Bayesian constraints on the initial stage using Trajectum

Govert Nijs

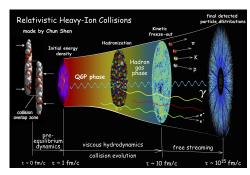
February 6, 2023

Based on:

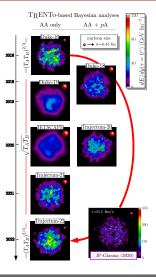
- GN, van der Schee, 2206.13522
- GN, van der Schee, 2302.xxxxx
- Giuliano Giacalone, GN, van der Schee, 230x.xxxxx

The status of the field

- The general picture of the stages of a heavy ion collision is known.
- We now want to understand each part in more detail.
- Making progress from first principles is challenging.
- We use a data-driven approach.
 - Fit a model with many parameters to a wide range of experimental data.
 - The parameters themselves are in many cases interesting quantities.
- Requirements:
 - Fast simulation code.
 - Bayesian methods.



Our evolving understanding of the initial state

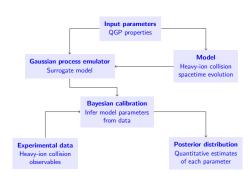


- Initial conditions took a circle journey since 2016:
 - Small nucleon size at first, then larger, now small again.
 - Energy deposition went from $T^{00} \propto (\mathcal{T}_A \mathcal{T}_B)^{2/3}$ to $T^{00} \propto \sqrt{\mathcal{T}_A \mathcal{T}_B}$, and now back to $T^{00} \propto (\mathcal{T}_A \mathcal{T}_B)^{2/3}$.
 - Pre-hydrodynamic stage increased in complexity from no dynamics, to free streaming, and now to a parameterized interpolation between weak and strong coupling.
- Progress was enabled by Bayesian analysis.
- We focus on the latest of these analyses: *Trajectum*-22.

[Giacalone, 2208.06839]

Bayesian analysis

- We want to fit 23 parameters to 653 data points.
- Two problems:
 - Even the fastest models are too slow.
 - The parameter space is large.
- The first problem is solved by replacing the model with an emulator trained on model simulations.
- The second problem is solved by using Markov Chain Monte Carlo (MCMC), which samples the posterior using importance sampling.

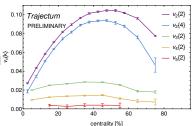


[Bernhard, 1804.06469]

Introduction Bayesian analysis Nucleon size Generalized T_RENTo formula Strongly coupled pre-hydrodynamic stage Neutron skin Conclusions & Outlook

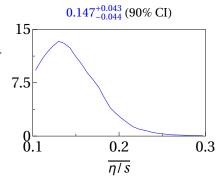
Trajectum

- New heavy ion code developed in Utrecht/MIT/CERN.
- Contains initial stage, hydrodynamics and freeze-out, as well as an analysis suite.
- Easy to use, example parameter files distributed alongside the source code.
- Fast, fully parallelized.
 - Figure (20k oversampled PbPb events at 2.76 TeV) computes on a laptop in 21h.
 - Bayesian analysis requires $\mathcal{O}(1000)$ similar calculations to this one.
- Publicly available at sites.google.com/ view/govertnijs/trajectum/.

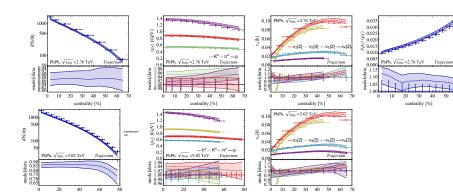


Posterior distribution of parameters

- MCMC yields large amount of parameter sets distributed according to the posterior.
- 1D projections show the preferred values for a single parameter.
- Computing observables with randomly drawn parameters from the posterior propagates the parameter uncertainties, including correlations.



