THE SCATTERING AND NEUTRINO DETECTOR AT THE LHC

A. Di Crescenzo CERN, Università Federico II and INFN

on behalf of the SND@LHC Collaboration

MOTIVATION

Neutrino physics at the LHC

- •Klaus Winter, 1990, observing tau neutrinos at the LHC
- A. De Rùjula, E. Fernandez and J. J. Gòmez-Cadenas, 1993, Neutrino fluxes at LHC
- F. Vannucci, 1993, neutrino physics at the LHC
- http://arxiv.org/abs/1804.04413 April 12th 2018

CERN is unique in providing energetic v (from LHC) and measure pp $\rightarrow vX$ in an unexplored domain

Further studies on the physics potential of

an experiment using LHC neutrinos

https://doi.org/10.1088/1361-6471/aba7ad

J. Phys. G: Nucl. Part. Phys. 47 (2020) 125004 (18pp)

LOCATION

- About 480 m away from the ATLAS IP
- Tunnel TI18: former service tunnel connecting SPS to LEP
- Symmetric to TI12 tunnel where FASER is located

- Charged particles deflected by LHC magnets
- Shielding from the IP provided by 100 m rock
- Angular acceptance: $7.2 < \eta < 8.6$
- First phase: operation in Run 3 to collect 290 fb⁻¹

https://cds.cern.ch/record/2750060/files/LHCC-P-016.pdf

THE SND@LHC CONCEPT

Hybrid detector optimised for the identification of three neutrino flavours and for the detection of feebly interacting particles

VETO PLANE:

tag penetrating muons

TARGET REGION + ECAL:

- Emulsion cloud chambers (Emulsion+Tungsten) for neutrino interaction detection
- Scintillating fibers for timing information and energy measurement

MUON SYSTEM + HCAL:

iron walls interleaved with plastic scintillator planes for fast time resolution and energy measurement

THE SND@LHC DETECTOR LAYOUT

- Angular acceptance: $7.2 < \eta < 8.4$

Target material: Tungsten

Target mass: 830 kg

• Surface: 390x390 mm²

Off axis location

Electromagnetic calorimeter ~40 X₀

Hadronic calorimeter $\sim 10 \lambda$

EVENT RECONSTRUCTION

- FIRST PHASE: electronic detectors
- Event reconstruction based on Veto, Target Tracker and Muon system
 - Identify neutrino candidates
 - Identify muons in the final state
 - Reconstruction of electromagnetic showers (SciFi)
 - Measure neutrino energy (SciFi+Muon)

SECOND PHASE: nuclear emulsions

- Event reconstruction in the emulsion target
 - Identify e.m. showers
 - Neutrino vertex reconstruction and 2ry search
 - Match with candidates from electronic detectors (time stamp)
 - Complement target tracker for e.m. energy measurement

SND@LHC INSTALLATION IN TI18

- ▶ Detector commissioning on surface (North Area @CERN) in September and October 2021
- ▶ Installation in TI18 started on November 1st 2021

- ▶ Electronic detector installation completed on December 3rd 2021
- ▶ Installation of the neutron shield completed on March 15th 2022
- ▶ Installation of the first emulsion wall on April 7th 2022

DETECTOR INSTALLATION IN TI18

▶View of the machine to the IP (left) and of the detector in TI18 (right)

SND@LHC INSTALLATION IN TI18

NEUTRINO EXPECTATIONS

- ► Expectations in **290 fb**⁻¹
- Upward/downward crossing angle: 0.43/0.57
- Neutrino production in LHC pp collisions performed with **DPMJET3** embedded in FLUKA
- Particle propagation towards the detector through **FLUKA** model of LHC accelerator

	Neutrinos in	n acceptance	CC neutrino	interactions	NC neutrino	interactions
Flavour	$\langle E \rangle [GeV]$	Yield	$ \langle \mathrm{E} \rangle \; [\mathrm{GeV}]$	Yield	$\langle \mathrm{E} \rangle \; [\mathrm{GeV}]$	Yield
$ u_{\mu}$	120	3.4×10^{12}	450	1028	480	310
$ar{ u}_{\mu}$	125	3.0×10^{12}	480	419	480	157
$ u_e$	300	4.0×10^{11}	760	292	720	88
$ar{ u}_e$	230	4.4×10^{11}	680	158	720	58
$ u_{ au}$	400	2.8×10^{10}	740	23	740	8
$ar{ u}_{ au}$	380	3.1×10^{10}	740	11	740	5
TOT		7.3×10^{12}		1930		625

