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Introduction to “hedgehog” events

- The UA1 and CDF collaborations have reported the
presence of events with a very extended structure of
low momentum tracks filling in a uniform way the
pseudorapidity-azimuth (n-¢) phase space.

» First dedicated analysis of highest E; events seen in
the UA1 detector at /s = 630 GeV (with isotropic
events with E; ~ 210 GeV) - no evidence for non-QCD
mechanism for these events.

» Unusual events observed in ppbar collisions at /s =
1.8 TeV by CDF’s Run 1 detector with more than 60
charged particles and ~320 GeV of transverse energy [~ e
(E;) - called “hedgehog” events by C. Quigg. CDF (1994)
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- Taken for granted that in these events with high E;
perturbative aspects of QCD dominate the event
properties: multi-jet events.



https://www.sif.it/riviste/sif/ncc/econtents/2010/033/05/article/5
Zeitschrift für Physik C Particles and Fields volume 36, pages33–43 (1987)

Characterisation of high-multiplicity events

» Attempts to characterise these high-multiplicity events: use of event shapes, i.e.
using transverse sphericity: z :
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* Both ALICE and ATLAS observed an under-estimation of isotropic events by MC
generators at high charged multiplicity (N, = 30)

v" Suggest that a very active underlying event (UE) is needed by the MC event generators
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in order to explain these high-multiplicity events
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https://link.springer.com/article/10.1140/epjc/s10052-012-2124-9
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.032004

Characterisation of high-multiplicity events :4

» Attempts to characterise these high-multiplicity events: use of event shapes, i.e.
using transverse sphericity: . oAz o _ Z 1 [ P, Pr..izpy,s]
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* Both ALICE and ATLAS observed an under-estimation of isotropic events by MC
generators at high charged multiplicity (N, = 30)

v" Suggest that a very active underlying event (UE) is needed by the MC event generators
in order to explain these high-multiplicity events

* ALICE measurement shows that <p;> as a function of N, in isotropic events was
found to be smaller than that measured in jet-like events, and that for jet-like
events, the <p;> is over-estimated by PYTHIA 6 and 8 models.
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https://link.springer.com/article/10.1140/epjc/s10052-019-7350-y

Characterisation of high-multiplicity events :5

» Attempts to characterise these high-multiplicity events: use of event shapes, i.e.

using transverse sphericity: . oAz o _ Z 1 [ P, ;wr,épy,a-]
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* Both ALICE and ATLAS observed an under-estimation of isotropic events by MC

generators at high charged multiplicity (N, = 30)

v" Suggest that a very active underlying event (UE) is needed by the MC event generators
in order to explain these high-multiplicity events

* ALICE measurement shows that <p;> as a function of N, in isotropic events was
found to be smaller than that measured in jet-like events, and that for jet-like
events, the <p;> is over-estimated by PYTHIA 6 and 8 models.

* Recently, a new event shape parameter, flattenicity, was proposed [

] that allows one to identify and
characterise high-multiplicity events with a quasi-isotropic distribution in a wide
pseudorapidity range in proton-proton collisions.

* MC event generators are able to model “hedgehog” events, which opens the
possibility to study their properties and find a potential way to experimentally
trigger these events.


https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6832

Calculating flattenicity

* The idea: find out how uniform the p; of tracks is distributed in a given event!

I'\.IWI =24,N =389

pp@13 TeV, Pythia 8.307 (Monash)

P, [GeV]




Calculating flattenicity

* Build 8 x 10 grid in (n-¢) space:

pp@13 TeV, Pythia 8.307 (Monash) =24,N =389

N
MPI




Calculating flattenicity

* Build 8 x 10 grid in (n-¢) space:

pp@13 TeV, Pythia 8.307 (Monash) N o= 24, Nch =389

M

P, [GeV]

In each cell, the average
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tratnS\l/e{SE mog;lelntum 1S 8 o Ny =24, N, =389, X p_(tracks) = 286.51 [GeV]
calculated: 0
pT £ s G =252, <p>*'>=3.58,p= 0.70
= '
6

w ES w
Illlll||||||||IIII|IIII|IIII|IIII|IIII
| —

|

10 15 25
p;ell [Gev]

o
[&)]



Calculating flattenicity

* Build 8 x 10 grid in (n-¢) space:

pp@13 TeV, Pythia 8.307 (Monash)

P, [GeV]

In each cell, the average
transverse momlelntum is
calculated: P

 Event-by-event, thﬁ relative standard
deviation of the p7- - distribution is

obtained - flattenicity.

