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Forward detectors at the LHC

2
LHC Run 4: all detectors have comprehensive tracking at forward rapidity i.e 4 to 5.8|η | →



Forward Calorimeter (FoCal) at ALICE

3

Electromagnetic and hadronic calorimeters covering 3.4 < η < 5.8 

✓Probes parton densities down to x ~10-6   

✓Lowest x reach compared with any other experiment/facility
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Figure 2. Updated figure 1 from the proposal with increased acceptance for ATLAS and CMS. Possible
measurements with the CMS HGCAL are denoted with dashed gray line, indicating that it is not clear if EM
measurements related to saturation such as the measurement of direct photons can be done with HGCAL
which is optimized for high-energy jets or photons from Higgs decays. The same notation has been used
to indicate the possible direct photon performance for LHCb.

An outline of the physics program for ATLAS and CMS following the aforementioned up-
grades is e.g. given in Ref. [10], where the scope of future prompt photon cross section measure-
ments is addressed explicitly in Sec. 7.1.2: Measurements for photon rapidities of up to 2.37 are
discussed. The authors make clear that the focus of the ATLAS experiment will be measurements
at large transverse energies (⇠400 GeV/c < ET <3.5 TeV/c) to constrain PDFs in this regime. The
focus is therefore on studies at high-Q and high-x, rather than the low-x studies planned for the
FoCal.

V. Q5

Can you summarize briefly what is the unique scientific case of FoCal that cannot be accomplished by the
EIC (or other existing detectors) and explain why?

Many QCD phenomena evolve only logarithmically in (x,Q2), so that comprehensive exploration
of low-x structure of matter requires “logarithmically large” phase space coverage in x. The phase
space coverage in x accessible for FoCal will reach much lower x values than the EIC (x of 10�5

to 10�6 at FoCal versus x of a few times 10�4 at EIC for Q2 = 1 GeV2), both for scattering on
the protons and on heavy ions. This would allow FoCal to probe saturation effects potentially
deep inside the saturation region (for a nuclear wave function), while EIC would be able to probe
saturation chiefly just inside the saturation boundary. Performing measurements at both the EIC
and FoCal would allow us to test universality of the theoretical description of high-energy QCD
based on the dipole formalism of parton saturation. The correct theoretical description of the low-
x structure of matter must self-consistently describe multiple observables in multiple collision
systems. In our view, the definitive discrimination of linear from non-linear evolution, and testing



Physics goals of FoCal

4

Direct photons in small systems and vector meson production in ultra-peripheral collisions 

✓Major goal: Explore gluon saturation from various few-body interactions 

✓Minor goal: Investigate emergent hot QCD phenomena

A Large Ion Collider Experiment

2022 pp processing plans and timeline 

13Luciano Musa (CERN) | CERN RRB | 26 October 2022

● Expected integrated luminosity @ 650 kHz inelastic interaction rate (~14/pb ~1.1e12 collisions)

● Calibrations needed for full event reconstruction (pass 1) expected in December 

● During YETS most of EPNs available for reconstruction
○ pass 1 reconstruction on EPN farm (CPU + GPU) takes ~3 months (Jan-Mar)
○ 2 months to tune and validate selections on pass 1 AO2Ds (Feb-Mar) 
○ Skim CTFs with total ~10-3 rejection factor before the end of EYETS (April)

● 2022 pp data will be removed once skimmed with event selections

● In addition, plan to keep ~10% of the same as MB (~1/pb)

Multiple mesons provide additional tests

Different mesons probe different wave functions.  Different size dipoles have cross-
sections that evolve differently with energy
Y’ rates are smaller than J/y, but still allow measurement

18

https://sites.google.com/lbl.gov/alice-usa/projects

ALICE-USA FoCal 2023 Physics motivation

to Qsat. The authors caution, however, that this simple picture may be modified substantially
when NLO effects are taken into account [65].

The calculations in Fig. 10 provide a valuable step towards quantitative prediction for FoCal
measurements. They illustrate what can be learned by measuring and comparing inclusive pro-
duction of both ⇡

0 and prompt photons over a broad range in pT, including very low pT, to test
and constrain the theoretical formalism.
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Figure 11. Left: Nuclear modification factor and uncertainties for isolated photons at ⌘ = 4 for
p
sNN = 8.8 TeV calculated using EPPS16 [46] and nNNPDF2.0 [69] nuclear PDFs, compared to two CGC

calculations [65, 70]. Only the PDF uncertainties are shown. Right: Nuclear modification factor RpA for
prompt photon production at

p
sNN = 8 TeV shown for various models using the color dipole approach [71]

compared to the CGC [65] calculation.

Various predictions for RpPb of isolated photons at ⌘ = 4 and its uncertainties are also shown
in Fig. 11. The left panel shows calculations using the EPPS16 and nNNPDF2.0 nuclear PDFs in
the collinear pQCD framework. The central value differs by only about 10–15% between the both
calculations, but the uncertainties, which originate from the uncertainties of the nuclear PDFs,
are much larger than that, in particular for nNNPDF2.0, which by design is not constrained by
hadron data as discussed above. For comparison, two calculations of photon production in the
CGC framework are shown as well. The more recent LO calculation [65], which we discussed in
detail above, predicts only a moderate suppression below unity, while the earlier calculation by
a different group [70, 72] showed a strong suppression RpPb ⇡ 0.4. The right panel shows quite
significant spread between different calculations incorporating non-linear QCD evolution in the
color dipole approach [71] and the LO CGC calculation [65] at low momentum.

2.4.2. Direct photon and ⇡
0

production: experiment

The key measurement proposed for the FoCal is that of the isolated photon inclusive pT spectra
at forward rapidity in pp and p–Pb collisions at 8.8 TeV in Run 4 at the LHC.

