Measuring the properties of Quark Gluon Plasma with Unified Balance Functions

Wayne State University
Feb 8, 2023
Puerto Vallarta, Mexico

Work in collaboration w/ Victor Gonzalez Sumit Basu
Ana Marín Pedro Ladrón Brian Hanley

This talk based on recent papers:

- Accounting for non-vanishing net-charge with unified balance functions, Phys.Rev.C 107 (2023) 1, 014902
- Effects of Non-Vanishing Net Charge in Balance Functions, e-Print: 2211.10770 [hep-ph]
- Work in progress

Outline

« Why/what are "unified" balance functions

- Sum-rule
- Studies with PYTHIA8

Measuring QGP Properties!

- System dynamic
- Fast (local) thermalization,
- Isentropic expansion,
- Two stage quark production
- Equation of state
- Susceptibilities
- Transport properties
- Shear viscosity
- Bulk viscosity
- Compressibility
- Quark diffusivity
- Heat capacity
- Conductivity
- Stopping \hat{q}

Relative species abundances

General balance functions

Net charge/baryon fluctuations General balance functions

Anisotropic flow
Transverse momentum correlations, G_{2}
Multiplicity fluctuations
General balance functions
Temperature fluctuations; pT fluctuations

Jet quenching

$(\pi, K, p) \otimes(\pi, K, p)$

Phys.Lett.B 833 (2022) 137338

Probing QCD Matter w/ Balance Functions

Hadron Chemistry \& Balance Functions

QGP susceptibilities determine fluctuations and correlations $\left(R_{2}, B_{2}^{\alpha \beta}\right)$ of charge, strangeness,
and baryon number.

Single Spectra

$$
I^{\alpha \beta}(\Omega)=\int_{\Omega} d \vec{p}_{1} d \vec{p}_{2} B^{\alpha \beta}\left(\vec{p}_{1}, \vec{p}_{2}\right)
$$

mass
 function of centrality ???

Balance Functions

Fractional balance functions: $\quad f^{\alpha \beta}(\Omega)=\frac{I^{\alpha \beta}(\Omega)}{\sum_{\beta} I^{\alpha \beta}(\Omega)}$

Notation and Definitions

Labels α and β : or - or specific hadrons, etc,
Densities: $\rho_{1}^{\alpha}\left(\vec{p}_{1}\right) \equiv \frac{d^{3} N_{1}^{\alpha}}{d y_{1} d \varphi_{1} d p_{\mathrm{T}, 1}} ; \quad \rho_{2}^{\alpha \beta}\left(\vec{p}_{1}, \vec{p}_{2}\right) \equiv \frac{d^{6} N_{2}^{\alpha \beta}}{d y_{1} d \varphi_{1} d p_{\mathrm{T}, 1} d y_{2} d \varphi_{2} d p_{\mathrm{T}, 2}}$
N_{1}^{α} and $N_{2}^{\alpha \beta}$: numbers of particles of species α and pairs of species α and β.
Measurement acceptance Ω; Phase Space Volume: $V=\int_{\Omega} d y d \varphi d p_{\mathrm{T}}$ Average yields....

Singles: $\left\langle N_{1}^{\alpha}\right\rangle=\int_{\Omega} \rho_{1}^{\alpha}(\vec{p}) d y d \varphi d p_{\mathrm{T}}=V \bar{\rho}_{1} ;$
Pairs:

$$
\begin{aligned}
\left\langle N_{2}^{\alpha \beta}\right\rangle & =\left\langle N_{1}^{\alpha}\left(N_{1}^{\beta}-\delta_{\alpha \beta}\right)\right\rangle \\
& =\int_{\Omega} d y_{1} d \varphi_{1} d p_{\mathrm{T}, 1} \int_{\Omega} d y_{2} d \varphi_{2} d p_{\mathrm{T}, 2} \rho_{2}^{\alpha \beta}\left(\vec{p}_{1}, \vec{p}_{2}\right)
\end{aligned}
$$

Integral Balance Functions (I)

Consider: $\quad I^{+-}=\frac{\left\langle N_{2}^{+-}\right\rangle}{\left\langle N_{1}^{-}\right\rangle}-\frac{\left\langle N_{2}^{--}\right\rangle}{\left\langle N_{1}^{-}\right\rangle} \quad I^{-+}=\frac{\left\langle N_{2}^{-+}\right\rangle}{\left\langle N_{1}^{+}\right\rangle}-\frac{\left\langle N_{2}^{++}\right\rangle}{\left\langle N_{1}^{+}\right\rangle}$
These correlators measure how many particles of type $\alpha(\bar{\alpha})$) balance each "trigger" or "reference" particle $\bar{\beta}(\beta)$

