case and focus on other topics in this presentation.
- For the real overview, please take a look at Physics opportunities of ATLAS Forward Proton at the High-Luminosity LHC [47 pages, on CDS]:
 - detailed ATLAS simulations:
 - WW (fully leptonic) + EFT study, WW (semi-leptonic), ZZ,
 - various ξ ranges; ToF of 10 and 20 ps,
 - based on ongoing Run 2 analyses: ALP searches (0.035 $< \xi < 0.08$; single-tag),
 - phenomenological studies:
 - semi-exclusive $t\bar{t}$: $0.015 < \xi < 0.15$, $10 \mathrm{ps}$,
 - DM searches: $0.015 < \xi < 0.15$, 10ps,
 - exclusive Higgs in SM and BSM: $0.002 < \xi < 0.20$ (420 station considered), 10ps,
 - exclusive dijets: $0.02 < \xi < 0.12$, 10 ps.
- AFP is an asset to the ATLAS physics programme by providing additional handles for kinematic reconstruction and background rejection.
- From detailed simulations for single-tag AFP + ITk + HGTD configurations:
 - comparable significances observed to those based on central detector only,
 - \bullet higher S/B \to may indicate lower background modelling uncertainties.
- RP1 + RP3 is optimum if only eight stations can be installed.

An Initial Design Report for ATLAS Forward Proton Detectors at the High-Luminosity LHC was sent to a Review Panel called by the ATLAS Upgrade Coordinator on 22 Sep 2022:

- The main review meeting took place on 26/27 September.
- The Review Panel report with recommendations was issued on 10 October: the main recommendation to ATLAS is not to approve the development of an AFP upgrade program for HL-LHC for Run 4, but to reserve the space for possible Run 5 or beyond projects if this is possible for the machine w/o constraints or additional cost.
- The USC endorsed the Review Panel report and its recommendations at its meeting on 13 October 2022.
- The Executive Board approved the Review Panel report and its recommendations at its meeting on 17 October 2022.
- The result has been reported to and accepted by the HL-LHC Coordination Group (HLCG) on 18 October 2022.

- AFP was upgraded during LS2:
 - production of new tracking modules,
 - new design of detector flange: Out-of-Vacuum solution for ToF detectors,
 - new photo-multipliers: address inefficiency issues from Run2 data-taking,
- High and low- μ datasets collected in 2016 (one arm), 2017 and 2022:
 - · performance studies close to be finalized,
 - · analyses ongoing.
- No Roman Pots in ATLAS during Run 4.