

Strangeness production in NA61/SHINE

Wojciech Bryliński

for the NA61/SHINE Collaboration *Warsaw University of Technology*

Wojciech Bryliński (WUT)

NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose spectrometer optimized to study hadron production in different types of collisions: p+p, p+A, A+A.

CERN Prévessin

ALICE

S--INE

SUISSE

ERAN

CMS

NA61/SHINE detector

- coverage of the full forward hemisphere, down to $p_T = 0 \text{ GeV}/c$
- ion (Be, Ar, Xe, Pb) and hadron (π , K, p) beams

Wojciech Bryliński (WUT)

< □ > < 同

NA61/SHINE strong interactions program

NA61/SHINE explores the phase diagram of strongly interacting matter by performing a 2D scan in collision energy and system size.

Wojciech Bryliński (WUT)

S.INE

Onset of deconfinement and onset of fireball

 $0 \frac{1}{1} \frac{\text{AGS SPS}}{1} \frac{\text{RHC}}{10^2} \frac{\text{LHC}}{10^4} \frac{1}{\sqrt{s_{NN}}} (\text{GeV})$

 K^+/π^+ (y ≈ 0)

0.2

0.1

• Be+Be close to p+p in K^+/π^+

${\rm K}^+/\pi^+$ ratio and inverse slope parameter

WORLD

p+p Pb+Pb

NA61/SHINE

p+p Be+Be

- $\bullet\,$ Plateau visible in p+p, Be+Be and Ar+Sc
- Ar+Sc significantly above Be+Be

$p+p \approx Be+Be \neq Ar+Sc < Pb+Pb$

 ${\rm K}^+/\pi^+$ and ${\it T}$ vs system size at 150A GeV/c

• **Onset of fireball** — rapid change of observables when going from small systems (p+p , Be+Be) to intermediate (Ar+Sc) and large ones (Pb+Pb).

• None of the models reproduces neither K^+/π^+ ratio nor T for whole $\langle W \rangle$ range.

PHSD: Eur.Phys.J.A 56 (2020) 9, 223, arXiv:1908.00451 and private communication; SMASH: J.Phys.G 47 (2020) 6, 065101 and private communication; UrQMD and HRG: Phys. Rev. C99 (2019) 3, 034909 SMES: Acta Phys. Polon. B46 (2015) 10, 1991 - recalculated

p+p: Eur. Phys. J. C77 (2017) 10, 671 Be+Be: Eur. Phys. J. C81 (2021) 1, 73 Ar+Sc: NA61/SHINE preliminary Pb+Pb: Phys. Rev. C66, 054902 (2002)

Sac

-INF

K^+/π^+ ratio and inverse slope parameter in p+p

Phys.Rev.C 102 (2020) 1, 011901

- Rates of increase of K^+/π^+ and T change sharply in p+p collisions at SPS energies
- Models assuming change from resonances to string production mechanism follow similar trend

Uniqueness of ion results from NA61/SHINE

Sac

Charged/neutral kaon-ratio puzzle

Wojciech Bryliński (WUT)

(E) E| = 少へで 07.02.2023 10/23

< A

K_s^0 production in Ar+Sc at 75A GeV/c

- Mean multiplicity: $\langle K_S^0
 angle = 6.25 \pm 0.09(stat) \pm 0.73(sys)$
- Good agreement with EPOS predictions

 K^0_s – comparison with K^+ and K^-

Around 25% difference in forward rapidity.

Around 25% difference for the whole p_T range.

K_s^0 – comparison with K⁺ and K⁻ – summary

CERES: M. Kalisky. PhD thesis 2007. https://cds.cern.ch/record/1497739 STAR BES: Phys. Rev. C 102 (2020) no.3, 034909 Phys. Rev. C 96 (2017) no.4, 044904 STAR: Phys. Lett. B 595 (2004), 143-150 Phys. Rev. C 83 (2011), 024901 Phys. Rev. Lett. 108 (2012), 072301 Phys. Rev. C 79 (2009), 034909 ALICE: Phys. Rev. Lett. 111 (2013), 222301 Phys. Rev. C 88 (2013), 044910 AGS and NA35: Z. Phys. C 71 (1996), 55-64 Z. Phys. C 64 (1994), 195-207 Z. Phys. C 58 (1993), 367-374 NA49: C. Strabel, PhD thesis 2006. https://edms.cern.ch/document/2693436/1 HADES: H. Schuldes, PhD thesis 2016. https://publikationen.ub.uni-frankfurt.de/ frontdoor/index/index/docId/42489 Phys. Lett. B 793 (2019), 457-463 Phys.Rev.C 80 (2009) 025209 Phys.Rev.C 82 (2010) 044907 FOPI: Eur.Phys.J.A 52 (2016) 6, 177 Phys.Rev.C 81 (2010) 061902