A selection of data used



centrality [%]

centrality [%]

centrality [%]

TRENTo initial conditions

■ Nucleons A and B become wounded with probability

$$P_{
m wounded} = 1 - {
m exp} \left(-\sigma_{
m gg} \int d{f x} \,
ho_A({f x})
ho_B({f x})
ight), \quad
ho_A \propto {
m exp} \left(rac{-|{f x}-{f x}_A|^2}{2w^2}
ight).$$

■ Each wounded nucleon desposits energy into its nucleus's *thickness* function $\mathcal{T}_{A/B}$:

$$\mathcal{T}_{A/B} = \sum_{i \in \text{wounded A/B}} \gamma \exp(-|\mathbf{x} - \mathbf{x}_i|^2 / 2w^2),$$

with γ drawn from a gamma distribution with mean 1 and standard deviation $\sigma_{\rm fluct}.$

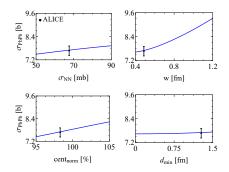
Actual formulas slightly modified because each nucleon has n_c constituents.

[Moreland, Bernhard, Bass, 1412.4708, 1808.02106]

The cross-section σ_{AA} for different nucleon widths

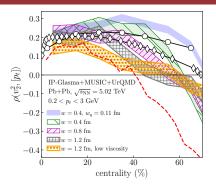
- The cross-section depends strongly on the nucleon width w and the centrality normalization cent_{norm}.
- ALICE finds: 7.67 ± 0.24 b.
- Cross-section measurement seems to require smaller w than earlier analyses.
- Basic observable: models should get this right.

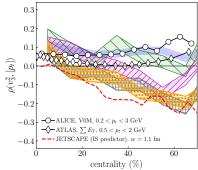
[ALICE, 2204.10148; ALICE-PUBLIC-2022-004]



Introduction Bayesian analysis Nucleon size Generalized TRENTo formula Strongly coupled pre-hydrodynamic stage Neutron skin Conclusions & Outlook OO OO OO OO OO

$\rho(\mathbf{v}_2^2,\langle \mathbf{p}_T\rangle)$ for different nucleon widths

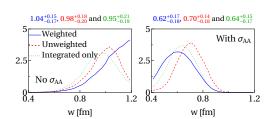




- The correlation between v_2^2 and $\langle p_T \rangle$ is sensitive to the nucleon width w.
- \blacksquare Smaller w is preferred.
- This is a statistically challenging observable.

Including the pPb and PbPb cross sections in the analysis

- Including the pPb and PbPb cross sections in the fit lowers w from 1 fm to 0.6 fm.
- Smaller width is now compatible with our knowledge of the proton.
- Result is robust under various fitting scenarios.



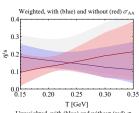
	$\sigma_{PbPb}[b]$	$\sigma_{p Pb}[b]$
with σ_{AA}	8.02 ± 0.19	2.20 ± 0.06
without σ_{AA}	8.95 ± 0.36	2.48 ± 0.10
ALICE/CMS	7.67 ± 0.24	2.06 ± 0.08

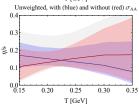
[ALICE, 2204.10148; ALICE-PUBLIC-2022-004; CMS, 1509.03893]

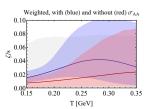
Implication for viscosities

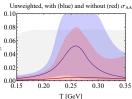
- Smaller nucleons imply larger radial flow.
- Specific bulk viscosity ζ/s increases to compensate.
- Including σ_{AA} reverses the preferred slope of specific shear viscosity η/s .
- Similar findings in IP-Glasma hased Bayesian analysis presented at Quark

Matter. [Heffernan, Jeon, Gale, Paquet, to appear]



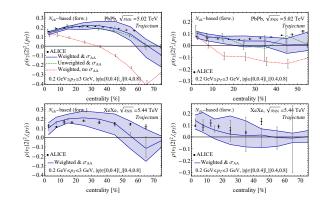






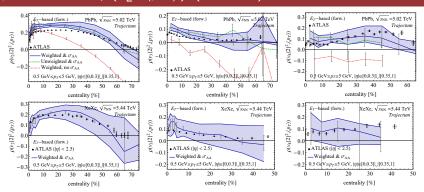
Implication for $\rho(v_2^2, \langle p_T \rangle)$ (ALICE)

- We can use the full posterior to propagate uncertainties from parameters to observables.
- Much improved agreement with ALICE for $\rho(v_2^2, \langle p_T \rangle)$.