« Events with isotropic distribution of
particles (“hedgehogs”) are expected to
have a small value of flattenicity (p < 1).
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Calculating flattenicity :10

* Build 8 x 10 grid in (n-¢) space:

pp@13 TeV, Pythia 8.307 (Monash) =1,N, =130

N
MPI

P, [GeV]

\ In each cell, the average

trinsregsz.moégﬁntum is fé 18;_ Ny =1, N, =130, Zp_(tracks) = 252.80 [GeV]
calcutated. pT 2 ef G =9.20, <p™> = 3.16fp = 2.91
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deviation of the p7- - distribution is :j P = < Cell>
. P 8H
obtained - flattenicity. i pT
6
 Events with jet-like structures are 4
expected to have larger values of p. Z?UL ﬁ | T
00_""I "'1|0""15 B




Analysing flattenicity vs N, and vs Ny,

N

pp Vs = 13 TeV, Pythia 8.210 (Monash), p;“ >0.15 GeV, n™ < 4.0 pp Vs = 13 TeV, Pythia 8.210 (Monash), p:" >0.15 GeV, ™| <4.0
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* Pythia 8.3 pp@13 TeV events with minimum-bias (SoftQCD:nonDiffractive) settings,
Monash 2013 tune, with |n| <4 and min p; (chgd. particles) of 0.15 GeV.

* At low N, the flattenicity distribution is very wide, <p> is signicantly above unity.

* <p> goes below unity with N, > 200, and for very high values of N, flattenicity
approches 0.5 as the particles get to be quite uniformly distributed in the n-¢ space.

- Similar correlation between flatenicity and the number of multiparton interactions.



Analysing flattenicity vs N, flz

pp s = 13 TeV, Pythia 8. 210 (Monash), p" > 0.15 GeV, [n| < 4.0
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» Almost all of the results rely on “means” and “averages” of the distributions, yet
the interesting (and by definition rare) effects lie on the “outliers”!

* Flattenicity opens a new way to study pp collisions and analyse those outliers:
looking for hedgehog events!



Analysing flattenicity vs N,
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Analysing flattenicity vs N, 4

mpelas ] 3 TeV, Pythia 8.210 (Monash) Py >0.15 GeV, [n™| <4.0
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Analysing flattenicity vs N, 15
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Analysing flattenicity vs N,
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Analysing flattenicity vs N, 17

pp s = 13 TeV, Pythia 8. 210 (Monash), p" > 0.15 GeV, [n| < 4.0
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Analysing flattenicity vs N

Flatenicity

pp Vs = 13 TeV, Pythia 8.307 (Monash), > 1 charged, p,>0.15GeV, [ <4.0
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* As the jet energy decreases, the interpretation of the event topology becomes more
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difficult and the definition of a “jet” becomes arbitrary.

- Considering that events with high p; are consistent with having a substantial
component of QCD jets, the 3 GeV cut represents the lowest reasonable limit below
which any attempt to separe experimentally soft production fluctuations from hard

scattering would be unreliable.
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Analysing flattenicity vs N

jets
pp Vs=13 TeV, Pythia 8.307 (Monash), = 1 charged, p_ > 0.15 GeV, n| <4.0
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* As the jet energy decreases, the interpretation of the event topology becomes more
difficult and the definition of a “jet” becomes arbitrary.

- Considering that events with high p; are consistent with having a substantial
component of QCD jets, the 3 GeV cut represents the lowest reasonable limit below
which any attempt to separe experimentally soft production fluctuations from hard
scattering would be unreliable.

