

Massive gravitons exchange in light by light scattering in Pb Pb, simulations in ATLAS

Malak Ait Tamlihat, Laurent Olivier Schoeffel, Yahya Tayalati, Selaiman Ridouani

October 24th, 2022

LHC Forward Physics meeting

Introduction

• Elastic two-photon collision-> fundamental quantum mechanical process

Experimentally observed at the LHC

- arXiv:2008.05355
- Interpretations (and perspectives) based on the recent ATLAS LbyL results
 - Our goal is to describe the exchange of an intermediate massive gravitons in light-bylight

Theoretical framework: graviton model

• We use the effective filed theory of a massive spin-2 graviton interacting with SM fields:

https://arxiv.org/abs/2207.03012, JHEP 09 (2022) 248

• The massive spin-2 graviton G is described by a symmetric tensor $h_{\mu\nu}$ and the interaction with

the EM field is

Effective graviton-photon coupling Energy-momentum tensor of the EM field
$$\mathcal{L_{SY}} = \frac{k_{\gamma}}{\lambda} \mathcal{T_{\mu\nu}^{\gamma}} h^{\mu\nu} \qquad \text{symmetric tensor}$$

$$\mathscr{L}_{\mathscr{G}}\gamma = \frac{k_{\gamma}}{\lambda}T^{\gamma}_{\mu\nu}h^{\mu\nu} = \frac{k_{\gamma}}{\lambda}(-F_{\mu\rho}F^{\rho}_{\nu} + \frac{1}{4}\eta_{\mu\nu}(F_{\rho\sigma})^2)h^{\mu\nu}$$

$$T^{\gamma}_{\mu\nu} = -F_{\mu\rho}F^{\rho}_{\nu} + \frac{1}{4}\eta_{\mu\nu}(F_{\rho\sigma})^2$$

• The full Lagrangian of the system(graviton and photon) is then given by adding the kinetic terms

Theoretical framework: graviton model

The kinetic term for the graviton (Fierz-Pauli Lagrangian)

$$\mathcal{L}_{\mathcal{G}} = -\frac{1}{2} (\partial_{\rho} h_{\mu\nu})^{2} + \partial_{\mu} h_{\nu\rho} \partial^{\nu} h^{\mu\rho} - \partial_{\mu} h^{\mu\nu} \partial_{\nu} h + \frac{1}{2} (\partial_{\rho} h)^{2} - \frac{1}{2} m^{2} ((h_{\mu\nu})^{2} - h^{2})$$

• The kinetic term for the EM field

$$\mathcal{L}_{\gamma} = -\frac{1}{4} (F_{\mu\nu})^2$$

• The Lagrangian for our problem of the form

$$\mathcal{L} = \mathcal{L}_{\mathcal{G}} + \mathcal{L}_{\gamma} + \mathcal{L}_{\mathcal{G}_{\gamma}}$$

Theoretical framework: graviton model

The idea is to show that the graviton (of mass m) created by a source point of mass
 M really acts as a graviton

$$\mathcal{L} = -\frac{1}{2}(\partial_{\rho}h_{\mu\nu})^{2} + \partial_{\mu}h_{\nu\rho}\partial^{\nu}h^{\mu\rho} - \partial_{\mu}h^{\mu\nu}\partial_{\nu}h + \frac{1}{2}(\partial_{\rho}h)^{2} - \frac{1}{2}m^{2}((h_{\mu\nu})^{2} - h^{2}) - kT^{\mu\nu}h_{\mu\nu}$$

$$T^{\mu\nu}(x) = M\delta_0^{\mu}\delta_0^{\nu}\delta(x)$$

- This problem can be resolved using Euler-Lagrange equation, the value of $h_{\mu
u}$ found is

$$h_{\mu\nu} = kMe^{-mr}/r$$

Gamma-UPC MC event generator

- gamma-UPC is a library for calculating the photon fluxes in the exclusive photon-photon processes in ultra peripheral proton and nuclear collisions(UPCs): David d'Enterria, Hua-Sheng Shao
- The library has been integrated into both HELAC-Onia and MadGraph5 aMC@NLO