Introduction Bayesian analysis Nucleon size Generalized TRENTo formula Strongly coupled pre-hydrodynamic stage Neutron skin Conclusions & Outlook

Implication for $\rho(v_2^2, \langle p_T \rangle)$ (ATLAS)



- Still some tension with ATLAS:
 - Kinematic cuts are different, probably needs 3+1D simulations to resolve.

Technology

■ Important to match the precise experimental procedure.

The TRENTo phenomenological ansatz

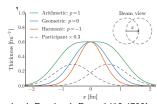
■ The standard TRENTo formula combines thickness functions of the two nuclei \mathcal{T}_A and \mathcal{T}_B into a *reduced thickness* \mathcal{T} , interpreted as an energy density:

$$\mathcal{T} \propto \left(rac{\mathcal{T}_A^p + \mathcal{T}_B^p}{2}
ight)^2$$

with p a parameter.

Some useful limits:

p	-1	0	1
\mathcal{T}	$\frac{2}{\frac{1}{\mathcal{T}_A} + \frac{1}{\mathcal{T}_B}}$	$\sqrt{\mathcal{T}_A \mathcal{T}_B}$	$\frac{\mathcal{T}_A + \mathcal{T}_B}{2}$

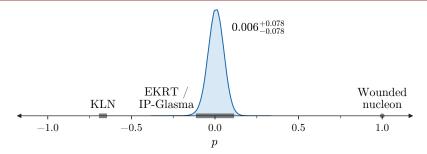


[Moreland, Bernhard, Bass, 1412.4708]

■ Binary scaling $T = T_A T_B$ is not available.

Introduction Bayesian analysis Nucleon size Generalized TRENTo formula Strongly coupled pre-hydrodynamic stage Neutron skin Conclusions & Outlook

The power of Bayesian analysis



- Can test theories for the initial state with TRENTo, in this case by comparing their scaling behavior.
- General workflow for testing theories/questions:
 - Introduce parameter(s) which parameterize the question.
 - Confront the generalized model with data using Bayesian analysis.
 - Read off the posterior distribution for the parameter(s).

[Bernhard, 1804.06469]

The q parameter

■ We make the following modification to the TRENTo formula:

$$\mathcal{T} \propto \left(rac{\mathcal{T}_A^{p} + \mathcal{T}_B^{p}}{2}
ight)^{q/p},$$

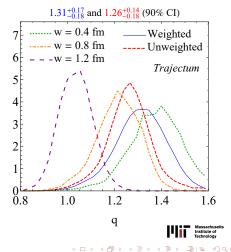
introducing the parameter q.

- We now include binary scaling as a limit when p = 0, q = 2.
- Assuming approximate conformality of the equation of state, we can also interpret the right hand side as an *entropy density* by setting q=4/3.



Posterior distribution for q

- Binary scaling (q = 2) is strongly disfavored.
- Fixing the nucleon width *w* at different values has a large effect on the fitted value for *q*.
- Fixing w = 0.4 fm favors $q \approx 4/3$.
- Weighted distribution is close to w = 0.4 fm distribution.



Comparing to IP-Glasma

■ IP-Glasma scales as follows:

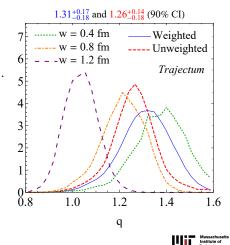
$$\mathcal{T} \propto \frac{\mathcal{T}_A \mathcal{T}_B (2\mathcal{T}_A^2 + 7\mathcal{T}_A \mathcal{T}_B + 2\mathcal{T}_B^2)}{(\mathcal{T}_A + \mathcal{T}_B)^{5/2}}.$$

■ If $\mathcal{T}_A \approx \mathcal{T}_B$, this reduces to

$$\mathcal{T} \propto (\mathcal{T}_A \mathcal{T}_B)^{3/4}$$
.