Figure 12 illustrates the statistical precision for isolated photon production that can be achieved
with the FoCal in pp and p–Pb collisions at p

sNN = 8.8 TeV. Measurements up to high transverse
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Emergent features of hot QCD: flow

QGP evolves as a perfect fluid 

Measured flow described by hydrodynamics 
with smallest viscosities ever observed 6
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FoCal and initial state

Knowledge of initial state plays vital role for understanding QGP flow 

✓ Final state anisotropic flow  initial state eccentricity 

Color Glass Condensate (CGC) emerges as testable description of gluon saturated matter 

✓ Static color sources at high-x generate dynamical gluon fields at low-x 

✓ Induces long range rapidity correlations for flow measurements from initial state 

✓ Rapidity separation of high-x sources and low-x fields?  →  Measurable with FoCal

∝
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10 Larry McLerran

to propagating along the light cone z = �t and add them together for the initial
classical field. This solution is valid until the hadrons collide, and then one must
solve the classical Yang-Mills equations in the forward light cone. I will provide an
explicit construction of such solutions in the following paragraphs.17)-18)

We will see that after the hadrons pass through one another, they develop a
surface color charge density. This charge density is equal and opposite on each
hadron, and has both color magnetic and color electric charge. Such charges for
both color electric and color magnetic fields must be treated symmetrically since the
fields in each hadron involved both fields on an equal footing, and the Yang-Mills
equations are self dual under E $ B

Fig. 8. The longitudinal color electric and magnetic fields made in hadron collisions.

Because the hadrons have become charged, longitudinal color electric and color
magnetic fields will form between them. This is shown in Fig. 8. The typical scale of
transverse variation of these fields is the inverse saturation momentum r ⇠ 1/Qsat.
These fields will evolve classically. They do not need to pair produce particles to
decay, because there is both a non-zero E and non-zero B field present. The Yang-
Mills equations are

D
0 ~E = ~D ⇥ ~E (10.1)

and E $ B. These fields dilute as the system expands, and when the field strengths
are small, the fields may be thought of as quanta of gluons.

The configuration of fields before and after the collision are remarkably di↵erent.
Before the collision, the fields are in the sheet of the two Lorentz contracted hadrons.
They are transverse to the collision axis. After the collision these fields remain, but
in addition, there are longitudinal fields. These fields are produced in the time
it takes the sources of color charge ⇢ to pass through one another. Recall that the
renormalization group arguments above show that such sources sit in rapidity ranges
| �⌘ |� 1/↵S , so that the time it takes for the hadrons to pass through one another
is tcol ⇠ e

�/↵S/Qsat, where  is a constant of order 1. This is a time scale very short
compared to the saturation time scale, and in the high energy limit ↵S ! 0, may
be thought of as infinitesimal. The formation of these color flux lines is associated
with an initial singularity of the high energy limit. The new matter formed in the
collision is prduced from the Color Glass Condensate, has properties remarkably



RHIC and LHC measurements demonstrate charged hadron flow in high-multiplicity small systems  

✓ Successful hydrodynamic fluid-like description 

✓ Initial state eccentricity converted to flow via QGP response?

Smallest possible QGP droplet?
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FIG. 4. | Measured vn(pT ) in three collision systems compared to two hydrodynamical models. a, Measured vn(pT )
in the 0-5% most central p+Au collisions compared to hydrodynamical models. b, Measured vn(pT ) in the 0-5% most central
d+Au collisions compared to hydrodynamical models. c, Measured vn(pT ) in the 0-5% most central 3He+Au compared to
hydrodynamical models. Each point in a-c represents an average over pT bins of width 0.2 GeV/c to 0.5 GeV/c; black circles
are v2, black diamonds are v3. Each model curve in a-c represents a hydrodynamic prediction of vn. The solid red is sonic;
the dashed blue line is iEBE-VISHNU.

elliptic and triangular flow ordering eliminates this am-
biguity.

In summary, we have shown azimuthal particle cor-
relations in three di↵erent small-system collisions with
di↵erent intrinsic initial geometries. The simultaneous
constraints of v2 and v3 in p/d/3He+Au collisions defini-
tively demonstrate that the vn’s are correlated to the ini-
tial geometry, removing any ambiguity related to event
multiplicity or initial geometry models. We find that
the ordering of the v2 and v3 between the three systems
is inconsistent with that expected from initial-state mo-
mentum correlation models, ruling this out as the dom-
inant mechanism behind the observed collectivity. Fur-
ther, we find that hydrodynamical models which include
QGP formation provide a simultaneous and quantitative
description of the data in all three systems.
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Initial state flow?

Color domains in CGC postulated to induce initial state flow  

✓ CGC calculations describe measured J/ψ flow in p-Pb collisions at LHC 

✓ Transport models that implement QGP flow underestimate data 9

where v2½ref" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2½ref"=κ0½ref"

p
is the transverse momen-

tum integrated elliptic flow of the reference light quark,
which has been computed in Ref. [58]. Similarly, the
integrated v2 for heavy quarkonia can be written
as v2 ≡ ðκ2=κ0Þ=v2½ref".
It is interesting to notice that the four correlators inside

hDDDjr¼r0 i cancel completely if we set the coordinate
separation of the QQ̄ pair r to 0. Therefore, if we perform
the small r expansion, we can see the first nontrivial
contribution comes at r2 order and the mass dependence is
associated with the r integration. The heavy quark mass
dependences cancel completely between κ2 and κ0 when we
only compute v2 up to the r2 order. Note that our numerical
calculation is carried out without taking the small expan-
sion in order to see the heavy quarkonia mass dependence.
As shown above, we have to evaluate a large number of

