

- - Pret

Physics Landscape

Nicholas Wardle Imperial College London

ECR Future Collider Forum 4th November 2022 Cambridge University

Physics Landscape

Nicholas Wardle Imperial College London

ECR Future Collider Forum 4th November 2022 Cambridge University

Describing the landscape

Describing the landscape

Somehow impossible to ignore the vast span of things that we haven't seen so far ...

12,04776 (2µ)

CMS preliminar

Higgs y resonance Color Octect Scalar, $k_{1}^{2} = 1/2$ Scalar Disposit $d + \phi$, pseudoscalar (scalar), $p_{0,0}^{2} \times 84(\phi-2t) > = 0.090.0041$ $d + \phi$, pseudoscalar (scalar), $p_{0,0}^{2} \times 84(\phi-2t) > = 0.090.0041$

> reclator (W), $g_q = 0.1$, $g_{CM} = 1$, $g_f = 0.01$, m_g rector mediator (qq), $g_q = 0.25$, $g_{CM} = 1$, m_g

seudoscalar mediator (+)(V), $g_0 = 1$, $g_{100} = 1$, g_{100}

- 2HDH, g₂ = 0.8, g₂₀ = 1, targ = 1, m, = 100 G

RPV gluino to 4 quarks RPV gluinos to 3 quarks

ADD Q8H (j], n₁₀ = 6 ADD Q8H (s), n₁₀ = 4 ADD Q8H (es), n₁₀ = 4 ADD Q8H (es), n₁₀ = 4

$$\begin{split} & RS \; G_{00}(W), \; k_1 H_0 = 0,1 \\ & RS \; G_{00}(YY), \; k_1 H_0 = 0,1 \\ & RS \; G_{00}(YY), \; k_2 H_0 = 0,1 \\ & RS \; G_{00}(q2, g2), \; k_1 H_0 = 0,1 \end{split}$$

38H (g), n_{eo} = 1 votating BH, M₂ = 4 TeV, Au

socited light quark (ag). $A = m_q^2$ socited electron, $f_2 = f = f = 1$, $A = m_q^2$ socited muon, $f_2 = f = -1$, $A = m_q^2$

 $\label{eq:second} \begin{array}{l} \mathsf{s}^{(0)}\mathsf{SM}, |V_{c0}|_{i}^{2}=1.0, |V_{c0}|_{i}^{2}=1.0\\ \mathsf{s}^{(0)}\mathsf{SM}, |V_{c0}|_{i}^{2}|_{i}^{2}|_{i}^{2}|_{i}^{2}|_{i}^{2}|_{i}^{2}+|V_{c0}|_{i}^{2}|=1.0\\ \mathsf{Type-II} seeman barry fermions, Have Vector Ree taxs, Doublet Vector Ree taxs, Singlet \\ \end{aligned}$

2, in tool (block of SSM 2(vpl) 2(op) 2(op

Uppoppoor 2 SSM WT(N) SSM WT(N) SSM WT(Q) URSM W_(QN), M₀ = 0.5M, URSM W_((N), M₀ = 0.5M, URSM W_((N), M₀ = 0.5M, Asiglizer, Celeron, colf = 1

scalar LD (pair preci, coupling to 1° gen. fermions, $\beta = 1$ scalar LD (pair preci, coupling to 1° gen. fermions, $\beta = 6.5$ scalar LD (pair preci, coupling to 2° gen. fermions, $\beta = 1$ scalar LD (pair preci, coupling to 2°° gen. fermions, $\beta = 1$ scalar LD (pair preci, coupling to 2°° gen. fermions, $\beta = 1$ scalar LD (pair preci, coupling to 2°° gen. fermions, $\beta = 1$ scalar LD (pair preci, coupling to 2°° gen. fermions, $\beta = 1$ scalar LD (pair preci, coupling to 2°° gen. fermions, $\beta = 1$.

3-brane WED g_{in}(\$+g+\$993), g_p split-UED, µ = 2 TeV

reductor (gg), $g_{ij} = 0.15$, $g_{ijm} = 1$, m_j reductor (gg), $g_{ij} = 0.15$, $g_{ijm} = 1$, $g_{ij} = 0$ r (+507), $g_{ij} = 1$, $g_{ijm} = 1$, $g_{ij} = 0$

 $g_1 = 1, g_{2H} = 1, m_y = 1$ in partial, $\lambda_y = 1, m_y = 1$

ark compositeness $W_{L, T_{L,LW}} = -1$ cited Lepton Contact Interaction cited Lepton Contact Interaction

CONEN

Overview of CMS EXO results

4968 (31, > 41

<0.47 2107,13021 (\approx 1j + p γ^{0} 1901,01553 (0, $M + \approx$ 2j + p γ^{01})

0.6 1811.3

1806,03124 (2); 4j

(1.2) 1901 01553 (0, 1/ + > 2i + 02¹⁰

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

I'll do my best to not repeat <u>Mika's Talk</u> from April but the landscape hasn't changed (too much) since then