- This corresponds to q = 1.5.
- IP-Glasma is compatible with our posterior.

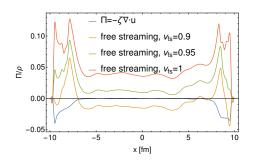
[Borghini et al., 2209.01176]



In AdS/CFT simulations of the initial stage, the shear stress and bulk pressure quickly relax to their 'hydro' values:

$$\pi^{\mu\nu} = 2\eta \sigma^{\mu\nu}, \quad \Pi = -\zeta \nabla \cdot u.$$

- In free streaming however, the initialization of $\pi^{\mu\nu}$ and Π is qualitatively different.
- Use free streaming velocity as a proxy for this difference.



[van der Schee, Romatschke, Pratt, 1307.2539; GN, van der Schee, Gürsov, Snellings, 2010,151341

Free streaming pre-hydrodynamic stage

- TRENTo creates matter at proper time $\tau = 0^+$.
- Propagate the matter using free streaming:

$$T^{\mu
u}(x,y, au_{ ext{hyd}}) = rac{1}{ au_{ ext{hyd}}} \int d\phi \, \hat{p}^{\mu} \hat{p}^{
u} \mathcal{T}(x- au_{ ext{hyd}}\cos\phi,y- au_{ ext{hyd}}\sin\phi),$$

with

$$\hat{\mathbf{p}}^{\mu} = \left(\begin{array}{cc} 1 & \cos\phi & \sin\phi \end{array} \right),$$

giving us the stress tensor $T^{\mu\nu}$ at proper time $\tau= au_{
m hyd}$.

- Here τ_{hyd} is the time at which hydrodynamics is started.
- The factor $1/\tau_{\text{hyd}}$ is due to longitudinal expansion.

• We compute the hydrodynamic values for $\pi^{\mu\nu}$ and Π explicitly from the velocity u^{μ} :

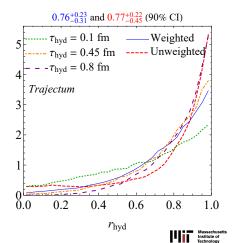
$$\pi_{\mathsf{hyd}}^{\mu\nu} = 2\eta\sigma^{\mu\nu}, \qquad \Pi_{\mathsf{hyd}} = -\zeta\nabla\cdot u.$$

■ We then mix the hydrodynamic values with the free streaming values and initialize hydrodynamics with

$$\begin{split} \pi^{\mu\nu} &= \mathit{r}_{\mathsf{hyd}} \pi^{\mu\nu}_{\mathsf{hyd}} + (1 - \mathit{r}_{\mathsf{hyd}}) \pi^{\mu\nu}_{\mathsf{fs}}, \\ \Pi &= \mathit{r}_{\mathsf{hyd}} \Pi_{\mathsf{hyd}} + (1 - \mathit{r}_{\mathsf{hyd}}) \Pi_{\mathsf{fs}}, \end{split}$$

with $r_{\text{hvd}} \in [0, 1]$ interpolating between the two scenarios.

- $r_{hvd} = 1$ is strongly favored over $r_{\text{hvd}} = 0$, implying a preference for strongly coupled pre-hydrodynamic stage.
- Preference also becomes stronger for larger hydro initialization time τ_{hvd} .
- One can see this as model averaging, albeit cheaper since we can interpolate between models with a continuous parameter.



