#### LHC Working Group on Forward Physics and Diffraction

# Hard diffraction and proton tagging at the LHC

24 October 2022

C. Baldenegro, A. Bellora, M. Pitt, C. Royon









#### Introduction

#### Diffractive processes in pp collisions at the LHC

t-channel exchange of color neutral particles (QED, QCD)



- Spans over large kinematic region (MeV TeV), and large cross-section range
- Provide a rich scientific program for LHC experiments
- Sometimes protons loose substantial fraction ( ~ a few%) of their kinetic energy but emerge intact
  - Hard diffraction with forward protons

#### Factorization in hard-diffraction

Example: Production cross-section of single diffractive events  $p_1$ —





#### Where:

 $F_{IP/p}(\xi,t)$  is the pomeron flux

 $\xi$  is proton fractional momentum loss, t is the square of the four-momentum transfer  $x_a, x_b$  proton momentum fraction caried by the struck partons  $(x_b \equiv x_{bj}, \beta \equiv \frac{x_{bj}}{\xi})$   $f_{a/P}, f_{b/IP}$  parton distribution function of proton (PDF) or pomeron (dPDF) respectively  $Q^2$  – factorization scale of order of transverse energy of the hard scattering

#### Factorization in hard-diffraction

Example: Production cross-section of single diffractive events p

$$\frac{do}{d\xi \cot} = F_{IP/p}(\xi, t) \sum_{a \ b} \int$$
Pomeron flux





#### Fluxes:

- H1 parametrized fluxes:  $A_{IP} \frac{e^{B_{IP}t}}{\xi^{2\alpha_{IP}(t)-1}}$
- Reggeon contributions are not constrained at LHC/Tevatron
- Testing the fluxes at  $\xi$ >10% could give a first hint on the Reggeon contributions at LHC (?)



#### Factorization in hard-diffraction

Example: Production cross-section of single diffractive events p



#### **Diffractive terms**:

- Structure functions are fitted using H1 data<sup>1</sup>
- Dominated by gluons
- No fits from Tevatron/LHC
- H1 assumption of flavor universality (never tested)



lard-

catter

<sup>&</sup>lt;sup>1</sup>Eur. Phys. J. C48 (2006) 715 [hep-ex/0606004] 24 October 2022

### Diffraction with tagged protons

- In diffractive events, occasionally, protons emerge intact from the pp collisions
- The protons are deflected away from the beam and measured by forward proton detectors (PPS/AFP)

Displacement of the protons from the beam determines the proton momentum loss  $\xi = \frac{\Delta p}{p}$  and  $p_T$ , can be measured by LHC detectors in the range of  $\xi \sim 3-15\%$  and  $p_T$  up to a few GeV

#### One of the examples of proton tagging at LHC – PPS:







### Single diffraction in pp

#### Single diffraction (SD) with high mass central system (jets, bosons, ...)

- Production of hard process + a diffractive proton
- Hard SD events comprise up to a few % of the inclusive  $\sigma$
- Could have impact in precision measurement at the HL-LHC





Large fraction of SM processes are accessible by the LHC experiments

#### **Challenge (backgrounds):**

In the standard LHC runs tens of interactions occur per bunch crossing



https://cds.cern.ch/record/2746227

https://cds.cern.ch/record/2654205

#### **Challenge (backgrounds):**

Multiple pp collision can fake the signal:



https://cds.cern.ch/record/2746227



Diffractive protons produced  $\sim$ 20% of non-elastic pp collisions

#### **Challenge (backgrounds):**

Multiple pp collision can fake the signal:



https://cds.cern.ch/record/2746227

Diffractive protons produced  $\sim$ 20% of non-elastic pp collisions

#### **Background rates and event purity. Assume:**

- 0.5% fraction of diffractive events  $(\sigma_{SD}/\sigma_{ND})$
- 2.2% (40%) of soft-diffractive (signal) events have proton  $\xi \in (3\%, 15\%)$



M. Pitt @ LHC Forward Physics meeting





#### **Background rates and event purity. Assume:**

- 0.5% fraction of diffractive events  $(\sigma_{SD}/\sigma_{ND})$
- 2.2% (40%) of soft-diffractive (signal) events have proton  $\xi \in (3\%, 15\%)$









#### Probing diffractive di-iet events

- The highest cross-section (~nb)
- Sufficient statistics to measure survival probabilities
- Using gluon/quark tagging gluon contribution to structure functions can be probed at high x







### Probing diffractive V+jets

Z/W+jet diffractive production, with q/g/c tagging

# 



## Charge asymmetry in diffractive W production



### Probing diffractive V+jets

Photon+jet diffractive production, using ration to dijet

 Similarly to W/Z+jet, photon+jet sensitive +jet can be used to probe quark content of dPDF



PRD 88, 074029



#### Probing diffractive ttbar

- ttbar is a common SM process produced at the largest scale ( $\sigma$ ~800pb,  $\sqrt{\hat{s}} > m_{tt} \approx 350$  GeV)
- SD ttbar is expected to be of the order of a few pb
- Dominated by gluon-fusion
- Can have visible effects near the m<sub>tt</sub> threshold
- Different structure functions manifest in different event topologies (true for all SD processes)





### Probing diffractive single top

- Non-diffractive production of the single top is common at LHC (160pb), diffractive single top expect to have a low fraction (0.3pb)
- Although the low cross-section, single top production is sensitive to b-quark content of proton/pomeron
- dPDF(b) assume to be zero / not constrained
- Strong asymmetry in the light jet kinematics
- The process can be used to probe pomeron bquark content





### Proton tagging with timing

- When bunches cross, collisions take place, and multiple vertices are created
- Central detector equipped with timing detectors, mostly used to suppress out of time pileup, and used for physics (e.g. long lived particles).



### Proton tagging with timing?

Example from CMS in Run 2: Forward detectors  $\sigma \sim 90ps$ . Central ECAL, neighboring crystals (CMS)  $\sigma > 100 \ ps$ 



Run 4: Central detector resolution expected to improve well bellow 50ps, similar expectation from the forward detectors

### Proton tagging with timing

#### Background rates and event purity using timing information:

0.5% diffractive component is enhanced using time correlation

Timing detectors can improve background rejection for any single

tagged events\*





<sup>\*</sup>Not only SD, but single tagging also include also low mass CEP processes(!)

#### Summary

- Hard SD production processes can be used to constrain diffractive models at LHC
- Low-PU data is required to measure SD events (μ<0.1)</li>
- In Run 3 low-PU runs are possible, several tools exist to enhance diffractive fraction – dedicated triggers, analysis tools, or improved timing detectors

## Backup

### Probing diffractive di-jet events

- The highest cross-section (~nb)
- Sufficient statistics to measure survival probabilities
- Using gluon/quark tagging gluon contribution to structure functions can be probed at high x
- gg/qq fractions (slightly different from nondiffractive events) could probe pomeron structure
- Potential to probe Reggeon contributions