integrations in order to numerically plot the elliptic flow of
heavy quarkonia. Our strategy is to analytically integrate as
many integrals as possible and numerically evaluate the
remaining five dimensional integrations.
Numerical results and comments.—Using the aforemen-

tioned simplified model, we are able to compute the elliptic
flow v2 for heavy quarkonia, such as J=ψ andϒmesons. In
Fig. 2, we show the integrated v2 of J=ψ and ϒ comparing
with the v2 of light reference quark as functions ofQ2

s in the
CGC formalism. This plot shows that heavy quarkonia in
the CGC formalism can typically have the k⊥ integrated v2
roughly between 5% and 10%, which is about 2=3 of that
for light reference quarks. Similar curves for light quarks
can also be found in Refs. [47,48]. It is important to note
that, due to the splitting g → QQ̄, the production mecha-
nism of heavy quarkonia is generically different from that
of light hadrons. We believe that this leads to a slightly
smaller v2 for heavy quarkonia. In the meantime, the

quarkonium mass dependence is rather weak for the elliptic
flow if one compares J=ψ and ϒ. It will be very interesting
to measure the v2 ofϒ in the near future. In Fig. 3, excellent
agreement is found by comparing our calculation of v2ðk⊥Þ
for J=ψ to the CMS data with the parameter consistent with
Ref. [58]. Here we use a slightly larger Q2

s ¼ 5 GeV2 for
the LHC instead of Q2

s ¼ 4 GeV2 for RHIC. We find that
v2 is not very sensitive to the choice of Bp and Δ values,
under variations of &50% or smaller.
Conclusion and outlook.—As a conclusion, let us make

some further comments on the consequence of this Letter.
(1) First of all, as we have demonstrated above, the heavy
quarkonia can have significant elliptic flow due to color
interactions and transitions that have little mass depend-
ence. Intuitively, this can be understood as the cancellation
of mass dependence between the anisotropic spectrum κ2
and the isotropic spectrum κ0; thus v2 contains little mass
dependence. This allows us to predict that the ϒ meson
should also have a similar size of elliptic flow at the RHIC
and LHC, although it is much heavier than the J=ψ meson.
This prediction could be tested in future measurements.
(2) Furthermore, instead of integrating over the relative
transverse momentum of heavy quark pairs, we can
integrate over the momentum of Q̄ and measure the
outgoing Q. This allows us to generalize the above
calculation and compute the elliptic flow for open charm
particles, namely, the D0 meson. The numerical evaluation
may be more demanding, but we expect the corresponding
v2 for D mesons should lie in the similar range as that of
J=ψ . (3) In addition, instead of using the CEM, one could
also compute the elliptic flow for heavy quarkonia in more

FIG. 2. The integrated v2 of J=ψ and ϒ compared with the v2
of the reference light quark as function of the saturation
momentum Q2

s .

FIG. 3. The k⊥-dependent elliptic flow v2 of J=ψ as function of
its transverse momentum k⊥ compared with the CMS data [10]
where both systematic (inner ones) and statistic (outer ones) error
bars are shown. Our result is also consistent with the ALICE [9]
data. In addition, as a prediction, the v2 ofϒ is also plotted in this
figure.

PHYSICAL REVIEW LETTERS 122, 172302 (2019)

172302-4

2

FIG. 1: (Color online) Color electric fields inside the nucleus
fluctuate on an event by event basis.

correlators of lightlike Wilson lines, which we will calcu-
late in Sec. 3 within the Glasma graph and nonlinear
Gaussian approximations. We then compute the Fourier
moments vn of two particle correlations in both approx-
imation schemes in Sec. 4 and compare our results with
numerical lattice simulations of the full correlation func-
tion. In Section 5 the analytical and numerical results
obtained are then compared to the color field domain
model. We first cast our analytical results in terms of
color electric field correlators and make a direct com-
parison with expressions for the same correlator in the
color field domain model. We will demonstrate that our
results provide a clear interpretation of the color field
domain model which clarifies the discussion in the recent
literature. We end with a summary of the results of the
paper and an outlook on further research directions in
computations of multiparton correlations in high energy
QCD.

II. MULTIPARTICLE CORRELATIONS FROM
FLUCTUATING COLOR FIELDS

We begin our discussion of the physics of initial
state correlations with the simplest possible example of
the high energy scattering of individual (uncorrelated)
quarks o↵ a large nucleus. Our general picture is that
each parton scatters independently o↵ the color field of
the nucleus receiving a transverse momentum kick in the
process. As noted previously [6, 7, 25], the color fields
fluctuate from event to event and are locally organized
in domains of size ⇠ 1/Qs as illustrated in Fig. 1. When
two (or more) quarks scatter o↵ the same domain, they
will receive a similar kick whenever they are in the same
color state. This leads to a correlation which is sup-
pressed by 1/Nc

2 (in the limit of large Nc) and the num-
ber of domains Q2

sS?, where S? denotes the transverse
area probed by the projectile. We will now discuss this
physical picture in in more detail and further develop its
quantitative implementation along the lines of the dis-
cussion in Ref. [13].