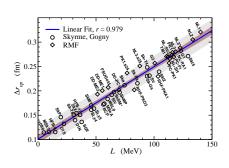
Neutron skin

- In a nucleus, neutrons sit further from the center than protons.
- This is quantified with the neutron skin thickness

$$\Delta r_{np} = \langle r^2 \rangle_n^{1/2} - \langle r^2 \rangle_p^{1/2}.$$

Neutron skin can be used to obtain the symmetry energy L, which is relevant for neutron stars:

$$\Delta r_{np}$$
 [fm] = 0.101+0.00147 L [MeV]. [Viñas, Centelles, Roca-Maza, Warda, 1308.1008]



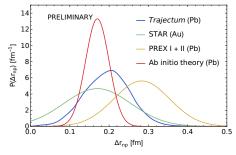
 We draw nucleons in a nucleus from a Woods-Saxon distribution

$$ho_{\mathsf{WS}}(r) \propto rac{1}{1 + \exp\left(rac{r - R}{\sigma}
ight)},$$

where R and σ are parameters, which we take to be different for protons and neutrons.

Proton distribution is well-constrained by electron scattering experiments, so we vary the neutron σ .

Resulting posterior for Δr_{np} is compatible with STAR, PREX and ab initio nuclear theory.



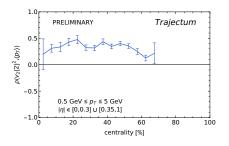
[STAR, 2204.01625; PREX, 2102.10767; Hu et al., Nat. Phys. 18, 1196–1200 (2022)]

Conclusions

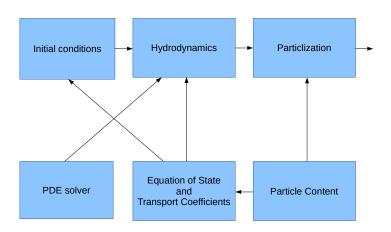
- Describing the experimental cross-section requires smaller nucleon width.
- Binary scaling in TRENTo is strongly disfavored.
- lacktriangle Reduced thickness $\mathcal T$ should be interpreted as an entropy density.
- Scaling behavior of TRENTo is compatible with IP-Glasma.
- Our fit favors a strongly coupled pre-hydrodynamic stage.
- The neutron skin thickness can be extracted using heavy ion data.

Outlook

- Much improved statistics: can now fit to $\rho(v_2\{2\}^2, \langle p_T \rangle)$ directly.
- Bayesian analysis with 3+1D simulations.
- Nuclear structure with ¹⁶O and ²⁰Ne.
- Interpolating between TRENTo scaling and using the IP-Glasma scaling directly.



Components of Trajectum



Hydrodynamics

■ Define $(g^{\mu\nu} = \text{diag}(1, -1, -1, -1))$:

$$\Delta^{\mu\nu} = \mathbf{g}^{\mu\nu} - \mathbf{u}^{\mu}\mathbf{u}^{\nu}, \quad \nabla^{\mu} = \Delta^{\mu\nu}\partial_{\nu}, \quad D = \mathbf{u}^{\mu}\nabla_{\mu}, \quad \sigma^{\mu\nu} = \nabla^{\langle\mu}\mathbf{u}^{\nu\rangle},$$

with $\langle \rangle$ symmetrizing and removing the trace.

We solve viscous hydrodynamics without currents, i.e.

$$\partial_{\mu}T^{\mu\nu}=0, \quad T^{\mu\nu}=eu^{\mu}u^{\nu}-(P+\Pi)\Delta^{\mu\nu}+\pi^{\mu\nu},$$

 \blacksquare $\pi^{\mu\nu}$ and Π follow the 14-moment approximation:

$$\begin{split} -\tau_{\pi}\Delta_{\alpha}^{\mu}\Delta_{\beta}^{\nu}D\pi^{\alpha\beta} &= \pi^{\mu\nu} - 2\eta\sigma^{\mu\nu} + \pmb{\delta}_{\pi\pi}\pi^{\mu\nu}\nabla \cdot u \\ &- \pmb{\phi}_{7}\pi_{\alpha}^{\langle\mu}\pi^{\nu\rangle\alpha} + \tau_{\pi\pi}\pi_{\alpha}^{\langle\mu}\sigma^{\nu\rangle\alpha} - \pmb{\lambda}_{\pi\Pi}\Pi\sigma^{\mu\nu}, \\ -\tau_{\Pi}D\Pi &= \Pi + \zeta\nabla \cdot u + \pmb{\delta}_{\Pi\Pi}\nabla \cdot u\Pi - \pmb{\lambda}_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}. \end{split}$$

