

The FoCal project

Sami Räsänen^{1,2} for the ALICE FoCal Collaboration

¹ University of Jyväskylä, Finland
 ² Helsinki Institute of Physics (HIP), Finland
 sami.s.rasanen@jyu.fi

LHC Forward Physics meeting 24-25 Oct 2022, CERN

Pursue towards low-x – kinematics of FoCal

Two main motivations:

- Study nucleons and nuclei at unprecedently low Bjorken x
- Probe gluon saturated matter with a wide set of experimental observables

Saturation is not "on-off" phenomenon → To observe onset, need:

- many observables and large phase-space coverage in (x,Q^2)
- "calibrate" models in regions where they would be expected to agree
- search observables and regions in phase space where differences

Latest nuclear parton distribution functions, nPDF's

New data included to global analysis:

- nNNPDF3.0: isolated photons (ATLAS), dijets (CMS), w/w-o D-mesons (LHCb)
- EPPS21: dijets (CMS) and D-mesons (LHCb)
 - → D-meson data gives significant constraints to small-x

Overview of FoCal physics program

1. Nuclear modification of the gluon density at small-x

- isolated photons in pp and pPb collisions

2. Non-linear QCD evolution

- measurements of forward azimuthal correlations; $(\pi^0, \gamma^{isol}, jet)_{trigg} \times (\pi^0, jet)_{assoc}$
- Quarkonia in UPC

3. Long-range flow-like correlations

- azimuthal correlations using FoCal and central ALICE or muon arm

4. Jet quenching at forward rapidities

- high- p_T neutral pion in PbPb

5. More measurements being studied for the TDR

- Photon and pion HBT
- Weak bosons in pp/pPb
- direct/isolated photons in PbPb

2. non-linear QCD

3. long-range correlations

Forward Calorimeter (FoCal) in ALICE

FoCal Letter of Intent (LoI)

Constraints for design:

- distance to interaction point 7 m, limited by the compensator magnet
- available longitudinal space ~ 130 cm
- physics program requires both EM and hadronic calorimeters:

Electromagnetic calorimeter FoCal – E

• Compact, length ~ 20 cm

Hadronic calorimeter FoCal – H

• Length ~ 110 cm

Geometric acceptance

$$3.4 < \eta < 5.8$$

Electromagnetic Si+W sampling calorimeter, FoCal – E

Design targets:

- Small Molière radius

 tungsten
- Shower separation → high-granularity
- Reduce costs and amount of data→ low granularity

20 x 3.5 mm thick tungsten layers, each $\sim 1 X_0$

2 x high-granularity layers:

- CMOS pixels, size 30 x 30 μm
- Two-shower separation, position resolution

18 x low granularity layers

- PAD sensors, size 1 x 1 cm
- Energy measurement, timing

25/11/2022 6

FoCal – E: shower separation with high-granularity layers

FoCal-E prototype, SPS test beam Sep 2022

Longitudinal profile (2 γ showers)

In-coming decay photon $\Delta_{\gamma\gamma}=1$ cm

Hadronic spaghetti calorimeter, FoCal – H

FoCal – H prototype, SPS test beam Sep 2022 9 x (19.5 x 19.5 x 110 cm³)

Copper capillary tubes, length 110 cm $\sim 7 \lambda_0$

(Length limited by space before compensator magnet)

1 mm scintillating fibres inside 2.5 mm Cu tubes

Bundle fibres and readout with SiPM

Smaller prototype, PS test beam Jun 2021

Some case studies for FoCal performance in proposed measurements

Case 1: neutral pions in FoCal

Inclusive neutral pion R_{pPb} – nPDF's + pQCD

- Compared to mid-rapidity (dotted), forward π^{0} 's probe smaller x
- Stronger shadowing in forward as compared to mid-rapidity
- However, the *x* -distributions for pions are wide

Inclusive neutral pion R_{pPb} – LHCb measurement

Theory references: JHEP 09 (2014) 138

Phys. Rev. D88 (2013) 114020

New LHCb measurement for forward π^0 ,

Neutral pions compatible with charged hadrons

Suppression clear, lower limits in theory

FoCal goes still more forward!

+ independent measurement

Inclusive neutral pion R_{pPb} – saturation vs nPDF's + pQCD

- Both calculations expect suppression of yield, around 10-20%
- Difference within model uncertainties (?). Is p_T dependence different?
- Gives a baseline: models agree with inclusive
 - → as much as possible, fix freedom in models and search differences with other observables

FoCal – E performance : neutral pions

Reach in E_{π} same in all rapidities, energy dictates 2- γ opening angle

Reach in p_T depends on the rapidity range

$$o_T = \frac{E_\pi}{\cosh n}$$

FoCal – E performance : π^0 's in Pb+Pb

- Neutral pion efficiency is slightly lower in PbPb compared to pp/pPb
- We expect good neutral pion measurement in all collision systems

Case 2: isolated photons in FoCal

Direct photons at forward rapidity:

At forward rapidity

- QCD Compton channel dominates,
- Compared to π^{0} 's, x_2 –distributions are narrower, and
- average $\langle x_2 \rangle$ smaller

Direct photon R_{pPb} - compare nPDF's + pQCD and saturation

• Rapidity and p_T dependence in saturation model stronger. Significant?

FoCal – E performance : isolated photons

One cannot measure prompt photons experimentally

→ experimental observable: isolated photons

Require an upper limit of activity, energy in the isolation cone R = 0.4 around ECal cluster.