▲□▶▲□▶▲□▶▲□▶ 三日 のへ⊙

Comparison of isospin asymmetry for D mesons and kaons

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m = 1869.66 \pm 0.05$ MeV Mean life $\tau = (1033 \pm 5) \times 10^{-15}$ s $c\tau = 309.8 \ \mu m$ **D**⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

 $\begin{array}{l} {\rm Mass} \ m = 1864.84 \pm 0.05 \ {\rm MeV} \\ {m_{D^{\pm}} - m_{D^0}} = 4.822 \pm 0.015 \ {\rm MeV} \\ {\rm Mean} \ {\rm life} \ \tau = (410.3 \pm 1.0) \times 10^{-15} \ {\rm s} \\ {c} \tau = 123.01 \ \mu {\rm m} \end{array}$

Mass difference: $\Delta m \approx 5 \text{ MeV}$ Multiplicity: $\langle D^+ + D^- \rangle < \langle D^0 + \overline{D^0} \rangle$

$$I(J^P) = rac{1}{2}(0^-)$$

 $\begin{array}{ll} \mbox{Mass }m = 493.677 \pm 0.016 \mbox{ MeV } [a] & (\mbox{S} = 2.8) \\ \mbox{Mean life } \tau = (1.2380 \pm 0.0020) \times 10^{-8} \mbox{ s} & (\mbox{S} = 1.8) \\ \mbox{$c\tau = 3.711$ m$} \end{array}$

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

 $\begin{array}{l} 50\% \ {\rm K}_S, \, 50\% \ {\rm K}_L \\ {\rm Mass} \ m = 497.611 \pm 0.013 \ {\rm MeV} \quad {\rm (S=1.2)} \\ m_{{\rm K}^0} - m_{{\rm K}^\pm} = 3.934 \pm 0.020 \ {\rm MeV} \quad {\rm (S=1.6)} \end{array}$

Mass difference: $\Delta m \approx -4 \text{ MeV}$ Multiplicity: $\langle K^+ + K^- \rangle > \langle K^0 + \overline{K^0} \rangle$

Isospin asymmetry for D mesons

D[±]

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m = 1869.66 \pm 0.05$ MeV Mean life $\tau = (1033 \pm 5) \times 10^{-15}$ s $c\tau = 309.8 \ \mu m$ **D**⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

 $\begin{array}{l} {\rm Mass} \ m = 1864.84 \pm 0.05 \ {\rm MeV} \\ {m_{D^{\pm}} - m_{D^0} = 4.822 \pm 0.015 \ {\rm MeV} } \\ {\rm Mean} \ {\rm life} \ \tau = (410.3 \pm 1.0) \times 10^{-15} \ {\rm s} \\ {c} \tau = 123.01 \ \mu {\rm m} \end{array}$

Mass difference: $\Delta m \approx 5 \text{ MeV}$ Multiplicity: $(D^+ + D^-) < (D^0 + \overline{D^0})$

$ \begin{array}{l} D^{\bullet}(2007)^{0} & l(J^{D}) = \frac{1}{2}(1^{-}) \\ l, J, P \mbox{ ned confirmation.} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			$ \begin{array}{ c c c c c } \hline D^{\bullet}(2010)^{\pm} & l(J^{P}) = \frac{1}{2}(1^{-}) \\ \hline M_{\rm Mass} \ m = 2010.26 \pm 0.05 \ {\rm MeV} \\ \hline m_{D^{\circ}(2010)^{+}} - m_{D^{+}} = 140.603 \pm 0.015 \ {\rm MeV} \\ \hline m_{D^{\circ}(2010)^{+}} - m_{D^{\circ}} = 145.4228 \pm 0.0017 \ {\rm MeV} \\ \hline {\rm Full} \ {\rm wordh } \Gamma = 83.4 \pm 1.8 \ {\rm keV} \end{array} $		
D*(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	$D^*(2010)^-$ modes are cha	rge conjugates of the modes below	v.
$D^{0}\pi^{0}$	(64.7 ±0.9)%	43	D*(2010) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 \gamma$	(35.3 ±0.9) %	137	$D^{0}\pi^{+}$	(67.7±0.5) %	39
$D^0 e^+ e^-$	$(3.91\pm0.33)\times10^{-3}$	137	$D^{+}\pi^{0}$	(207+05)%	29