A. Single quark scattering

Within the CGC formalism, the color fields inside the
target nucleus are determined by the solution of the clas-
sical Yang-Mills equations

[Dµ, F
µ⌫ ] = J⌫ , (1)

where the eikonal current Jµ is given in terms of the
density of color charges ⇢ inside the target nucleus as

Jµ(x, x+) = �µ�⇢(x, x+) . (2)

The solution to the classical Yang-Mills equations takes
the well known form [50]

A�(x, x+) = �
⇢(x, x+)

r2
T

, (3)

where r2
T = @i@i is the 2-dimensional Laplacian. The

scattering of an incoming quark inside the projectile can
be described to leading order accuracy in ↵s by the so-
lution of the Dirac equation

(i /D �m) ̂ = 0 , (4)

in the presence of the background field of the target in
Eq. (3). One finds that the forward scattering amplitude
of a quark with momentum p to scatter o↵ the color fields
in the target is given by 1

hout,q|in,pi =

Z
d2x V (x) ei(q�p)·x , (5)

where

V (x) = P exp

⇢
�ig

Z 1

�1
dx+A�(x+,x)

�
(6)

denotes the Wilson line at a spatial position x in the
fundamental representation.
Within the leading order dilute-dense framework, it

is then straightforward to compute the single inclusive
distributions of quarks in a high energy projectile after
scattering from a nuclear target

dNq

d2p
= hout,p|⇢̂|out,pi , (7)

where ⇢̂ is the reduced one particle density matrix in the
probe. This general expression can be rewritten explicitly
as2

1
Since we are primarily interested in the transverse coordinate

dependence, we have omitted a delta function for longitudinal

momentum conservation as well as the spin structure to lighten

the notation. We refer to [51] for the complete expression.
2
Our expression generalizes the one given in [51] by replacing

the collinear quark distribution with a Wigner function Wq(b,k)
that is a function of both the k of quarks in the projectile and

their impact parameter b. Equivalent expression for gluons, dif-

fering only by the representation of the Wilson lines, have ex-

plicitly been derived in [31, 52].

Phys. Rev. Lett. 122 (2019) 172302
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Figure 8. Transverse-momentum dependent v2 for J/ψ (red band) and ψ(2S) (blue band) at mid-
rapidity in high-multiplicity p-Pb(8.16TeV) collisions within the elliptic fireball model, compared
to ALICE and CMS data [22, 23].

to light hadrons, while for the ψ(2S), due to its small binding, almost any interaction can

lead to break-up.

5 Conclusion

In the present work, we have extended our transport approach for in-medium quarkonia

in heavy-ion collisions to calculate J/ψ and ψ(2S) production in small collision systems

at RHIC (d-Au) and the LHC (p-Pb). Cold-nuclear-matter effects estimated from nu-

clear parton distribution functions are combined with final-state effects treated within

a rate-equation framework for an expanding fireball including dissociation and regener-

ation reactions in the QGP and hadronic phase. Our calculations provide a generally

fair description of the measured centrality and transverse-momentum dependent nuclear

modification factors measured in different rapidity regions, which differ in their CNM and

hot-nuclear matter effects (some tension with data was found in the 8.16TeV backward-

rapidity RpA(Ncoll)). This supports an interpretation where the J/ψ observables are mostly

dominated by CNM effects while the loosely bound ψ(2S) is subject to substantial suppres-

sion in the hot fireballs with initial temperatures of about 200-300MeV and lifetimes of up

to 4 fm. We also investigated the elliptic flow of J/ψ and ψ(2S). In our setup, a nonzero

v2 results entirely from final-state interactions in the elliptic fireball. Since the final-state

suppression (and regeneration) especially for the J/ψ is small, which is compatible with

the small hot-matter effects on the RpA, the resulting v2 is also small, not more than 2%

(and larger, up to 5%, for the ψ(2S)); this disagrees with the large signal observed in the

LHC data. We are therefore forced to conclude that this signal must be in large part due

to initial-state (or pre-equilibrium) effects not included in our approach. This situation

appears to be part of a bigger picture where the nuclear modification factor of hadrons,

e.g., D-mesons, shows little deviation from one while the v2 is appreciable.

– 13 –

JHEP 03 (2019) 015



Initial vs. final state flow in p-Pb

10

Recent CGC calculations map how initial state eccentricities evolve with x 

✓ Induces measurable final state hydrodynamic flow correlation effects over large rapidity intervals 

✓ Show initial state flow correlations vanish for particles with separation |Δy | > 2
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FIG. 10. Comparison of the normalized correlation function CN
O (�y) of the geometric eccentricity "2 (top), "3 (middle), and

initial state gluon momentum anisotropy v2 (bottom) for di↵erent centrality classes using ↵s = 0.15, and m = m̃ = 0.2GeV
(left) or 0.8GeV (right).

where �O = O � hOi, N is the multiplicity and �N the
variance of N in a given centrality bin.

Because we are considering initial state quantities in
this work, we compute estimators for ⇢̂ by replacing v2

with "2 (or "p) and [pT ] by the average entropy density
[s] = [e3/4] where e is the energy density, approximated
as T ⌧⌧ . The average [f] is computed as

[f ] =

R
d
2x?e(x?)f(x?)R
d2x?e(x?)

. (22)

The estimator using the ellipticity "2, ⇢̂est("22, [s]), is
shown as a function of centrality in top panel of Fig. 12
for two di↵erent ways of choosing the rapidity bins where
the di↵erent components of ⇢̂ are computed. One takes
all quantities at rapidity zero (y = 0), the other uses
three di↵erent rapidity bins (ABC regions) for the dif-
ferent components of ⇢̂, following the prescription used
by the ATLAS Collaboration [90]. We find that for the
larger m = m̃ the geometry estimator is always negative,
as can be expected from geometric considerations [58].



Disentangling flow with FoCal
FoCal provides opportunity to measure flow 
correlations at unique forward coverage 
with large rapidity gaps 

Stronger hydro-like flow correlations in high 
multiplicity p-Pb collisions: 

✓Induce shallower fall for v22 vs.  