CHARGE CONSERVATION:

Creation of + must be accompanied by the production of - :

In 4π, full $p_{\mathrm{T}}>0$ acceptance, for charged particles, one expects (for vanishing net charge)

$$
I^{+-} \rightarrow 1 \quad I^{-+} \rightarrow 1
$$

Integral of Balance Functions (II)

If the number of (+,-) pair creations (i.e., sources) is N_{s} in an event, then the total number of produced singles and pairs are

$$
\begin{aligned}
& N_{1}^{+}=N_{s} \\
& N_{1}^{-}=N_{s} \\
& N_{2}^{+-}=N_{s}^{2} \\
& N_{2}^{-+}=N_{s}^{2} \\
& N_{2}^{++}=N_{s}\left(N_{s}-1\right) \\
& N_{2}^{--}=N_{s}\left(N_{s}-1\right)
\end{aligned}
$$

$$
I^{-+}(4 \pi)=I^{+-}(4 \pi)=\frac{\left\langle N_{s}^{2}\right\rangle}{\left\langle N_{s}\right\rangle}-\frac{\left\langle N_{s}^{2}-N_{s}\right\rangle}{\left\langle N_{s}\right\rangle}=1
$$

As indeed expected!

Integral of Balance Functions (II)

Assuming incoming net charge is: Q

$$
\begin{aligned}
& N_{1}^{+}=N_{s}+Q \\
& N_{1}^{-}=N_{s} \\
& N_{2}^{+-}=\left(N_{s}+Q\right) N_{s} \\
& N_{2}^{+-}=\left(N_{s}+Q\right) N_{s} \\
& N_{2}^{++}=\left(N_{s}+Q\right)\left(N_{s}+Q-1\right) \\
& N_{2}^{--}=N_{s}\left(N_{s}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
I^{-+}(4 \pi) & =\frac{\left\langle N_{s}\left(N_{s}+Q\right)\right\rangle}{\left\langle N_{s}+Q\right\rangle}-\frac{\left\langle\left(N_{s}+Q\right)\left(N_{s}+Q-1\right)\right\rangle}{\left\langle N_{s}+Q\right\rangle} \\
& =1-Q \\
I^{+-}(4 \pi) & =\frac{\left\langle\left(N_{s}+Q\right) N_{s}\right\rangle}{\left\langle N_{s}\right\rangle}-\frac{\left\langle N_{s}\left(N_{s}-1\right)\right\rangle}{\left\langle N_{s}\right\rangle} \\
& =1+Q
\end{aligned}
$$

Integral dominated by the "incoming particles" not the collisions of interest...

Integral of Balance Functions w/ $Q \neq 0$

An easy fix...

$$
\begin{aligned}
& I^{+-} \equiv \frac{\left\langle N_{2}^{+-}\right\rangle}{\left\langle N_{1}^{-}\right\rangle}-\frac{\left\langle N_{2}^{--}\right\rangle}{\left\langle N_{1}^{-}\right\rangle}-\left(\left\langle N_{1}^{+}\right\rangle-\left\langle N_{1}^{-}\right\rangle\right) \rightarrow 1 \\
& I^{-+} \equiv \frac{\left\langle N_{2}^{-+}\right\rangle}{\left\langle N_{1}^{+}\right\rangle}-\frac{\left\langle N_{2}^{++}\right\rangle}{\left\langle N_{1}^{+}\right\rangle}+\left(\left\langle N_{1}^{+}\right\rangle-\left\langle N_{1}^{-}\right\rangle\right) \rightarrow 1
\end{aligned}
$$

... where the added terms contribute $\mp Q$.
Also useful to define:

$$
I^{s}=\frac{1}{2}\left(I^{+-}+I^{-+}\right) \rightarrow 1
$$

... which is evidently independent of Q...