• Simple explanation according to Adv.Ser.Direct.High Energy Phys. 15 (1998) 609-706: "A simple model for estimating the charged-to-neutral D cross section ratio is the following. One assumes isospin invariance in the $c \rightarrow D$ and $c \rightarrow D^*$ transition. Furthermore, one assumes that the D cross section is one third of the D* cross section, due to the counting of polarization states. Using then the published values of the D* $\rightarrow D$ branching ratios [R.M. Barnett et al., Phys. Rev. D54(1996)1], the result is roughly $\frac{\sigma(D^+)}{\sigma(D^0)} \approx 0.22.23$ is $\sigma < C$ Wojciech Bryliński (WUT)

Isospin asymmetry for D mesons

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m = 1869.66 \pm 0.05$ MeV Mean life $\tau = (1033 \pm 5) \times 10^{-15}$ s $c\tau = 309.8 \ \mu m$

Fraction (Γ_2/Γ)

 $(64.7 \pm 0.9)\%$

(35.3 ±0.9)%

 $(3.91\pm0.33)\times10^{-3}$

D⁰

$$I(J^P) = \tfrac{1}{2}(0^-)$$

 $\begin{array}{l} {\rm Mass} \ m = 1864.84 \pm 0.05 \ {\rm MeV} \\ {m_{D^{\pm}} - m_{D^0}} = 4.822 \pm 0.015 \ {\rm MeV} \\ {\rm Mean} \ {\rm life} \ \tau = (410.3 \pm 1.0) \times 10^{-15} \ {\rm s} \\ {c}\tau = 123.01 \ {\mu}{\rm m} \end{array}$

Mass difference: $\Delta m \approx 5 \text{ MeV}$ Multiplicity: $\langle D^+ + D^- \rangle < \langle D^0 + \overline{D^0} \rangle$

D*(2007) ⁰	$I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation.
Mass m = 2006.8	$5 \pm 0.05 \text{ MeV}$ (S = 1.1)
$m_{D^{*0}} - m_{D^0} = 1$	$42.014 \pm 0.030 \text{ MeV} (S = 1.5)$
Full width $\Gamma < 2$.1 MeV, CL = 90%

D*(2010) [±]	$I(J^P) = \frac{1}{2}(1^-)$
Mas	$m = 2010.26 \pm 0.05 \text{ MeV}$
m _D .	$(2010)^+ - m_{D^+} = 140.603 \pm 0.015 \text{ MeV}$
Full	$(2010)^+ - m_{D^0} = 145.4258 \pm 0.0017$ MeV width $\Gamma = 83.4 \pm 1.8$ keV

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

D*(2010) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$D^{0}\pi^{+}$	(67.7±0.5) %	39	
$D^{+}\pi^{0}$	(30.7±0.5) %	38	

- $m(D^+) + m(\pi^-) = 1869.66 \text{ MeV} + 139.57039 \text{ MeV} = 2009.23039 \text{ MeV} > m(D^*(2007)^0) \text{decay not possible}$
- $m(D^0) + m(\pi^0) = 1864.84 \text{ MeV} + 134.9768 \text{ MeV} = 1999.8168 \text{ MeV} < m(D^*(2007)^0)$

p (MeV/c)

43

137

137

D*(2007)0 DECAY MODES

 $D^{0} = 0$

 $D^0 \sim$

D0 0+ 0-

くロット (雪) (ヨ) (モ) (ヨ) (ロ)

Isospin asymmetry for kaons

 $I(J^P) = \frac{1}{2}(0^-)$

$$\begin{split} \text{Mass } m &= 493.677 \pm 0.016 \ \text{MeV} \ ^{[a]} \quad (\text{S} = 2.8) \\ \text{Mean life } \tau &= (1.2380 \pm 0.0020) \times 10^{-8} \ \text{s} \quad (\text{S} = 1.8) \\ c\tau &= 3.711 \ \text{m} \end{split}$$