✓Due to initial state eccentricity effects 

Unique test of CGC framework’s ability to 
map spatial distribution of gluons
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Identified particle flow with FoCal
FoCal can measure mass dependence of flow 
in π, η, ω, and J/ψ channels: 

‣  

Large  separation between (FoCal) and 
(MDT) isolates QGP-like flow correlations 

‣ “Non-flow” contributions require large 
subtraction for current measurements 

Precise tests of QGP hydrodynamic and 
transport models for small systems in 
forward region

v2 = ⟨cos[2(ϕ − Ψ)]⟩

Δη ϕ
Ψ
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Emergent features of hot QCD: thermalization

13

QGP produces hadrons in equilibrium  

Thermal model description of particle yields over many orders of magnitude 

Using only two parameters: temperature and volume

arXiv:2211.04384



Thermalization in small systems?

Strangeness enhanced in small systems at high multiplicity 

✓ Apparent success of thermal models reproducing enhancement?
14

Enhanced production of multi-strange hadrons in high-multiplicity pp ALICE Collaboration
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Fig. 2: pT-integrated yield ratios to pions (p+ + p�) as a function of hdNch/dhi measured in |y| < 0.5. The
error bars show the statistical uncertainty, whereas the empty and dark-shaded boxes show the total systematic
uncertainty and the contribution uncorrelated across multiplicity bins, respectively. The values are compared to
calculations from MC models [30–32] and to results obtained in p–Pb and Pb–Pb collisions at the LHC [6, 10, 11].
For Pb–Pb results the ratio 2L / (p++p�) is shown. The indicated uncertainties all represent standard deviations.

The pT-integrated yields are computed from the data in the measured ranges and using extrapolations
to the unmeasured regions. In order to extrapolate to the unmeasured region, the data were fitted with
a Tsallis-Lévy [10] parametrization, which gives the best description of the individual spectra for all
particles and all event classes over the full pT range (Figure 1). Several other fit functions (Boltzmann,
mT-exponential, pT-exponential, blast-wave, Fermi-Dirac, Bose-Einstein) are employed to estimate the
corresponding systematic uncertainties. The fraction of the extrapolated yield for the highest(lowest)
multiplicity event class is about 10(25)%, 16(36)%, 27(47)% for L, X and W, respectively, and is negli-
gible for K0

S
. The uncertainty on the extrapolation amounts to about 2(6)%, 3(10)%, 4(13)% of the total

yield for L, X and W, respectively, and it is negligible for K0
S
. The total systematic uncertainty on the

pT-integrated yields amounts to 5(9)%, 7(12)%, 6(14)% and 9(18)% for K0
S
, L, X and W, respectively. A

significant fraction of this uncertainty is common to all multiplicity classes and it is estimated to be about
5%, 6%, 6% and 9% for K0

S
, L, X and W, respectively. In Figure 2, the ratios of the yields of K0

S
, L, X

and W to the pion (p++p�) yield as a function of hdNch/dhi are compared to p–Pb and Pb–Pb results at
the LHC [6, 10, 11]. A significant enhancement of strange to non-strange hadron production is observed
with increasing particle multiplicity in pp collisions. The behaviour observed in pp collisions resembles
that of p–Pb collisions at a slightly lower centre-of-mass energy [11], in terms of both the values of the
ratios and their evolution with multiplicity. As no significant dependence on the centre-of-mass energy

4
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FIG. 5. Left-hand figure: Yields for VA = VC . Right-hand figure: Yields for VA 6= VC , The two top lines are the fitted volumes
VA (x5) in fm3. The particle yields are indicated in the right panel together with the multiplicative factor used to separate the
yields. The solid blue lines have been calculated for T = 156.5 MeV while the solid red lines have been calculated for T = 160
MeV. The values of the volumes used have been parametrized empirically in Eqs. (23) and (24).

To justify the S-matrix results for di↵erent charged
particle densities we show in Fig. 9 the p/⇡ (left) and p/⇤
(right) ratios as functions of dNch/d⌘. Both ratios are
very sensitive to the S-matrix corrections which amount
to a reduction of proton yield by a factor of 0.75 and a
1.24 enhancement of the ⇤ yield. The excellent agree-
ment of data and the S-matrix values that have been
already discussed for most central collisions are also veri-
fied for lower charged particle multiplicities. The p/⇤ ra-
tio is increasing with decreasing dNch/d⌘ with a strength
which is well consistent with the SCE model. The ther-
mal model without S-matrix corrections exhibits large
deviations from the p/⇤ ratio data. The p/⇡ is nearly
multiplicity independent since the SCE corrections to
this ratio are small. Nevertheless, the p/⇡ ratio with
the S-matrix corrections is well consistent within errors
with the data at all dNch/d⌘.

In Fig. 10 we show ratios of strange and multi-strange
particles compared to the ⇤ yield. The model results for

the ⌦/⇤ ratio describe data very accurately while the two
other ratios, K0

S
/⇤ and ⌅/⇤, are again within one stan-

dard deviation. It is interesting to note, that in the SCE
model the K0

S
/⇤ ratio is independent of dNch/d⌘. This

is because the canonical suppression factor is the same
for all S = ±1 mesons and baryons. The results shown
in Figs. 9 and 10 provide further evidence that the S-
matrix description of interactions in the proton and hy-
peron channels, as well as, that the strangeness suppres-
sion due to exact and global strangeness conservation,
are justified by data from the ALICE collaboration.