NEUTRINO PHYSICS PROGRAM IN RUN 3

- 1. Measurement of the $pp \longrightarrow v_e X$ cross-section
- 2. Heavy flavour production in pp collisions
- 3. Lepton flavour universality in neutrino interactions
- 4. Measurement of the NC/CC ratio

Measurement	Uncertainty	
	Stat.	Sys.
$pp \to \nu_e X$ cross-section	5%	15%
Charmed hadron yield	5%	35%
ν_e/ν_τ ratio for LFU test	30%	22%
ν_e/ν_μ ratio for LFU test	10%	10%

1. MEASUREMENT OF pp→v_eX CROSS-SECTION

2. CHARMED HADRON PRODUCTION

- Simulation predicts that 90% v_e+anti-v_e come from the decay of charmed hadrons
- Electron neutrinos can be used as a probe of the production of charm in the relevant pseudo-rapidity range after unfolding the instrumental effects
 - Reconstructed spectrum of v_e+anti-v_e flux in SND@LHC acceptance

 Correlation between pseudo-rapidity of the electron (anti-)neutrino and the parent charmed hadron

QCD MEASUREMENTS

The dominant partonic process for associated charm production at the LHC is gluon-gluon scattering

Average lowest momentum fraction: 10⁻⁶

Correlation between x1 and x2 for events in the SND@LHC acceptance

Extraction of gluon PDF in very small x-region relevant for:

- Future Circular Colliders
- predictions of high energy neutrinos production in cosmic rays

Ratio between the cross-section measurements at different energies and pseudo-rapidities

$$R = rac{d\sigma/d\eta(13\,TeV)}{d\sigma/d\eta_{ref}(7\,TeV)}$$
 $\eta_{ref} = 4.5$

 $\eta_{ref} = 4.5$

Reduction of scale uncertainties Constraint the PDF with data

3. LEPTON FLAVOUR UNIVERSALITY TEST

 The identification of three neutrino flavours in the SND@LHC detector offers a unique possibility to test the Lepton Flavor Universality (LFU)

$$R_{13} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\tau + \overline{\nu}_\tau}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{Br}(c_i \to \nu_e)}{\tilde{f}_{D_s} \tilde{Br}(D_s \to \nu_\tau)},$$

 Sensitive to v-nucleon interaction cross-section ratio of two neutrino species

$$R_{12}=rac{N_{
u_e+\overline{
u}_e}}{N_{
u_\mu+\overline{
u}_\mu}}=rac{1}{1+\omega_{\pi/k}}.$$
 contamination from π/k

The measurement of the v_e/v_μ ratio can be used as a test of the LFU for E>600 GeV

BEYOND STANDARD MODEL

Large variety of BSM scenarios describing Hidden Sector

1. Scattering

Production: scalar χ particle coupled to the Standard Model via a leptophobic portal

Detection: χ elastic/inelastic scattering off nucleons of the target

2. Decay of dark scalars, HNLs, dark photons

Production: dark scalars produced in the decay of B mesons, HLNs in the decay of B and D mesons, dark photons via leptophobic mediator

Detection: Decays in a pair of charged tracks or monophotons

10.1007/JHEP03(2022)006

DATA TAKING IN RUN3

Muon tracks reconstructed in the emulsion target

- ▶ 15 tracks selected randomly in 1x1 cm² 57 emulsion films
- RUN0 emulsion target: April 7th July 26th

Muon from pp collisions @13.6 TeV (July 16th 2022)

DATA TAKING IN RUN3

· Reconstructed tracks in the first runs @13.6 TeV, direction compatible with coming from pp collisions at IP1

DATA TAKING IN RUN3

- Event rate for one run
- Start:October 4th 2022, 18:12:22
- End: October 5th 2022, 09:52:21

UPGRADE FOR HL-LHC

- Upgrade of SND@LHC in view of an extended run during Run 4:
 - Extension of the physics case
 - New technologies and detector layout
 - Two detectors

ADVANCED SND@LHC

- Upgrade of the detector in view of an extended run during Run 4:
- Two off-axis forward detectors:
 - AdvSND-Near: $4 < \eta < 5$
 - Overlap with LHCb pseudo-rapidity coverage
 - Reduction of systematic uncertainties
 - Neutrino cross-section measurement
 - charm measurements in the region of interest for prompt v fluxes

- AdvSND-Far: $7.2 < \eta < 8.4$
 - Acceptance similar to SND@LHC
 - Charm production measurements
 - Lepton flavour universality

CONCLUSIONS

- The LHC provides a unique possibility to measure neutrino production at the TeV scale
- SND@LHC covers a unique physics program covering LHC Run 3 (2022-2025) to study all three neutrino flavors
- SND@LHC is currently taking data.
- Future projects at the HL-LHC are under study