K⁰ $I(J^P) = \frac{1}{2}(0^-)$

 $\begin{array}{l} \text{Mass } m = 497.611 \pm 0.013 \ \text{MeV} \quad (\text{S} = 1.2) \\ m_{K^0} - m_{K^\pm} = 3.934 \pm 0.020 \ \text{MeV} \quad (\text{S} = 1.6) \end{array}$

Mass difference: $\Delta m \approx -4 \text{ MeV}$ Multiplicity: $\langle K^+ + K^- \rangle > \langle K^0 + \overline{K^0} \rangle$

- For any state going to kaons, there is always a bit more K⁺ and K⁻ because of mass difference.
- But masses of kaon resonances are much larger than sum of decay products (the higher mass of decaying resonance, the smaller difference between charged and neutral kaons).
- First preliminary estimation using statistical model gives the asymmetry < 5% (thanks to Francesco Giacosa).

(Multi-)strange hadron production in p+p interactions at $\sqrt{s}=17.3~\text{GeV}$

K_{S}^{0} meson production in p+p interactions

- EPJC 82, 96, 2022 (158A GeV/c) and preliminary results (80A GeV/c).
- New high-precision measurements of K_{S}^{0} in p+p interactions at 80A and 158A GeV/c.

0.00 v ∈ (0.0:0.5) 0.04 0.6 T=(173±3) MeV 0.02 0.4 0.00

y ∈ (-0.5;0.0)

T=(175±6) MeV

n+n at 158 GeV/c

 $K^*(892)^0$ meson production in p+p interactions

<mark>d⁷n</mark> ((GeV/c)⁻¹)

0.04 K*(892)0

0.02

NA61/SHINE

K*(892)⁰)/(K⁺ (K*(892)⁰)/(K), p+p 0.8 0.2 0.2

10

(K*(892)⁰)/(K*) p+p

15

√S_{NN} (GeV)

NA61/SHINE

10

10

Eur.Phys.J.C 80 (2020) 5, 460

Eur.Phys.J.C 82 (2022) 4, 322

- Results on $K^*(892)^0$ mass and width were included in PDG
- time between chemical and kinetic freezeouts at 158 GeV/cestimated to be $\Delta t \sim 5.3 fm/c$
- $\Delta t_{\rm SPS} > \Delta t_{\rm RHIC} \rightarrow$ lifetime of hadronic phase longer at SPS and/or regeneration more important at RHIC energies

 $\langle N_{\mu} \rangle$

HINE

-2

• The only existing results on Ξ^- and $\overline{\Xi}^+$ production in SPS energy range in p+p interactions

1.5

p_ (GeV/c)

• Strong suppression of $\overline{\Xi}^+$: $\langle \overline{\Xi}^+ \rangle / \langle \Xi^- \rangle = 0.24 \pm 0.01 \pm 0.05$

0.5

• Transport models fail to describe the results on Ξ production in p+p collisions

Eur. Phys. J.C 80 (2020) 9, 833. Erratum: Eur. Phys. J.C 82 (2022) 2, 174

Woiciech Bryliński (WUT)

p_(GeV/c)

$\Xi^{0}(1530)$ and $\Xi^{0}(1530)$ production in p+p interactions at 158 GeV/c sine

Eur.Phys.J.C 81 (2021) 10, 911

- The first results on $\Xi^0(1530)$ production in p+p in SPS energy range
- The second result on Ξ⁰(1530) production in p+p (other measurement was provided by ALICE at 7 TeV Eur.Phys.J.C 75 (2015) 1)
- Suppression of $\bar{\Xi}^0(1530)$: $\langle \bar{\Xi}^0(1530) \rangle / \langle \Xi^0(1530) \rangle \approx 0.40 \pm 0.03 \pm 0.05$

Summary

- NA61/SHINE 2D scan in system size and energy is completed.
- NA61/SHINE data delivered rich information related to the onset of deconfinement.
- Unexpected system size dependence was revealed onset of fireball.
- Observation of $\frac{K^{+/-}}{K_{s}^{0}}$ ratio to be significantly higher than 1 in Ar+Sc at 75A GeV/c unexpected isospin symmetry violation.
- Unique and precise results on strange baryons production in p+p interactions.

Have a SHINY day!

This work was supported by the Polish Ministry of Science and Higher Education (grant WUT ID-UB), the Norwegian Financial Mechanism 2014–2021 (grant 2019/34/H/ST2/00585), the Polish Minister of Education and Science (contract No. 2021/WK/10).

