

WAYNE STATE UNIVERSITY

Results from JETSCAPE

Abhijit Majumder For the JETSCAPE Collaboration

Winter Workshop on Nuclear Dynamics, Puerto Vallarta, Mexico Feb 6th - 10th

Outline

- Intro to JETSCAPE
- Review of results from bulk calibration
- Simulation of jets in calibrated media
- Multi-stage jet evolution
- Focus on hard sector of jets
- Coherence in energy loss
- Preliminary results from Bayesian calibration.

What is JETSCAPE

Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope

- scientists and statisticians.
- generators and data.
- experimental data.

• NSF funded interdisciplinary collaboration of theorists, experimentalists, computer

• Building an open source framework (<u>https://github.com/JETSCAPE</u>) and modules for event generation of A-A, p-A, p-p, from top LHC to low SPS and eventually e-A.

• Building an open source Bayesian calibration framework to compare modular event

• Calibrate event generators and carry out systematic & exhaustive comparisons with

The JETSCAPE event generator A multi-stage generator for p-p and A-A collsions Modular, customizable!

JETSCAPE Event Generator

Spectra from a Heavy-Ion collision at LHC

Spectra from a Heavy-Ion collision at LHC

Spectra from a Heavy-Ion collision at LHC

The JETSCAPE event generator

Diagram by Y. Tachibana

The JETSCAPE event generator

JETSCAPE Event Generator

Diagram by Y. Tachibana

Focussing only on the bulk portion of the event generator

Viscous Fluid Dynamics for Medium

Cooper-Fry Sampling

6

Low viscosity matter produced at RHIC & LHC

Low viscosity matter produced at RHIC & LHC

Low viscosity matter produced at RHIC & LHC

$$\frac{dN}{dp_T d\phi} = \frac{dN}{dp_T} \left(1 + 2v_2 \cos(2\phi) + \dots \right)$$

A 17 dimensional calibration

D. Everett et al., Phys. Rev. C 103 (2021) 5, 054904

D. Everett et al., Phys.Rev.C 106 (2022) 6, 064901

With δf_{bulk} •••• No δf_{bulk} ALICE

The JETSCAPE event generator

JETSCAPE Event Generator

Diagram by Y. Tachibana

Incorporating the hard sector back in.

Focussing only on the bulk portion of the event generator

Viscous Fluid Dynamics for Medium

9

The JETSCAPE event generator

JETSCAPE Event Generator

Diagram by Y. Tachibana

Incorporating the hard sector back in.

Basic Picture: extra scales in energy loss

- Jet starts in a hard scattering with a virtuality $Q^2 \leq E^2$
- First few emissions are vacuum like with rare scattering/emission
- Virtuality comes down to $Q_{med}^2 \simeq \sqrt{2E\hat{q}}$ transition to many scattering/emission

• Exchanges with medium lead to excitations/medium response

Physics: DGLAP like Simulator: MATTER Physics: BDMPS/AMY like Simulator: MARTINI, LBT

Multi-scale structure in the medium

• Incoming "resolved partons" can be modeled with •HTL perturbation theory • or using QGP PDF (A. Kumar et al., PRC 101 (2020) 034908) • Or Both (MATTER + LBT)

•Soft exchanges by generic broadening (Lido, Tequila, also do hard exchanges with HTL)

• Outgoing "resolved partons" can be modeled with •HTL perturbation theory

• Or turned into energy momentum source term (liquify)

Structure of the interaction

- Start with low virtuality
- Use Debye screened potential $C(k_{\perp}) = \frac{C_R}{(2\pi)^2} \frac{g^2 T m_D^2}{k_{\perp}^2 (k_{\perp}^2 + m_D^2)}$
- Running coupling gives,
 - $\hat{q} = C\alpha_s(2ET)\alpha_s(m_D)T^3 \ln q$
- Struck partons go into medium, and excite medium. Some get clustered into jets, need to keep track of deposited energy

part:
$$\mu^2 = \sqrt{2\hat{q}E}$$

$$\frac{2}{5}$$

$$\log\left(\frac{2ET}{m_{\rm p}^2}\right)$$

13

Arnold and Xiao: arXiv: 0810.1026 [hep-ph]

How this is done currently In LBT, MARTINI, JEWEL, MATTER

Full jet carries recoil particles sampled from a Boltzmann distribution. as regular jet partons, and negative partons or holes

How this is done currently In LBT, MARTINI, JEWEL, MATTER

Full jet carries recoil particles sampled from a Boltzmann distribution. as regular jet partons, and negative partons or holes

Additionally: Soft partons can be "liquified" into source terms for a subsequent hydro simulation