Other Trajectum components Second order solution for $\pi_{\text{hyd}}^{\mu\nu}$ and Π_{hyd} Weights Correlations between parameters Small bulk viscosity Data use

Particlization

- At the freeze-out temperature T_{sw} , we turn the fluid back into particles.
- \blacksquare Particles are sampled thermally, and boosted with the fluid velocity $u^\mu.$
- We use the PTB prescription to match $\pi^{\mu\nu}$ and Π across the transition, so that $T^{\mu\nu}$ is smooth.
- After particlization, we use SMASH as a hadronic afterburner.

[Pratt, Torrieri, 1003.0413; Bernhard, 1804.06469]

Need to go to second order

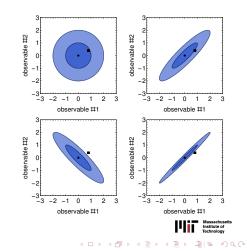
- First order scheme fails: combination of large T_RENTo norm N, small hydro initialization time $\tau_{\rm hyd}$ and large specific shear viscosity η/s causes extreme particle yields, ruining the emulator.
- Need to go to second order, which penalizes large initial values for $\pi^{\mu\nu}$ and Π .
- Use full 14-moment approximation:

$$\begin{split} -\tau_{\pi}\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta}D\pi^{\alpha\beta} &= \pi^{\mu\nu} - 2\eta\sigma^{\mu\nu} + \delta_{\pi\pi}\pi^{\mu\nu}\nabla \cdot u \\ &\quad - \phi_{7}\pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha} + \tau_{\pi\pi}\pi^{\langle\mu}_{\alpha}\sigma^{\nu\rangle\alpha} - \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu}, \\ -\tau_{\Pi}D\Pi &= \Pi + \zeta\nabla \cdot u + \delta_{\Pi\Pi}\nabla \cdot u\Pi - \lambda_{\Pi\pi}\pi^{\mu\nu}\sigma_{\mu\nu}, \end{split}$$

where we set the left hand side to zero, and solve for $\pi^{\mu\nu}$ and Π .

Why weights?

- Higher p_T, higher centralities are harder to model theoretically.
- Experimental correlation matrix is not available.
 - Figure shows 1σ and 2σ regions for $\rho \in \{0, 0.9, -0.9, 0.99\}$, with standard deviations the same
 - Same difference between theory and experiment can be within 1σ or outside of 2σ depending on ρ .
 - Correlated observable classes can be over/underimportant for the Bayesian analysis.



Definition of weights

■ In the bayesian analysis, the probability of the data given the parameter point *x* is given by:

$$P(D|x) = \frac{1}{\sqrt{(2\pi)^m \det \Sigma}} \exp\left(-\frac{1}{2}(y - y_{\text{exp}})^T \Sigma^{-1}(y - y_{\text{exp}})\right),$$

with y the vector of observables computed from x, y_{exp} the vector of the corresponding experimental data, and Σ the combined theory/experiment covariance matrix.

We define weights by replacing

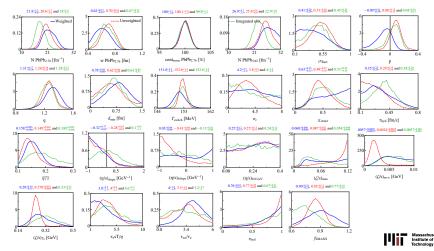
$$P(D|x) = \frac{1}{\sqrt{(2\pi)^m \det \Sigma}} \exp \left(-\frac{1}{2}(y - y_{\text{exp}})^T \omega \Sigma^{-1} \omega (y - y_{\text{exp}})\right),$$

where ω is the diagonal matrix containing the weight for each observable.