Differential BFs - "Pratt et al" - General BFs

General Balance Function:

$$
B^{\alpha \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)=\rho_{2}^{\alpha \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)-\rho_{2}^{\bar{\alpha} \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)=\frac{\rho_{2}^{\alpha \bar{\beta}}\left(y_{1}, y_{2}\right)}{\rho_{1}^{\bar{\beta}}\left(y_{2}\right)}-\frac{\rho_{2}^{\bar{\alpha} \bar{\beta}}\left(y_{1}, y_{2}\right)}{\rho_{1}^{\bar{\beta}}\left(y_{2}\right)}
$$

$\alpha \mid \beta$ pronounced α "given" $\beta \ldots$
Conditional densities: $\rho_{2}^{\alpha \mid \beta}\left(y_{1} \mid y_{2}\right)=\frac{\rho_{2}^{\alpha \beta}\left(y_{1}, y_{2}\right)}{\rho_{1}^{\beta}\left(y_{2}\right)}$
Density of a species α at y_{1} given a particle of species β is emitted at y_{2}.
$B^{\alpha \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)$: function of y_{1} only since y_{2} is "given" (i.e., a parameter), for particle β, the reference, while particle α is the associate (the one that balances the charge of the trigger)
Note: $B^{\alpha \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)$ is not a density—it can be negative in specific ranges of " y "

Department of Physics and Astronomy

Inclusive Charge BFs and their Integrals

Let $\alpha=\beta=+; \quad \bar{\alpha}=\bar{\beta}=-$
$B^{+\mid-}\left(y_{1} \mid y_{2}\right)=\frac{\rho_{2}^{+-}\left(y_{1}, y_{2}\right)}{\rho_{1}^{-}\left(y_{2}\right)}-\frac{\rho_{2}^{--}\left(y_{1}, y_{2}\right)}{\rho_{1}^{-}\left(y_{2}\right)}$

CHARGE CONSERVATION:

Creation of $\alpha=+$ must be accompanied by the production of $\bar{\alpha}=-$:
Integral of $B^{+\mid-}\left(y_{1} \mid y_{2}\right)$:

$$
I^{+\mid-}\left(y_{2} \mid \Omega\right) \equiv \int_{\Omega} d y_{1} B^{+\mid-}\left(y_{1} \mid y_{2}\right)
$$

In the 4π, full p_{T} acceptance limit yields.

$$
\lim _{\Omega \rightarrow 4 \pi} I^{+\mid-}\left(y_{2} \mid \Omega\right) \rightarrow 1
$$

Accepted BFs

$$
\Delta y \equiv y_{1}-y_{2}
$$

We must average across and (ideally) correct for the acceptance.

$$
\begin{aligned}
& \bar{I}^{+-}\left(y_{0}\right) \equiv \int_{-y_{0}}^{y_{0}} d y_{2} P_{1}^{-}\left(y_{2}\right) I^{+\mid-}\left(y_{2}\right) \quad P_{1}^{-}\left(y_{2}\right)=\frac{1}{\left\langle N_{1}\right\rangle\left(y_{0}\right)} \rho_{1}^{-}\left(y_{2}\right) \text { i.e., the probability of finding the -ve at } y_{2} \text {. } \\
& \bar{I}^{+-}\left(y_{0}\right)=\frac{1}{\left\langle N_{1}^{-}\right\rangle} \int_{-y_{0}}^{y_{0}} d y_{2} \int_{-y_{0}}^{y_{0}} d y_{1}\left[\rho_{2}^{+-}\left(y_{1}, y_{2}\right)-\rho_{2}^{--}\left(y_{1}, y_{2}\right)\right]=\frac{\left\langle N_{2}^{+-}\right\rangle-\left\langle N_{2}^{--}\right\rangle}{\left\langle N_{1}^{-}\right\rangle}
\end{aligned}
$$

"Bound" Balance Function

Associated particle functions: $A_{2}^{\alpha \mid \beta}\left(y_{1} \mid y_{2}\right)=\frac{C_{2}^{\alpha \beta}\left(y_{1}, y_{2}\right)}{\rho_{1}^{\beta}\left(y_{2}\right)}=\frac{\rho_{2}^{\alpha \beta}\left(y_{1}, y_{2}\right)}{\rho_{1}^{\beta}\left(y_{2}\right)}-\rho_{1}^{\alpha}\left(y_{1}\right)$
Unified" general balance functions:

$$
\begin{aligned}
& B^{\alpha \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)=A_{2}^{\alpha \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)-A_{2}^{\bar{a} \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right) \\
& B^{\bar{a} \mid \beta}\left(y_{1} \mid y_{2}\right)=A_{2}^{\bar{\alpha} \mid \beta}\left(y_{1} \mid y_{2}\right)-A_{2}^{\alpha \mid \beta}\left(y_{1} \mid y_{2}\right)
\end{aligned}
$$