Does not seem to make much difference inside jet cone

- Simulation (JETSCAPE 0.x) includes:
 - One run of smooth hydro
 - One jet from center outward (left)
 - One jet from out inward (right)
 - Jet simulated for ~10fm/c: MATTER+LBT
 - Jet constructed with partons (weak)
 - Soft partons liquified
 - Source terms developed
 - Hydro re-run
 - Jet reconstructed with hard partons and unit cell momenta (strong)
 - Unit cell particlized (Cooper-Frye), jet reclustered (Strong particlized)

Y. Tachibana, A. M., C. Shen arXiv: 2001.08321 [nucl-th]

- In general, could depend on *T*, *E*, *Q*
- Thermal recoil requires:
 - $\hat{q} = C\alpha_s(2ET)\alpha_s(m_D)T^3 \log\left(\frac{2ET}{m_D^2}\right)$
- $T_{LHC} \sim 1.25 T_{RHIC}$
- $E_{LHC} \gtrsim 10 E_{RHIC}$
- $Q_{LHC} \gtrsim 10 Q_{RHIC}$

What else can \hat{q} or $\Gamma = \int d^3k C(k)$ depend upon?

Virtuality dependence/Coherence

- Coherence arguments: $\hat{q}(Q^2 > \sqrt{2\hat{q}E}) \rightarrow 0$
- Can be calculated directly in the Higher Twist formalism.

$$\frac{dN_g}{dyd^2l_{\perp}} = \frac{\alpha_s}{2\pi}P(y)\int \frac{d^2k_{\perp}}{(2\pi)^2}\int d\zeta^- \left[\frac{2-2\cos\left(\frac{(l_{\perp})}{2q}\right)}{(l_{\perp}-k_{\perp})}\right]$$
$$\times \int d(\delta\zeta^-)d^2\zeta_{\perp}e^{-i\frac{\vec{k}_{\perp}^2}{2q^-}\delta\zeta^-+i\vec{k}_{\perp}\cdot\vec{\zeta}_{\perp}}$$
$$\times \langle P|A^{a+}\left(\zeta^-+\frac{\delta\zeta^-}{2}\right)A^{a+}\left(\zeta^--\frac{\delta\zeta^-}{2}\right)$$

The matrix element prefers $k_{\parallel} \sim T$, there is tension between 1st and 3rd

A. Kumar, A.M., C. Shen, PRC 101 (2020) 034908

Virtuality dependence/Coherence

P. Caucal, E. Iancu, A. H. Mueller, Soyez, Phys. Rev. Lett. 120 (2018) 232001. N. Armesto, H. Ma, Y. Mehtar-Tani, C. A. Salgado, JHEP 01, 109. J. Casalderrey-Solana and E. Iancu, JHEP 08, 015.

- How does the thermal distribution produce a hard gluon with $k_{\parallel} \gg T$,
- By fluctuation (evolution)
- Reduces the effective \hat{q} , as only sense

A. Kumar, A.M., C. Shen, PRC 101 (2020) 034908

sitive to
$$k_{\perp} \sim l_{\perp}$$

A change in how theory and experiment are compared

- Need full Monte-Carlo simulations that generate full events
- Observables should be built out of these (as in experiment)
- All jet calculations should be run on a calibrated hydro simulation
- Simulations should reduce to p-p without medium

Transition from MATTER to LBT at $Q_0 = Q_{SW}$

- TRENTO initial state
- Pre Calibrated 2+1D MUSIC gives background —> See talk by J. F. Paquet
- PYTHIA hard scattering
- High virtuality phase using MATTER
- Lower virtuality phase using LBT (we will replace with MARTINI, CUJET, AdS/CFT)
- Both have the same recoil setup
- Evolution starts at Q ~ E and goes down to 1 GeV
- Hadronization applied in vacuum
- Holes subtracted

Any decent event generator should reproduce p-p collisions

A. Kumar et al., 2204.01163 [hep-ph]

Leading hadrons and jets At all energies and centralities 2ET $\hat{q} = C\alpha_s(2ET)\alpha_s(m_D)T^3\log$ $\times f(Q^2)$ m_D^2

A. Kumar et al., 2204.01163 [hep-ph]

Centrality Parameters set in central Pb-Pb at 5 TeV

Note: Quenching stops at 160MeV, no quenching in the hadronic phase, Expect: low p_T to be less quenched in both jets and leading hadrons

A. Kumar et al., 2204.01163 [hep-ph]

Energy dependence at LHC 2.76 and RHIC 0.2

- Jet and leading hadron RAA show remarkable agreement with experimental data
- Across most centralities and all energies
- No re-tuning or refitting of $\hat{q}, C(k)$ or recoil systematics

A. Kumar et al., 2204.01163 [hep-ph]

24

Systematic model uncertainty

1.0

0.8

0.6

0.4

0.2

0.0

[MATTER+LBT] vs. [MATTER+MARTINI] shows almost no change (<5%)

[MATTER+AdS/CFT] also shows <5% change.