→ enrich the prompt photons over all photons

FoCal – E performance : isolated photons

On top of the isolation cut, invariant mass (IM) and shower shape (SS) cuts

reject particularly decay photons

Purity increases (right) with a price of loosing efficiency (left)

Isolated photons with FoCal – impact to nPDF's

Suppressed photon yield (toy-model)

With the FoCal data

- Validation of factorization/universality; no fragmentation in the final state
- Improve constraints and improve fit qualities
 - → important in search of subtle differences

Case 3: Forward azimuthal correlations

Azimuthal π^0 - π^0 correlations by STAR @ $\sqrt{s}=200$ GeV

STAR measures forward π^0 - π^0 in pp, p-Al and p-Au

- Clear suppression of back-to-back yields with increasing mass number at low $p_{T, trigg}$ and $p_{T, assoc}$
- Correlation width does not depend on nucleus

PYTHIA8 simulation : forward π^0 - π^0 correlations @ 14 TeV

Experimentally, ECal measures clusters, mainly γ 's and e's

- \rightarrow reconstruct neutral pion *candidates* with $m_{\gamma\gamma} \approx m_{\pi}$; some real, some combinatorial fake π^0 's
- → untrivial and significant correlated background
- → subtract using side-band method

Currently studying how low p_T 's we can reach

Forward π^0 - π^0 correlations – saturation model

Forward dijet correlations - saturation model

Dijet azimuthal correlations – different experimental challenges:

- ATLAS kinematics, suppression < 10%
- ALICE kinematics, suppression may reach ~20-50%
 - \Leftrightarrow very important to push down jet analysis down to $p_{T,iet} > 10 \text{ GeV}$

On-going FoCal simulation on physics analysis performance

On-going FoCal performance studies, not yet advanced enough to show:

- Jets and dijets in FoCal,
- Quarkonia and weak bosons,
- direct photon and neutral pion triggered correlations, and
- Long-range correlations

Targetting the TDR

25/11/2022 27

Huge effort in FoCal test beam campaigns

SPS @ Sep 2021

PS @ Jun 2022

SPS @ Sep 2022

PS @ Sep 2022

SPS @ Nov 2022

FoCal test beam @ PS, 6-21th June 2022

Counts (normalized) FoCal-E Pixel 2021 Prototype 20 GeV 40 GeV 60 GeV 80 GeV electrons (fit) 10^{-3} 10^{-4} 200 500 600 300 400 Number of clusters ALI-PERF-523260

Distribution of Total Energy per Event

FoCal – E and FoCal – H prototypes tested

Building the FoCal-H prototype by Copenhagen students

FoCal – E and FoCal – H prototypes working together @ Sep 2022

FoCal E and H prototypes working together

x –axis: number of fired pixels in FoCal-E

y –axis : scintillation light seen by FoCal-H

Electrons typically do not reach FoCal-H, hadrons leave smaller signal in FoCal-E 30

Summary:

- FoCal has a unique and extensive forward physics program at high energies:
 - nPDF's
 - non-linear QCD evolution
 - long-range correlations
 - parton energy loss at forward rapidity
- Performance on inclusive observables (still) most advanced,
 but performance in physics analysis on-going
- Intensive test beam campaign on-going

25/11/2022 31

Backup:

Reaching low-x: kinematics of hard 2-to-2 partonic process

Conservation of energy and longitudinal momentum:

$$x_1 = \frac{p_T}{\sqrt{s}} (e^{\eta_3} + e^{\eta_4})$$
$$x_2 = \frac{p_T}{\sqrt{s}} (e^{-\eta_3} + e^{-\eta_4})$$

Rule of a thumb: when $\eta_3 \approx \eta_4 \equiv \eta \gg 1$, "large" and "small" x

$$x_1 \approx \frac{2p_T}{\sqrt{s}} e^{+\eta} \gg 0$$

$$x_2 \approx \frac{2p_T}{\sqrt{s}} e^{-\eta} \ll 1$$

<u>Target</u>: high collision energy, low- p_T and large rapidity.

Need an excellent two-photon separation in FoCal - E

Experimentally, π^0 's detected via 2- γ decay $\pi^0 \to \gamma + \gamma$

Asymptotically, two-photon opening angle

$$\theta \sim \frac{2}{\gamma}$$
 , where gamma factor $\gamma = \frac{E_\pi}{m_\pi} \sim \frac{p_T}{2m_\pi} e^\eta$

=> cluster distance $d \sim \theta \times (7 \text{ meters})$

Illustration: given minimum cluster distance d_{\min}

$$p_{T,max} \sim \frac{4 \times (7 \text{ m})}{d_{min}} m_{\pi} e^{-\eta}$$

or desired typical *x* –scale to be probed

$$p_{T,max} \sim \frac{x_{min}\sqrt{S}}{2}e^{+\eta}$$

Direct photon R_{pPb} – nPDF's + pQCD

Note: here "inclusive γ " = inclusive direct = prompt + fragmentation

Prompt photons have, on the average, smaller average $\langle x_2 \rangle$ compared to fragmentation photons

25/11/2022 35

Direct photon R_{pPb} with nPDF's + pQCD – update to EPPS21:

Here: "inclusive γ " = prompt + fragmentation, i.e. decay photons not included

(At tree level: prompt = Compton + annihilation)

Level of suppression similar to π^{0} 's