V. SUMMARY AND CONCLUSIONS

We have studied the influence of global strangeness
quantum number conservation on strangeness produc-
tion in heavy-ion and elementary collisions in a given
acceptance region, accounting for the strangeness neu-

Phys. Rev. C 103 (2021) 014904



Quantum entanglement and entropy 

Quantum entanglement creates entropy and induces thermalization 

✓ Quarks and gluons within proton entangled  

✓ Does that explain the success of the thermal model for small systems? 15

Quantum thermalization through entanglement in an isolated many-body system

A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner⇤

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Dated: September 1, 2016)

The concept of entropy is fundamental to thermalization, yet appears at odds with basic principles
in quantum mechanics. Statistical mechanics relies on the maximization of entropy for a system at
thermal equilibrium. However, an isolated many-body system initialized in a pure state will remain
pure during Schrödinger evolution, and in this sense has static, zero entropy. The underlying
role of quantum mechanics in many-body physics is then seemingly antithetical to the success of
statistical mechanics in a large variety of systems. Here we experimentally study the emergence of
statistical mechanics in a quantum state, and observe the fundamental role of quantum entanglement
in facilitating this emergence. We perform microscopy on an evolving quantum system, and we see
thermalization occur on a local scale, while we measure that the full quantum state remains pure.
We directly measure entanglement entropy and observe how it assumes the role of the thermal
entropy in thermalization. Although the full state remains measurably pure, entanglement creates
local entropy that validates the use of statistical physics for local observables. In combination with
number-resolved, single-site imaging, we demonstrate how our measurements of a pure quantum
state agree with the Eigenstate Thermalization Hypothesis and thermal ensembles in the presence
of a near-volume law in the entanglement entropy.

When an isolated quantum system is significantly per-
turbed, for instance due to a sudden change in the Hamil-
tonian, we can predict the ensuing dynamics with the
resulting eigenstate distribution induced by the pertur-
bation or so-called “quench” [1]. At any given time, the
evolving quantum state will have amplitudes that de-
pend on the eigenstates populated by the quench, and
the energy eigenvalues of the Hamiltonian. In many
cases, however, such a system can be extremely di�-
cult to simulate, often because the resulting dynamics
entail a large amount of entanglement [2–5]. Yet, sur-
prisingly, this same isolated quantum system can ther-
malize under its own dynamics unaided by a reservoir
(Figure 1) [6–8], so that the tools of statistical mechan-
ics apply and challenging simulations are no longer re-
quired. In this case, a quantum state coherently evolving
according to the Schrödinger equation is such that most
observables can be predicted from a thermal ensemble
and thermodynamic quantities. Strikingly, even with in-
finitely many copies of this quantum state, these same
observables are fundamentally unable to reveal whether
this is a single quantum state or a thermal ensemble. In
other words, a globally-pure quantum state is apparently
indistinguishable from a mixed, globally-entropic ther-
mal ensemble [6, 7, 9, 10]. Ostensibly the coherent quan-
tum amplitudes that define the quantum state in Hilbert
space are no longer relevant, even though they evolve in
time and determine the expectation values of observables.
The dynamic convergence of the measurements of a pure
quantum state to the predictions of a thermal ensemble,
and the physical process by which this convergence oc-
curs, is the experimental focus of this work.

On-going theoretical studies over the past three
decades [6, 7, 9–13] have, in many regards, clarified the

⇤ E-mail: greiner@physics.harvard.edu
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FIG. 1. Schematic of thermalization dynamics in
closed systems. An isolated quantum system at zero tem-
perature can be described by a single pure wavefunction | i.
Subsystems of the full quantum state appear pure, as long
as the entanglement (indicated by grey lines) between sub-
systems is negligible. If suddenly perturbed, the full system
evolves unitarily, developing significant entanglement between
all parts of the system. While the full system remains in a
pure, and in this sense zero-entropy state, the entropy of en-
tanglement causes the subsystems to equilibrate, and local,
thermal mixed states appear to emerge within a globally pure
quantum state.

role of quantum mechanics in statistical physics. The
conundrum surrounding the agreement of pure states
with extensively entropic thermal states is resolved by
the counter-intuitive e↵ects of quantum entanglement.
A canonical example of this point is the Bell state of two
spatially separated spins: while the full quantum state
is pure, local measurements of just one of the spins re-
veals a statistical mixture of reduced purity. This local
statistical mixture is distinct from a superposition, be-
cause no operation on the single spin can remove these
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a parton distribution when applied to a pure quantum
state?

II. ENTANGLEMENT ENTROPY AND

PARTON DISTRIBUTIONS

Recently, it has been suggested that this apparent
paradox can be resolved by the quantum entanglement
of partons [7]. Indeed, consider an electron-proton scat-
tering with momentum transfer Q depicted in Fig. 1 (a).
It is clear that since the transverse distance involved in
this process ⇠ 1/Q is much smaller than the size of the
proton, DIS probes only a part of the proton’s wave func-
tion; let us denote it A. In the proton’s rest frame, where
it is definitely described by a pure quantum mechanical
state, DIS probes the spatial region A localized within a
tube of radius ⇠ 1/Q and length ⇠ 1/(mx), where m is
the proton’s mass and x the momentum fraction of the
struck quark. Inclusive DIS measurements sum over the
unobserved part of the wave function localized in region
B complementary to A. Hence we have access only to
the reduced density matrix ⇢̂A = trB⇢̂, but not the entire
density matrix ⇢̂ = | ih |. The von Neumann entropy,
arising from the quantum entanglement between region
A and B, namely SA = �tr [⇢̂A ln ⇢̂A] associated with
the DIS measurement, is found [7] to correspond to the
entropy of independent partons, and thus to the parton
distribution. Because the region B is complementary to
region A, the entanglement entropy SB associated with
it has to be equal to SA.

photon

electron

...
...

1
2

...

N

1

2
...

...

N

...

...
(a) ep (b) pp 

A
B~1/Q

...

B

B

A

?