Nicholas Wardle

Add States of the second secon

0,5-7,9 1911,03947 0,35-4 1712,03143 (2µ + 2γ; 2e + 2γ; 2j + 2γ

2-1.92 2103.02708 (2e. 2µ

07-13021 (a 1) + p0**

 $(65;\,1006,10905\;(3\ell(\mu,e);\,\pm\,1)+2\ell(\mu,e)$

0.02-1.6 1905.10905 (≥ 1) + µ + e) 0.1-0.98 2202.09626 (3J, > 4J, 1y + 3J, 2y + 2J, 3y + 1J, 1y + 2J, 2y + 1J

L05012 (2u + 2k u + 2i +

3/, a 4/, 11 + 3/, 21 + 2/, 31 + 1/, 11

6 140 fb=l (12 Te)

.40 fb⁻¹ 140 fb⁻¹ 77 fb⁻¹ 77 fb⁻¹

18 fb⁻¹ 140 fb⁻¹ 137 fb⁻¹ 101 fb⁻¹ 140 fb⁻¹ 16 fb⁻¹ 16 fb⁻¹ 16 fb⁻¹ 138 fb⁻¹ 36 fb⁻¹ 178 fb⁻¹ 36 fb⁻¹ 177 fb⁻¹ 18 fb⁻¹ 19 fb⁻¹ 19 fb⁻¹ 19 fb⁻¹ 10 f

36 fb⁻¹ 38 fb⁻¹ 38 fb⁻¹ 38 fb⁻¹ 36 fb⁻¹

36 fb⁻¹ 36 fb⁻¹ 101 fb⁻¹ 36 fb⁻¹ 137 fb⁻¹

137 fb⁻¹ 36 fb⁻¹ 36 fb⁻¹

36 fb⁻¹ 36 fb⁻¹ 137 fb⁻¹ 37 fb⁻¹ 37 fb⁻¹

36 fb⁻¹ 36 fb⁻¹ 36 fb⁻¹ 77 fb⁻¹ 36 fb⁻¹ 137 fb⁻¹ 101 fb⁻¹ 137 fb⁻¹

 $\begin{array}{c} 137 \ \mathrm{fb^{-1}}\\ 137 \ \mathrm{fb^{-1}}\\ 140 \ \mathrm{fb^{-1}}\\ 137 \ \mathrm{fb^{-1}}\\ 136 \ \mathrm{fb^{-1}}\\ 36 \ \mathrm{fb^{-1}}\\ 36 \ \mathrm{fb^{-1}}\\ \end{array}$

CHEP 202

Describing the landscape

I'll cover a few interesting features (bumps or deviations) ...

... And i'll do my best to not repeat <u>Mika's Talk</u> from April - but the landscape hasn't changed (too much) since then

Nicholas Wardle

Interesting Bumps

Related Bumps?

<u>HIG-20-016</u>: Search for high mass $H \rightarrow WW$

<u>3rd Gen LQ bumps</u>

Searches for new physics with large couplings to 3rd gen quarks and leptons motivated by B-anomalies

pair

LO

single

LO

Sologe

nonresonant

LC

Speaking of anomalies

Setting the scale of NP?

One of the most striking results in our field is in the muon anomalous magnetic moment

Brookhaven result Fermilab result Standard Model Experiment $M_\ell, M_e, m_S \simeq \Lambda$ **Prediction** Average 20.5 17.5 18.0 18.5 19.0 19.5 20.0 21.0 21.5 *a*_., × 10⁹ – 1165900

From perturbative unitarity constraints on NP interpretations of g-2 results (<u>Phys. Rev. D 104, 055035 (2021)</u>)

"... in order to resolve the new physics origin of the SMEFT operators behind $\Delta a \mu$ one would need to probe high-energy scales **up to the PeV**"

".. simplified models [...] still imply new on-shell states below **200 TeV**"

news page

CERN Courier May/June 2022

Not everything is said and done yet

LHC RUN 3 BEAMS, DETECTORS, ACTION

Nicholas Wardle

W mass

LHCB-FIGURE-2022-003

Understanding our precision W-mass measurements together will take **more data and more time** (exp-vs-exp & expvs-theory)

Higgs Physics

We've barely begun with the LHC

After Run-3 of the LHC, the next phase is the **high-luminosity** (HL)-LHC

~20x the data we have today!

We've barely begun with the LHC

Nicholas Wardle

10 yrs

Precision Measurements for Discovery

Examples from the past have taught us that precision measurements can lead to revolutionary discoveries...