Process	Physics motivation	
$\gamma\gamma o e^+e^-, \mu^+\mu^-$	"Standard candles" for proton/nucleus γ fluxes, EPA calculations, and higher-order QED corrections	
$\gamma\gamma o au^+ au^-$	Anomalous τ lepton e.m. moments [29–32]	
$\gamma\gamma o \gamma\gamma$	aQGC [25], ALPs [27], BI QED [28], noncommut. interactions [36], extra dims. [37],	
$\gamma\gamma o {\mathcal T}_0$	Ditauonium properties (heaviest QED bound state) [38, 39]	
$\gamma\gamma \to (c\overline{c})_{0,2}, (b\overline{b})_{0,2}$	Properties of scalar and tensor charmonia and bottomonia [40, 41]	
$\gamma\gamma \to XYZ$	Properties of spin-even XYZ heavy-quark exotic states [42]	
$\gamma\gamma \to VM VM$	(with VM = ρ , ω , ϕ , J/ ψ , Υ): BFKL-Pomeron dynamics [43–46]	
$\gamma\gamma \to W^+W^-, ZZ, Z\gamma, \cdots$	anomalous quartic gauge couplings [11, 26, 47, 48]	
$\gamma\gamma \to H$	Higgs-γ coupling, total H width [49, 50]	
$\gamma\gamma \to HH$	Higgs potential [51], quartic $\gamma\gamma$ HH coupling	
$\gamma\gamma \to t\bar{t}$	anomalous top-quark e.m. couplings [11, 49]	
$\gamma\gamma \to \tilde{\ell}\tilde{\ell}, \tilde{\chi}^+\tilde{\chi}^-, H^{++}H^{}$	SUSY pairs: slepton [11, 52, 53], chargino [11, 54], doubly-charged Higgs bosons [11, 55].	
$\gamma\gamma \to a, \phi, \mathcal{MM}, G$	ALPs [27, 56], radions [57], monopoles [58–61], gravitons [62–64],	

https://arxiv.org/abs/2207.03012, JHEP 09 (2022) 248

More details in the David's Talk: Link

Usage in Madgraph5_aMC@NLO

 Request the standalone version of MadGraph5_aMC@NLO with gamma-UPC from Shao Hua-Sheng

Our Goal: Simulate the graviton exchange in light by light scattering


```
[MG5_aMC>import model DMspin2-full
INFO: Change particles name to pass to MG5 convention
Pass the definition of 'j' and 'p' to 5 flavour scheme.
Kept definitions of multiparticles 1+ / 1- / vl / vl~ unchanged
Defined multiparticle all = g ghg ghg~ u c d s b u~ c~ d~ s~ b~ a gha gha~ ve vm
 vt e- mu- ta- ve~ vm~ vt~ e+ mu+ ta+ t t~ z w+ ghz ghwp ghwm h y2 w- ghz~ ghwp~
[MG5_aMC>generate a a > y2 > a a
[MG5_aMC>output test
INFO: initialize a new directory: test
INFO: remove old information in test
perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:
        LANGUAGE = (unset),
        LC_ALL = (unset),
        LC_CTYPE = "UTF-8",
        LANG = "en_US.UTF-8"
    are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").
INFO: Organizing processes into subprocess groups
INFO: Generating Helas calls for process: a a > y2 > a a DMT<=2 WEIGHTED<=4 @1
INFO: Processing color information for process: a a > y2 > a a DMT<=2 @1
INFO: Creating files in directory P1_aa_aa
INFO: Generating Feynman diagrams for Process: a a > y2 > a a DMT<=2 WEIGHTED<=4
INFO: Finding symmetric diagrams for subprocess group aa_aa
Generated helas calls for 1 subprocesses (1 diagrams) in 0.006 s
Wrote files for 6 helas calls in 1.242 s
ALOHA: aloha starts to compute helicity amplitudes
ALOHA: aloha creates VVT5 routines
```

Madgraph5_aMC@NLO simulation

• Once the process is generated, the parameters for the run are stored in various cards (files)

Parameter	Value
Graviton mass[GeV]	[20,30,40,50,60,70,80,90,100]
Coupling factor	$1TeV^{-1}$
Width	Calculated by the formula(1)
Beam	5.02 TeV
Gamma-UPC model	EDFF
Number of events	10000