Bound balance functions

$$
\begin{aligned}
& B^{\alpha \bar{\beta}}\left(y_{1}, y_{2} \mid \Omega\right)=\frac{1}{\left\langle N_{1}^{\bar{\beta}}\right\rangle}\left[C_{2}^{\alpha \bar{\beta}}\left(y_{1}, y_{2}\right)-C_{2}^{\bar{\alpha} \bar{\beta}}\left(y_{1}, y_{2}\right)\right] \\
& B^{\bar{\alpha} \beta}\left(y_{1}, y_{2} \mid \Omega\right)=\frac{1}{\left\langle N_{1}^{\beta}\right\rangle}\left[C_{2}^{\bar{\alpha} \beta}\left(y_{1}, y_{2}\right)-C_{2}^{\alpha \beta}\left(y_{1}, y_{2}\right)\right]
\end{aligned}
$$

Differences of 2-cumulants

For systems involving multiply charged particles, strangeness or baryon balance functions, one must use charge or baryon or strangeness densities instead of number densities.

Exploring BF measurements based on Simulations

- Using pp collisions at various \sqrt{s} simulated w/ PYTHIA
- Mostly MONASH tune but some others as well.
- Why PYTHIA?
- Reproduces measured data.
- Locally conserves $E, \vec{p}+$ quantum numbers.
- Easy to use \& fast.
- Use a simulation frame work (CAP)
- Multiple models \& types of analysis tasks,
- Automated sub-sample statistical uncertainty determination, closure tests, and more.

- Compute BFs on grid.wayne.edu w/ CAP
- Typically $\mathbf{2 0}$ jobs, $\mathbf{5 0}$ sub-jobs, $\mathbf{> 2 0 0 , 0 0 0}$ events each - Total 200 millions
- Enables easy subsample analysis for statistical uncertainties.

General Balance Functions (no compensation for Q)

$$
B_{Q=0}^{\bar{\alpha} \beta}\left(y_{1}, y_{2} \mid y_{0}\right)=\frac{1}{\left\langle N_{1}^{\beta}\right\rangle\left(y_{0}\right)}\left[\rho_{2}^{\bar{\alpha} \beta}\left(y_{1}, y_{2}\right)-\rho_{2}^{\alpha \beta}\left(y_{1}, y_{2}\right)\right] \quad B^{\mathrm{s}} \equiv\left(B^{\alpha \bar{\beta}}+B^{\bar{\alpha} \beta}\right) / 2
$$

(b) $\mathrm{pp} \sqrt{\mathrm{s}}=13.0 \mathrm{TeV} \quad B^{+-}$
(c) $\mathrm{pp} \sqrt{\mathrm{s}}=13.0 \mathrm{TeV}$
B^{s}

Huge over- and undershoots — due to singles

Cumulative Integrals of General Balance Functions

$I^{ \pm \mid \mp}\left(y_{2} \mid \Omega\right) \equiv \int_{\Omega} d y_{1} B^{ \pm \mid \mp}\left(y_{1} \mid y_{2}\right) \quad I \rightarrow 1+2=3$

2

$I \rightarrow 1-2=-1$
Only the integral of B^{s} properly converges to unity B^{-+}and B^{+-}do not and are not suitable as BFs Can this be fixed?

"Unified" Balance Functions

$$
B^{\bar{\alpha} \beta}\left(y_{1}, y_{2} \mid y_{0}\right)=\frac{1}{\left\langle N_{1}^{\beta}\right\rangle}\left[C_{2}^{\bar{\alpha} \beta}\left(y_{1}, y_{2}\right)-C_{2}^{\alpha \beta}\left(y_{1}, y_{2}\right)\right] \quad B^{\mathrm{s}} \equiv\left(B^{\alpha \bar{\beta}}+B^{\bar{\alpha} \beta}\right) / 2
$$

(c) $\mathrm{pp} \sqrt{\mathrm{s}}=13.0 \mathrm{TeV}$

$\stackrel{\dagger}{\infty}$

Finite long range

Department of Physics and Astronomy

Integrals of Unified Balance Functions

Width of Balance Functions vs. \sqrt{s}

Modest narrowing vs. \sqrt{s}

Impact of Acceptance in rapidity \& pT

Sum Rules

"Unified" Balance Functions obey simple sum-rules
Charge Balance Functions

$$
B^{+\mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)=\sum_{\alpha} B^{\alpha \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right) \quad B^{-\mid \beta}\left(y_{1} \mid y_{2}\right)=\sum_{\alpha} B^{\bar{\alpha} \mid \beta}\left(y_{1} \mid y_{2}\right)
$$