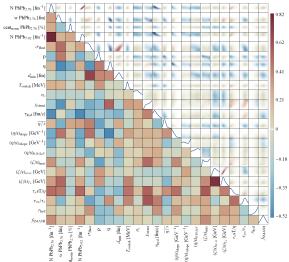
- We choose for weights ω :
 - 1/2 for every particle identified observable.
 - 1/2 for p_T -differential observables, and an additional $(2.5 p_T[\text{GeV}])/1.5$ if $p_T > 1$ GeV.
 - (100 c[%])/50 if the centrality class c is beyond 50%.
- Weighting only worsens the average discrepancy slightly.
- Distribution of discrepancies makes more sense.

	$\langle (y_{\text{theory}} - y_{\text{experiment}})/\sigma \rangle$				$\bar{\omega}$
	$\sigma_{AA}\ \&\ \omega$	ω	σ_{AA}	neither	
$dN_{\rm ch}/d\eta$	0.55	0.60	1.23	1.22	1.00
$dN_{\pi^{\pm},k^{\pm},p^{\pm}}/dy$	0.76	0.70	0.60	0.57	0.48
$dE_T/d\eta$	1.59	1.51	0.82	0.77	0.48
$\langle p_T \rangle_{ch,\pi^\pm,K^\pm,p^\pm}$	0.66	0.60	0.88	0.72	0.46
$\delta p_T/\langle p_T \rangle$	0.56	0.62	0.51	0.58	0.49
$v_n\{k\}$	0.58	0.51	0.54	0.49	1.00
$d^2N_{\pi^\pm}/dy\ dp_T$	1.19	1.07	0.86	0.92	0.20
$d^2N_{K^{\pm}}/dy dp_T$	1.41	1.27	0.79	0.73	0.20
$d^2N_{p\pm}/dy dp_T$	1.35	1.21	0.73	0.67	0.25
$v_2^{\pi^{\pm}}(p_T)$	0.81	0.74	0.46	0.44	0.19
$v_2^{K^{\pm}}(p_T)$	0.92	0.89	0.55	0.55	0.19
$v_2^{p^{\pm}}(p_T)$	0.49	0.47	0.34	0.35	0.25
$v_3^{\pi^\pm}(p_T)$	0.65	0.57	0.69	0.57	0.24
average	0.89	0.83	0.69	0.66	
σ_{AA}	1.13	3.80	1.53	3.40	1.00

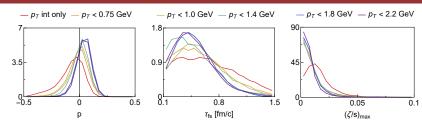
How much do weights change the posteriors?



Correlations between parameters



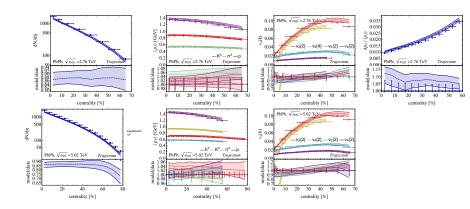
Bulk viscosity over entropy density ζ/s



- Lower bulk viscosity than other groups.
- This is mostly due to the inclusion of p_T -differential observables.
- It is important to fit to as wide a range of data as possible (within reason).
- We varied the highest p_T bin included to check that our result was robust.

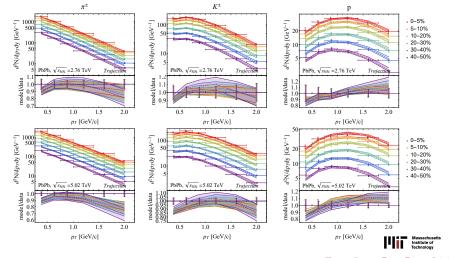
[GN, van der Schee, Gürsoy, Snellings, 2010.15130]

Data used in our most recent fit: integrated observables





Data used in our most recent fit: spectra



Data used in our most recent fit: p_T -differential v_2