Wojciech Bryliński (WUT)

07.02.2023 23 / 23

Backup

Wojciech Bryliński (WUT)

07.02.2023 1 / 11

K_s^0 production in Ar+Sc at 75A GeV/c

 K^0

primar

vertex

- Reconstruction based on decay topology
- ${\sf K}^0_s$ decays into π^+ and π^- with BRpprox69.2%

decay

• A set of quality cuts is imposed onto K_s^0 candidates to improve SNR

 π^+

TT

• Lorentz function is used to describe signal

· 글 · · · 글 · · 크 · ·

$K^*(892)^0$ meson production in p+p interactions

- $K^*(892)^0$ was reconstructed in $K^* o K^+ + \pi^-$ channel
- The resonance yield is affected by regeneration and rescattering processes
- We have observable sensitive to time between chemical and kinetic freezouts Δt :

$$\frac{K^*}{K^{\pm}}\Big|_{kinetic} = \frac{K^*}{K^{\pm}}\Big|_{chemical} \cdot e^{-\Delta t/\tau}, \quad \tau = 4.17 \text{ fm/c}$$

π

- Reconstruction based on decay topology
- Ξ^{\pm} decays into π^{\pm} and $\Lambda(\bar{\Lambda})$ with BR \approx 99.9%
- A set of quality cuts is imposed onto Ξ candidates to improve SNR
- Breit-Wigner function is used to describe signal

m=1322±1 MeV =3.83 ±0.03 MeV

1.3 1.32

1 26

600F intries

500

300 200

100

1.34 1.36

 $M(\Lambda\pi^{-})$ (GeV)

1.38

4/11

$\Xi^{0}(1530)$ and $\Xi^{0}(1530)$ production in p+p interactions at 158 GeV/c since

- Reconstruction based on decay topology
- $\Xi^0(1530)$ decays into Ξ and π exclusively
- A set of quality cuts is imposed onto Ξ candidates to improve SNR
- Breit-Wigner function is used to describe signal

HRG model and p+p data

Eur.Phys.J.C 81 (2021) 10, 911

Fit done with different variants of HRG (THERMAL_FIST1.3):

- Canonical Ensemble with fixed $\gamma_s = 1$
- Canonical Ensemble with fitted γ_s

- \bullet Statistical model fails when strangeness saturation parameter γ_{s} is fixed
- The fit with free γ_{s} finds $\gamma_{s}=0.434\pm0.028$
- Disagreement between model predictions and data is slightly reduced by allowing for out-of-equilibrium strangeness production

Onset of deconfinement

 $\label{eq:strangeness} \begin{array}{l} \mbox{Strangeness} - \mbox{key property for key goal of NA61/SHINE} \\ \mbox{produced strangeness} - \mbox{number of pairs of strange and anti-strange particles} \\ \mbox{Phase Transition: } T_c \approx 150 \mbox{ MeV} \end{array}$

confined matter	\longrightarrow	quark-gluon plasma
K mesons	\longrightarrow	(anti-)strange quarks
$g_{K}=4$	\longrightarrow	$g_s = 12$
$2M pprox 2 \cdot 500 { m MeV}$	\longrightarrow	$2mpprox 2\cdot 100$ MeV

Thanks to these properties of strange mesons and strange quarks the strangeness production is sensitive to phase transition!

Statistical Model of Early Stage

Gaździcki, Gorenstein, Acta Phys.Polon. B30 (1999) 2705

07.02.2023 8 / 11

Statistical Model of Early Stage

- Crossing the phase transition leads to a decrease of the strange/non-strange particle ratio
 - the horn-like structure

▶ ∢ ⊒

Onset of fireball – measurements after LS3

SHINE

K^{\pm} spectra parametrisation

- In order to obtain the dn/dy yields, the data is extrapolated beyond the detector acceptance
- Exponential dependence in p_T is assumed:

$$f(p_T) = S \cdot p_T \cdot \exp\left(-\frac{\sqrt{p_T^2 + m_K^2} - m_K}{T}\right)$$

• To obtain mean multiplicity of produced particles rapidity distribution is fitted with following function:

$$f_{fit}(y) = \frac{A}{\sigma_0 \sqrt{2\pi}} exp\left(-\frac{(y-y_0)^2}{2\sigma_0^2}\right) + \frac{A}{\sigma_0 \sqrt{2\pi}} exp\left(-\frac{(y+y_0)^2}{2\sigma_0^2}\right)$$

• A, y_0 and σ_0 parameters are fitted