$\alpha, \bar{\alpha}$ span all particles (anti-) that balance the charge of particles $\bar{\beta}$ and β

Baryon Balance Functions
$B^{B \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)=\sum_{\alpha} B^{\alpha \mid \bar{\beta}}\left(y_{1} \mid y_{2}\right)$
$B^{\bar{B} \mid \beta}\left(y_{1} \mid y_{2}\right)=\sum_{\bar{\alpha}} B^{\bar{\alpha} \mid \beta}\left(y_{1} \mid y_{2}\right)$
B, \bar{B} indices: Baryon and Anti-baryon
$\alpha, \bar{\alpha}$ span all baryons (anti-baryons)

$1 \equiv I_{4 \pi}^{\bar{B} p}=I_{4 \pi}^{\bar{p} p}+I_{4 \pi}^{\bar{p} p}+I_{4 \pi}^{\bar{\Lambda}, p}+\cdots=\sum_{\bar{\beta}} I_{4 \pi}^{p \bar{\beta}}$

Examples based on PYTHIA

Charged Hadron UBFs: $\pi, \mathrm{K}, \mathrm{p}$

Identified Particles: charged pions, kaons, protons
Pairs $\alpha \beta$:
β : trigger (reference)
α : associate

Findings:
GBFs do not integrate to unity - violate sum rules
But UBFs DO satisfy sum-rules

Department of Physics and Astronom

Examples based on PYTHIA

Light hadron UBFs: $\pi, \mathrm{K}, \mathrm{p}$

Department of Physics and Astronomy

PYTHIA $\sqrt{s}=13 \mathrm{TeV}-\pi, K, p$

Fractional Integrals: Monash vs Ropes vs Shoving

\propto

Examples based on PYTHIA8

Baryon UBFs

- PYTHIA: Disable weak decays of low mass states
- Baryons included (and their anti-particles)
- p: proton
- n : neutron - only measurable in practice at >> $1 \mathrm{GeV} / \mathrm{c}$
- Λ^{0} : "easy" to observe: $\Lambda^{0} \rightarrow \mathrm{p}+\pi^{-}$
- Σ^{-}: hard to observe: $\Sigma^{-} \rightarrow \mathrm{n}+\pi^{-}$
- Σ^{0} : hard to observe: $\Sigma^{0} \rightarrow \Lambda^{0}+\gamma$
- Σ^{+}: hard to observe: $\Sigma^{+} \rightarrow \mathrm{p}+\pi^{0} ; \quad \Sigma^{0} \rightarrow \mathrm{n}+\pi^{+}$
- Ξ^{-}: measurable from: $\Xi^{-} \rightarrow \Lambda^{0}+\pi^{-}$
- Ξ^{0} : hard to observe: $\Xi^{0} \rightarrow \Lambda^{0}+\pi^{0}$
- Ω^{-}: measurable from: $\Omega^{-} \rightarrow \Lambda^{0}+K^{-}$

Examples based on PYTHIA (MONASH)

UBFs - Baryons $-\mathrm{pp} @ \sqrt{s}=13 \mathrm{TeV}$

C. Prunea

Department of Physics and Astronomy

Examples based on PYTHIA (MONASH)

UBFs Integrals - Baryons - pp @ $\sqrt{s}=13 \mathrm{TeV}$

Examples based on PYTHIA (MONASH)

UBFs Integrals - Baryons - pp @ $\sqrt{s}=13$ TeV

W

UBFs

Summary

- Must use UBFs instead of general balance functions
- Properly accounts for a system's net-charge, Q
- UBF Integrals converge to unity in the full acceptance limit
- Integrals and widths (shape) affected by acceptance
- "Triggered" UBFs
- Obey a simple sum-rule
- Have fractional integrals that depend on the particles and their production mechanism(s)
- Will depend on transport when measured in a narrow acceptance.
- UBFs provide a tool to study long range quantum number conservation and transport.
- UBFs provide additional and stringent constraints on particle production models.

Examples based on PYTHIA (MONASH)

UBFs vs. Beam Energy: $\sqrt{s}=0.9,13.0,30.0 \mathrm{TeV}$

Examples based on PYTHIA

Fractional Integrals: Monash vs Ropes vs Shoving

\rightarrow Monash - p

Department of Physics and Astronom