* In the low flattenicity regime, we are able to select hedgehog events with high
multiplicity and with no jet production (~0.1% of all events).
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Analysing flattenicity vs N 20
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Analysing flattenicity vs leading chgd. particle p; :21

pp \s=13 TeV, Pythia 8.307 (Monash), P> 0.15 GeV, |n| < 4.0;
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* Leading charged particle p; shows a
prominent feature: <p> has a dip around
3-5 GeV, while events with lower
multiplicity show a dip at lower values

* At higher N, <p> shows a trend
towards higher p; values

* A step towards studying the underlying
1 event by using the leading particle p;

F —N, > 200




Analysing flattenicity vs chgd. particle pr and p/m ratio

- We study the p (particle) as well as the proton-to-pion ratio in 0.15 to 5 GeV
interval by selecting events with p <1 and p > 2. For events with p < 1, we also
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select jetty events (=210 jets with min p;(jet) = 5 GeV) and events with no jets at all.

T E ke,
Q - 3 ©
LT i §2,
= = — —_—
| - [ . | -
2 F E z
E=p =
225
i=] 2
® 15 E
o o
0.75
ok
pp Vs = 13 TeV/, Pythia 8.307 (Monash), P> 0.15GeV, In| <4.0 pp 1s = 13 TeV, Pythia 8.307 (Monash), P> 0.15 GeV. In| <4.0
L e e e e - e e
- J s E J
—_— il - = il ]
0 0.35- ] /.IT = O 3 s 0.35: ]
= 1 e JdE L 1
03_  iE NN EEEEEEEEEEEEENEENEN N Ilcfgl -------------------------------------------- |
+l:: 0.25: _: 0.25:— \
— 0.2F = 0.2 =
T— E 7 C 7
= E 3 E 3
Ig_ 015F 3 015F 3
0,1: —: 0,1:— —_p =10, NJE|S =0 —:
S— 0.05F — 0.05 PE1ON_ =10 —
O:LII|ILIII L\lIIIJ III llllJIJ\IIJJ\IIIII: O:l II\ lll llLIIlJ I lllllll | JIII I:
0 0.5 1 15 2 25 3 3.5 4.5 5 0 0.5 1 1.5 2 25 3 3.5 4 45 5

pr (chgd. particle) [GeV]

)



Analysing very atypical events :23

* Flattenicity allows one to find quite atypical (and rare 1/100M) events:

* i.e. high chgd. multiplicities (>300) and low number of hard-scatterings (MPI=3)

pp@13 TeV, Pythia 8.307 (Monash), pf = 0.15 GeV Flatenicity = 4.32, Num =3, Nch = 452, Nm =12

p, [GeV]

* In some events we see one very high p; charged particle (around which a jet is
usually build, and particle p; divided by jet p; approaches unity!) .

 Recoil jets are usually produced opposite in ¢, and fragment into several particles.

* Nor the partonic hard-scattering p;, nor the additional multiparton interactions p+
are high enough nor match the reconstructed energy for these events.

 Are we looking at the limit of fragmentation and/or ISR/FSR emissions?

* We are identifying an experimental way to find these events, and it would be a
perfect place to study data and tune our generators!



Conclusions :24

- Hedgehog events have never been seriously studied in pp collisions at the LHC.
These events are “rare” - but as rare as a Z-boson production!

Selection Probability
p<1 4 x107?
p <0.75, Ny, > 100, N;. ;=0 2x10°
p<0.75, N, > 400 6x 108

* Flattenicity - the new event structure parameter - allows one to identify the
hedgehog events and is more detailed than sphericity/spherocity/RT, as one can
observe the evolution of events from jetty to hedgehog type.

- We are able to identify different classes of hedgehog events: those with high jet
multiplicity (jetty) and with no jet production.

 Events with low flattenicity show an enhancement in the proton-to-pion ratio
compared to those with high flattenicity.

» Studying these events may shed light to the search for the “energy re-distribution”
effect in pp collisions.

* Next step: look for hedgehog events in datal
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Transverse sphericity

sphericity is measured in the acceptance || < 0.8, for events with more than two
tracks (pr > 0.5 GeV/c). The observable is defined as follows:

2\
= 2 1
NN (1)

where: A\{ > Ay are the eigenvalues of the transverse momentum matrix:

St

SL — 1 Z 1 ( paziz PxiPyi
Y ipTi 7 pri \ Pailyi py-iz

1

By construction, the limits of the variable are related to specific configurations in the transverse plane

st=(1 =0 “pencil-like” limit
T=\V =1 “isotropic” limit
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https://arxiv.org/abs/1110.2278