Herschel 1781

Le Verrier, Galle, d'Arrest 1846

Uranus discovery "as a planet" (1781) Neptune discovered with 1° of predicted position (**1846**)

Precise measurements of position revealed deviations from expected orbit → new planet predicted (1845/46) Measurements of Mercury's orbit reveals 43 arcseconds/century anomaly → new planet (or body) predicted (1859)

Slide shamelessly stolen from excellent Jesse Liu (Cambridge) seminar

Nicholas Wardle

Precision Measurements for Discovery

Examples from the past have taught us that precision measurements can lead to revolutionary discoveries...

Herschel 1781

Uranus discovery "as a planet" (**1781)** Le Verrier, Galle, d'Arrest 1846

General relativity solves anomaly and changes view of space & time (**1915**)

Precise measurements of position revealed deviations from expected orbit → new planet predicted (1845/46) Measurements of Mercury's orbit reveals
43 arcseconds/century anomaly
→ new planet (or body) predicted (1859)

Slide shamelessly stolen from excellent Jesse Liu (Cambridge) seminar

... History has a habit of repeating itself 🤞 ...

FCC reach (there's more than just Higgs but...)

Many potential options but all lead to high **precision (O(%) level) characterization** of the Higgs boson couplings

for % le

Higgs@FC WG Kappa-3, 2019 Higgs boson **self-coupling** requires **high energy (O(100)TeV)** machine for % level measurement

Future colliders combined with HL-LHC Uncertainty values on $\Delta \kappa$ in %. Limits on Br (%) at 95% CL.

<u>No Summary – time for discussion!</u>

Backup Slides

Reactor Anomaly (STEREO)

RAA : Reactor Antineutrino Anomaly (deficit in anti-neutrino flux from reactor)

P. Del Amo Sanchez – ICHEP22

Nicholas Wardle

Spectroscopy

Spectroscopy

CMS-PAS-BPH-021-003

CMS observed three $J/\psi J/\psi$ resonances compatible with predictions of cccc tetraquarks states around the X(6900) observed by LHCb ATLAS confirmed structure in the same region

LHCb Science Bulletin 65 (2020) 1983

Tenchini $M_{{\rm di}-J/\psi}$ [MeV/ c^2] 9000 ICHE 135 fb⁻¹ (13 TeV) BW2[X(6900)] J Background 202 Ν

mJ/wJ/w [GeV]

Data

Sig.+Bkg. Background

Sig. w/o Int. Sig. Int.

8.5

8

9

m₄₁₁^{con} [GeV]

ᡔ

I Da

- Fit

Data

200 E

180 E

160 140

120

CMS

/ 25 MeV

120

100

80

60

200 € 200

LHCb

7000

Preliminary

ATLAS Preliminary

6.5

7

7.5

ATLAS-CONF-2022-040

LFU test at TeV scale

Ration of searches for high mass dilepton resonances \rightarrow Tests of LFU at the TeV scale

"combined preference for the new physics"

CMS-EXO-19-019

ATLAS 1st Gen LQ

Further 600-something evidence?

https://arxiv.org/abs/2111.08962 (acc by IJMP A)

Maurizio Consoli & Leonardo Cosmai

In the region of invariant mass $620 \div 740$ GeV, we have analyzed the ATLAS sample of 4lepton events that could indicate a new scalar resonance produced mainly via gluon-gluon fusion. These data suggest the existence of a new heavy state H whose mass $660 \div 680$ GeV would fit well with the theoretical range $M_H = 690 \pm 10 \text{ (stat)} \pm 20 \text{ (sys)}$ GeV for the hypothetical second resonance of the Higgs field that has been recently proposed and which would couple to longitudinal W's with the same typical strength of the lowmass state at 125 GeV. Since the total width Γ_H is very poorly determined, to sharpen

prediction -

According to their estimate, 2.5 σ local, 1.4 σ global, from ATLAS H \rightarrow ZZ search for M_X = 660-680 GeV

[dd] (ZZ ← - Observed CL, limit ATLAS ----- Expected CL_ limit $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹ Expected $\pm 1\sigma$ $\rightarrow ZZ \rightarrow I^{+}I^{-}I^{+}I^{-} + I^{+}I^{-}V\overline{V}$ Expected $\pm 2 \sigma$ $\times B(H -$ NWA, VBF production Expected CL limit $(I^+I^-I'^+I'^-)$ Expected $CL^{\tilde{}}$ limit $(I^{+}I^{-}v\overline{v})$ ATLAS search in CL limits on σ_{VBF} $H \rightarrow ZZ \rightarrow 4I/2I_2v$ Eur. Phys. J. C 81 (2021) 332 95% 10 500 1000 1500 2000 m_н [GeV]

Further 90-something evidence?

Higgs boson couplings beyond the HL-LHC

The **long road ahead** for the Higgs has many potential options but all lead to high **precision (** ~% level) characterization of the Higgs boson couplings

Higgs boson **self-coupling** requires

high energy machine for % level

Future colliders combined with HL-LHC Uncertainty values on $\Delta \kappa$ in %. Limits on Br (%) at 95% CL.