FIG. 1. Illustrations of quantum entanglement in high
energy collisions. (a) electron-proton (ep) deeply inelastic
scattering, where the virtual photon emitted by the electron
probes part of the proton, denoted as region A, while the un-
observed part of the proton is represented by region B. (b)
proton-proton inelastic collision, where the interaction region
is A and the remainder of the system is B. The initial von
Neumann entropy from region A and B are denoted as SA

and SB respectively. The final-state hadron entropy, Shadron,
is given by the Boltzmann entropy based on the hadron mul-
tiplicity distribution P(N).

At small x, where gluons dominate, the relation
between the entanglement entropy SA and the gluon

distribution[8] xG(x) becomes simply:

SA = ln[xG(x)] = SB. (1)

Here we do not explicitly indicate the dependence of G
on the momentum transfer, Q2. Equation (1) implies
that at small x all microstates of the system are equally
probable and the von Neumann entropy is maximal.
In the present paper we devise an independent exper-

imental test of measuring the entanglement entropy of
partons within the nucleon using the final-state hadron
multiplicity distribution P(N), where P(N) is the proba-
bility of producing N particles in the system per event.
This will allow us to test the proposed relation between
the entanglement entropy and the parton distribution
given by (1).
In DIS experiments, the value of the entropy arising

from entanglement depends on the photon probe in terms
of x and Q2. However, the entropy SA resulting from the
entanglement of region A with B and giving rise to the
parton distribution, should always be equal to the en-
tropy SB resulting from the entanglement of region B
with A and giving rise to the final-state entropy of the
fragmenting nucleon. The latter quantity can be recon-
structed from the multiplicity distribution of the pro-
duced hadrons, which we will denote as Shadron. Based
on this argument and the relation (1), we thus expect the
following relation that can be directly tested in experi-
ments:

ln[xG(x)] = Shadron. (2)

This relationship can also be explored in proton-proton
(pp) collisions, as illustrated in Fig. 1 (b). In this case,
the interaction region of the two protons is the region A,
whereas the remaining system is region B. The signature
of entanglement remains the same: the entropy recon-
structed from the final-state hadrons should be equal to
the entanglement entropy of the initial-state partons.

III. RESULTS

Let us begin by testing the proposed idea in the
electron-proton DIS using Monte Carlo simulations.
Since the probabilistic Monte Carlo event generators do
not incorporate entanglement, we do not expect relation-
ship (2) to hold. Note that the available experimental
data on hadron distributions in DIS, e.g., from Hadron-
Electron Ring Accelerator (HERA) experiments, do not
cover the kinematic regime of interest (x < 10�3) where
relation (2) applies.
First we obtain the the number of gluons, Ngluon, by

integrating the gluon distribution xG(x) over a given x
range at a chosen scale Q2. We use the leading order
Parton Distribution Function (PDF) set MSTW at the
90% C.L [9], shown in Fig. 6. The entanglement en-
tropy ln (Ngluon) predicted from the gluon distribution is
shown in open black circles with systematic uncertainties

Phys. Rev. Lett. 124 (2020) 062001

Nobel Prize in 
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Entanglement aficionados at Houston 
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Extremely talented graduate 
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Probing gluon entanglement with FoCal

17

Final state entropy can be measured from 
multiplicity distributions in pp collisions 

✓ Sh (final state) = ∑ -P(Nhadron) ln [P(Nhadron)] 

✓ SEE (initial state) = ln[xG(x)] 

FoCal can explores gluon dominated region at 
low-x via neutral particle multiplicities 

✓Non-linear PDFs predict rise and fall of SEE 

✓FoCal provides unique probes of 
thermalization mechanisms & saturation in pp
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Entanglement entropy in DIS collisions

18

Complimentary studies in DIS collisions at HERA and EIC 

✓ Probe different and overlapping x and Q2 regions compared with FoCal 

✓ World data will provide comprehensive investigation into parton entanglement…

Eur. Phys. J.C 82 (2022) 12 1147
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Summary of emergent behavior with FoCal
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Evolves as a perfect fluid 

Long range correlations test saturation 
models and QGP paradigm in small systems

Produces hadrons in equilibrium  

Key test of bridge between quantum and 
statistical physics in proton collisions
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Backup: Long range correlations
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Backup: Entanglement entropy
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Figure 2: Charged particle multiplicity distributions P(N) as a function of the number of
particles N at

p
s = 319 GeV ep collisions. Different panels correspond to different Q2 and y

bins, as indicated by the text in the figure. The phase space restrictions are given in Table 1.
Predictions from DJANGOH, RAPGAP and PYTHIA 8 are also shown. The total uncertainty
is denoted by the error bars.
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FIG. 4. Thermalized many-body systems. After the quench, the many-body state reaches a thermalized regime with
saturated entanglement entropy. (A) In contrast to the ground state, for which the Rényi entropy only weakly depends on
subsystem size, the entanglement entropy of the saturated, quenched state grows almost linearly with size. As the subsystem
size becomes comparable to the full system size, the subsystem entropy bends back to near zero, reflecting the globally pure
zero-entropy state. For small subsystems, the Rényi entropy in the quenched state is nearly equal to the corresponding thermal
entropy from the canonical thermal ensemble density matrix. (B) The mutual information IAB = SA+SB�SAB quantifies the
amount of classical (statistical) and quantum correlations between subsystems A and B. For small subsystems, the thermalized
quantum state has SA + SB ⇡ SAB due to the near volume law scaling (red arrow), leading to vanishing mutual information.
When the volume of AB approaches the system size, the mutual information will grow because SA +SB exceeds SAB . (C) We
study IAB vs the volume of AB for the ground state and the thermalized quenched state. For small system sizes, the quenched
state exhibits smaller correlations than the adiabatically prepared ground state, and is nearly vanishing. When probed on
a scale near the system size, the highly entangled quenched state exhibits much stronger correlations than the ground state.
Throughout this figure, the entanglement entropies from the last time point in Fig. 3 are averaged over all relevant partitionings
with the same subsystem volume; we also correct for the extensive entropy unrelated to entanglement [24]. All solid lines are
theory with no free parameters.

ables of a pure state and thermal state depends on the
equivalence of their reduced density matrices within the
Hilbert space sampled by the observable. The measure-
ment of Figure 5B therefore shows that observables for
the single-site Hilbert space should agree with the pre-
dictions of thermal ensembles.