 $\frac{k_{\gamma}m_G^3}{80\pi\lambda^2} \tag{1}$

param_card.dat

```
## INFORMATION FOR MASS
|BLOCK MASS #
      6 1.720000e+02 # mt
      23 9.118760e+01 # mz
      25 1.250000e+02 # mh
      52 1.000000e+01 # mxd
      56 scan:[20,30,40,50,60,70,80,90,100] # my2
                 Width
     24 2.085000e+00
                 Width
          4.070000e-03
```

run_card.dat

```
= ebeam1 ! beam 1 total energy in GeV
 522080.0
             = ebeam2 ! beam 2 total energy in GeV
# To see polarised beam options: type "update beam_pol"
# PDF CHOICE: this automatically fixes alpha_s and its evol.
# pdlabel: lhapdf=LHAPDF (installation needed) [1412.7420]
         iww=Improved Weizsaecker-Williams Approx.[hep-ph/9310350]
        eva=Effective W/Z/A Approx.
                                    [2111.02442]
         edff=EDFF in gamma-UPC
                                    [22yy.zzzzz]
                                    [22yy.zzzzz]
        chff=ChFF in gamma-UPC
        none=No PDF, same as lhapdf with lppx=0
edff = pdlabel ! PDF set
            = lhaid ! if pdlabel=lhapdf, this is the lhapdf number
 230000
```

Cuts			
Parameter	Value		
Minimum of outgoing photon	3		
Maximum of photons	100		
Minimum pseudo rapidity	-2.4		
Maximum pseudo rapidity	2.4		
Minimum invariant mass	6.00		
Maximum invariant mass	100		

Cross section measurements@Madgraph

- Total cross section for the process $\gamma\gamma->G->\gamma\gamma$
- The cross cross section for the model is shown as a function of the graviton mass

Graviton mass[GeV]	Cross section(pb)
20	1.583×10^5
30	8.259×10^4
40	4.634×10^4
50	2.746×10^4
60	1.699×10^4
70	1.075×10^4
80	6.922×10^4
90	4.546×10^4
100	3.021×10^4

Cross-check: Total cross section

- Reproducing the result of the paper to validate our simulation: gamma-UPC paper
- Based on the following cross section formula:

$$\sigma(AB \xrightarrow{\gamma\gamma} AXB) = 4\pi^2 (2J+1) \frac{\Gamma_{\gamma\gamma}(X)}{m_X^2} \frac{d\mathcal{L}_{\gamma\gamma}^{(AB)}}{dW_{\gamma\gamma}} \big|_{W_{\gamma\gamma=m_X}}$$

• Using HELAC-ONIA MC generator

```
^{\circ} Process \gamma\gamma \to G
```

O Graviton mass range in GeV:[1, 10⁴]

Gamma-UPC model: EDFF

Beam: Pb-Pb with E=5.52TeV

 $^{\circ}$ Integrated luminosity : $13nb^{-1}$

 \circ Coupling factor: $K_{\gamma}/\Lambda = 1 GeV^{-1}$

```
! for graviton mass scan
!OPEN(UNIT=20344, FILE="/eos/user/m/maittaml/PbPb5.5TeV_GravitonXS_M_CFF.dat")
OPEN(UNIT=20344, FILE="/eos/m/maittaml/PbPb5.5TeV_GravitonXS_M.dat")
J1=2
br1=1d0
gagam=1d-3 ! in unit of GeV-1 (this is kappa/Lambda)
dM=1d0
DO I=1,10000
 for others
!D0 I=1,2000
   mass1=dM*DBLE(I)
   width1=gagam**2*mass1**3/(80d0*pipipi)
   ! PbPb, XeXe, KrKr, ArAr, CaCa, 00
   flux1=dLgammagammadW_UPC(mass1,3,1)
   !flux1=dLgammagammadW_UPC(mass1,2,1)
   !flux1=dLgammagammadW_UPC(mass1,1,1)
   flux1=F0URPI2*DBLE(2*J1+1)*br1**2*width1/mass1**2*convfac*flux1
   WRITE(20344,*)mass1,flux1
ENDDO
CLOSE(UNIT=20344)
RETURN
```

Cross-check: Total cross section

• The total number graviton events expected via $\gamma\gamma o G$ a function of graviton mass

https://arxiv.org/abs/2207.03012, JHEP 09 (2022) 248

Di-photons invariant mass distribution

Invariant mass for the two outgoing photons at parton level (Madevent output)

- The theoretical width is very small, below 1GeV
- The width is determined by the detector resolution

Di-photons invariant mass distribution

Increasing the graviton mass

$$M_G$$
 =150GeV

Conclusion

- The graviton exchange in photon-photon scattering is not implemented in any of the exiting MC generators(Starlight, Superchic ...)
- gamma-UPC is a new MC generator for any $\gamma\gamma$ process, helpful tool for our model of interest: spin-2 massive graviton
- Ongoing work:
 - Implementation of the graviton model in the SuperChic MC generator, following the Axion-Like Particle model already exists
 - Calculation of the theoretical amplitude for the graviton production in Ibyl

THANK YOU FOR YOUR ATTENTION