Systematic model uncertainty

[MATTER+LBT] vs. [MATTER+MARTINI] shows almost no change (<5%)

[MATTER+AdS/CFT] also shows <5% change.

[MATTER+CUJET] vs. [MATTER+MARTINI] < 5%

MATTER+ CUJET-MARTINI comparison by R. Modarresi-Yazdi & S. Shi

The dependence on E and μ not completely settled

This will probably get done in an upcoming Bayesian analysis

Y. Tachibana et al., to appear

Intrajet

Need for quenching in high Q stage

Y. Tachibana et al., 2301.02485 [hep-ph]

Need for quenching in high Q stage

Y. Tachibana et al., 2301.02485 [hep-ph]

Groomed: no soft modes!

0000

• Soft drop: getting rid of the soft response and looking at the prong structure Y. Tachibana et al., 2301.02485 [hep-ph]

R_{AA} as a function of r_g

Yellow band represents region with $Q \simeq r_g E \lesssim 1 GeV$

Calculations without Coherence show a bump

 $Q_{med}^2 \simeq \sqrt{2E\hat{q}}$ or $Q_{med} = (2E\hat{q})^{\frac{1}{4}}$

Groomed Jet angularities

 $\lambda =$ *i*∈*Groomed*

- Several other similar
- JETSCAPE (MATTER

 $z_i \theta_i^{\alpha}$

• Strong constraints on the perturbative part of jet

groomed observables

+LBT) does very well.

Azimuthal anisotropy

- Note: we haven't played with start and stop times (observation by C. Andres et al, start time important for v_2)
- In the JETSCAPE simulations, hydrodynamics starts around 1fm/c. (Free streaming prior)
- Also with new IP-Glasma, medium has primordial v₂
- Jet modification in the hadronic medium still not known

Coincidence with hadrons

• Results from MATTER+LBT runs use for ratio of difference of triggered jet distribution per trigger.

ALI-PREL-505591

ALI-PREL-517451

Photon Trigger

• Higher statistics runs with the exact same parameters as for jets.

C. Sirimanna, to appear.

• D meson R_{AA} with identical parameters

W. Fan, *et al.* e-Print: 2208.00983 [nucl-th]

Jet Shape: more dependence on soft modes

- Jet shape function:
- Requires 2-stage hydro simulations (hydro+jet+hydro) for response outside jet.

See talk by Xin-Nian Wang

• This depends more on soft non-perturbative modes, especially at larger angles

Jet Shape: more dependence on soft modes

- Jet shape function:
- Requires 2-stage hydro simulations (hydro+jet+hydro) for response outside jet.

See talk by Xin-Nian Wang

• This depends more on soft non-perturbative modes, especially at larger angles

Soft jet partons move far away from the jet Need to deposit this as an $\delta T^{\mu\nu}$ source in the fluid

This requires to run one hydro simulation per hard event.

How can we make this even more rigorous?

Or find the best distribution of parameters, for a given theory

Bayesian with jets and hadrons at 0.2, 2.76 & 5.02TeV

4 parameters used

All of this is still a pre-requisite

- Now that a consistent framework exits we can compare extractions from data with Lattice QCD
- With both of these conditions met, we can now explore possibilities for the QGP-DOF.
- And test these in elaborate Bayesian analysis.
- Will require massive improvements on the Bayesian front.

Kumar et al. PRD 106 (2022) 3, 034505

This is where we are now

- We added one more parameter Q_0 , transition between high and low virtuality.
- Multi-stage set up seems to able to explain almost all the data
- The Bayesian calibration is being conducted as we speak
- at $\mu < Q_0$, and gradual weakening for $\mu > Q_0$
- modeling!

• Will rigorously test picture of 2-stage energy loss, with HTL based kernel

• A portion of the quenching will always be non-perturbative and subject to

- All simulations carried out on a calibrated fluid profile
- All simulations reproduce p-p on removal of medium
- All simulations have a consistent recoil and \hat{q} incorporation
- The multi-stage (or scale dependent jet modification) seems to be able to describe
 - Jet and leading hadrons simultaneously
 - Centrality dependence
 - Collision energy dependence
 - Intra jet observables
 - Coincidence with hadrons and photons
 - Heavy quarks
 - Azimuthal anisotropy
 - R dependence of R_{AA} (sort of)
- Minor effects still being studied in jet anisotropy, jet shapes etc.

• Is the medium made of quasi-particles or not? We are getting closer to answering this question.

42

• JETSCAPE is moving towards p-A, low energy A-A and e-A

Next Steps

XSCAPE

Combining ISR with MPI correlated with an initial state and a hydro

Thanks to my collaborators