We now focus on direct comparisons of observables
with various thermal ensembles, and the theoretical jus-
tification for doing so. While we have focused on the
role of entanglement entropy in producing thermal char-
acteristics, the eigenstate distribution resulting from a
quench (Figure 6A) determines the dynamics of observ-
ables, as well as their subsequent saturated values. It fol-
lows then that these populated eigenstates should clarify
the origin of thermalization, which is the goal of ETH.
The underlying explanation for ETH is that thermaliz-
ing, non-integrable systems possess excited eigenstates
that look like nearly random vectors, or, equivalently,
are described by a Hamiltonian that approximately con-
forms to random matrix theory [6, 13]. That is, for most
bases, each eigenvector projects onto each basis vector
with random quantum amplitude. The di↵use probabil-
ity distribution of the eigenstates in most bases, such as
the Fock state basis, is analogous to the chaotic dynamics
of a closed classical mechanical system passing through
every allowed point of phase space, and in the quan-
tum case this has several consequences. Surprisingly,
this chaotic assumption can be adapted to explain the
saturation of measurement observables, the agreement of
these saturated observables with thermal ensembles, and

the presence of a volume law in the entanglement en-
tropy [6, 13, 38, 39]. And so, while in classical mechan-
ical systems it is the chaos in the temporal dynamics
that leads to entropy maximization and thermalization
within thermodynamic constraints, in quantum thermal-
izing systems it is chaos in the energy eigenstates that
generates the analogous behavior in the entanglement en-
tropy, and, in turn, thermalization.

In Figure 6C,D, we compare our measurements to the
predictions of thermal ensembles that are illustrated in
Figure 6B. We also compare our results to a grand-
canonical ensemble truncated to our total atom num-
ber [24]: this ensemble perhaps most closely models how
well the many-body state can act as a reservoir for its
constituent subsystems. For each single-site and three-
site observable, we show the atom number distributions
for two di↵erent e↵ective temperatures of 3.8J and 11J ,
which are achieved by quenching to J/U = 0.64 and
J/U = 2.6, respectively. The data is averaged in the
saturated regime over times between 10 and 20 ms, and
the error bars are the standard deviation in the measured
probabilities. The consistency within the the error bars
indicates that in this temporal range our observations re-
main near the thermal predictions despite the presence of
temporal fluctuations. For the single site subsystem, the
data is in good agreement with all the ensembles consid-
ered. Despite the fact that the quenched state is in a large
distribution of eigenstates, surprisingly, we find favorable
agreement for the case of a single eigenstate ensemble:
this illustrates a key principle of ETH, which holds that

Condensed matter experiment: Bose-Einstein condensate of Rb atoms in 2D
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First we obtain the number of gluons Ngluon by integrat-

ing the gluon distribution xGðxÞ over a given rapidity y
range at a chosen scaleQ2 (integration over dy is equivalent
to dx=x due to change of variable). We use the leading-
order parton distribution function (PDF) set MSTW at the
90%C.L [8], shown Supplemental Material Fig. 3 [9]. Only
leading-order PDF sets are used in order to be self-
consistent with the theoretical prediction [6]. The entan-
glement entropy lnðNgluonÞ predicted from the gluon
distribution is shown in open black circles, with systematic
uncertainties depicted as the green band in Fig. 2. The
entropy of the final-state hadrons is shown as blue filled
circles. It is calculated from the multiplicity distribution

PðNÞ in a rapidity range determined by the x range used to
derive Ngluon. For details, see the Supplemental Material
[9]. PðNÞ is taken from ep DIS events created with the
PYTHIA6 event generator [13]. We have tested several
Monte Carlo event generators, such as PYTHIA6, PYTHIA8

[14], and DJANGO [15], and have found that they give
similar results. An example final-state hadron multiplicity
distribution is shown in Supplemental Material Fig. 4 [9].
It becomes clear from Fig. 2, that the two entropies, the

von Neumann entanglement entropy associated with the
gluon distribution lnðNgluonÞ, and the entropy reconstructed
from the final-state hadrons Shadron, are uncorrelated, as
expected for Monte Carlo models that do not possess
quantum entanglement. This correlation is absent for all
MC generators that we have studied.
With a clearly drawn baseline from the Monte Carlo

models, we can now look for entanglement in available
experimental data. Since suitable data in ep collisions do
not exist, we have to turn for our study to pp collisions
using data from the CMS experiment [16] at the LHC. As
outlined earlier, the signature of entanglement stays the
same (see also Fig. 1).
By performing an analysis similar to the one presented in

Fig. 2, we arrive at the results depicted in Fig. 3. Here we
show the comparison of the entanglement entropy pre-
dicted from the gluon distribution (three different leading-
order PDF sets are indicated by open symbols) and the
Boltzmann entropy based on the final-state hadron multi-
plicity PðNÞ distribution (in filled symbols) as a function of
x. Since x and momentum transfer scale Q2 are not directly
available in pp collisions (unlike in ep experiments), an
alternative way of comparing the entropy at similar x and
scales is used as detailed in the Supplemental Material [9].
The experimental data from CMS are shown in three
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