

Wayne State University College of Liberal Arts & Sciences Department of Physics and Astronomy

Measuring the properties of Quark Gluon Plasma with Unified Balance Functions Wayne State University Feb 8, 2023 Puerto Vallarta, Mexico

Work in collaboration w/ Victor Gonzalez Sumit Basu Ana Marín Pedro Ladrón Brian Hanley	 This talk based on recent papers: Accounting for non-vanishing net-charge with unified balance functions, <i>Phys.Rev.C</i> 107 (2023) 1, 014902 Effects of Non-Vanishing Net Charge in Balance Functions, e-Print: 2211.10770 [hep-ph] Work in progress
	Outline Why/what are "unified" balance functions Sum-rule Studies with PYTHIA8

Hot QCD Matter

Measuring QGP Properties!

- System dynamic
 - Fast (local) thermalization,
 - Isentropic expansion,
 - Two stage quark production
- Equation of state
 - Susceptibilities
- Transport properties
 - Shear viscosity
 - Bulk viscosity
 - Compressibility
 - · Quark diffusivity
 - Heat capacity
 - Conductivity
 - Stopping \hat{q}

Relative species abundances

General balance functions

Net charge/baryon fluctuations General balance functions

Anisotropic flow **Transverse momentum correlations,** G_2

Multiplicity fluctuations

General balance functions

Temperature fluctuations; pT fluctuations

Jet quenching

PID Balance Functions

J. Pan, PhD, Wayne State (2019)

Phys.Lett.B 833 (2022) 137338

Centrality (%)

Probing QCD Matter w/ Balance Functions

Department of Physics and Astronomy

Hadron Chemistry & Balance Functions

QGP susceptibilities determine fluctuations and correlations (R_2 , $B_2^{\alpha\beta}$) of charge, strangeness, and baryon number. cooling $I^{\alpha\beta}(\Omega) = \int_{\Omega} d\vec{p}_1 d\vec{p}_2 B^{\alpha\beta}(\vec{p}_1, \vec{p}_2)$ QGP Single Spectra n_iTh/g Hadron Cocktail Thermal only mass 10^{-1} = 100 function of centrality ??? 10⁻² = 140T = 160 ---- T = 180 10^{-3} porrelated **Balance Functions** 10⁻⁴ Down **Associate Species** 10^{-5} COO COO vield 10^{-6} 10⁻⁷ 0.5 0 1.5 1 2 10⁻¹ n_iTh+Dec Thermal + Decay 10 10⁻² 10^{-2} 10^{-3} 10⁻⁴ 10^{-5} 10^{-3} = 160 10^{-6} $\pi^0 \pi^+ \pi^ \overline{\Lambda} \quad \Sigma^+ \quad \overline{\Sigma}^+ \quad \overline{\Sigma}^- \quad \overline{\Sigma}^- \quad \Xi^0 \quad \overline{\Xi}^0 \quad \overline{\Xi}^- \quad \overline{\Xi}^- \quad \Omega \quad \overline{\Omega}$ n nΛ **Trigger Species** 10⁻⁷ κ⁰ p $\overline{\Lambda}$ Σ^+ $\overline{\Sigma}^+$ <mark>ρ η η</mark> Λ $\overline{\Sigma}$ Ξ^0 Species Fractional balance functions: C. Pruneau Λ Wavne State University College of Liberal Arts & Sciences

Notation and Definitions

Labels
$$\alpha$$
 and β : + or - or specific hadrons, etc,
Densities: $\rho_1^{\alpha}(\vec{p}_1) \equiv \frac{d^3 N_1^{\alpha}}{dy_1 d\varphi_1 dp_{\mathrm{T},1}}; \quad \rho_2^{\alpha\beta}(\vec{p}_1, \vec{p}_2) \equiv \frac{d^6 N_2^{\alpha\beta}}{dy_1 d\varphi_1 dp_{\mathrm{T},1} dy_2 d\varphi_2 dp_{\mathrm{T},2}}$

 N_1^{α} and $N_2^{\alpha\beta}$: numbers of particles of species α and pairs of species α and β . Measurement acceptance Ω ; Phase Space Volume: $V = \int_{\Omega} dy d\varphi dp_{\rm T}$ Average yields....

Singles:
$$\langle N_1^{\alpha} \rangle = \int_{\Omega} \rho_1^{\alpha}(\vec{p}) dy d\varphi dp_{\mathrm{T}} = V \bar{\rho}_1;$$

Pairs: $\langle N_2^{\alpha\beta} \rangle = \left\langle N_1^{\alpha} \left(N_1^{\beta} - \delta_{\alpha\beta} \right) \right\rangle$
 $= \int_{\Omega} dy_1 d\varphi_1 dp_{\mathrm{T},1} \int_{\Omega} dy_2 d\varphi_2 dp_{\mathrm{T},2} \ \rho_2^{\alpha\beta}(\vec{p}_1, \vec{p}_2)$

Integral Balance Functions (I)

Consider:

These correlators measure how many particles of type $\alpha(\bar{\alpha})$) balance each ``**trigger**" or "**reference**" particle $\bar{\beta}(\beta)$

CHARGE CONSERVATION:

Creation of + must be accompanied by the production of -:

In 4π , full $p_{\rm T} > 0$ acceptance, for charged particles, one expects (for vanishing net charge)

$$I^{+-} \to 1 \qquad \qquad I^{-+} \to 1$$

Integral of Balance Functions (II)

If the number of (+,-) pair creations (i.e., sources) is N_s in an event, then the **total number** of produced singles and pairs are

$$N_{1}^{+} = N_{s}$$

$$N_{1}^{-} = N_{s}$$

$$N_{2}^{+-} = N_{s}^{2}$$

$$N_{2}^{-+} = N_{s}^{2}$$

$$N_{2}^{++} = N_{s}(N_{s} - 1)$$

$$N_{2}^{--} = N_{s}(N_{s} - 1)$$

$$I^{-+}(4\pi) = I^{+-}(4\pi) = \frac{\langle N_s^2 \rangle}{\langle N_s \rangle} - \frac{\langle N_s^2 - N_s \rangle}{\langle N_s \rangle} = 1$$

As indeed expected!

Integral of Balance Functions (II)

Assuming **incoming net charge** is: Q

$N_1^+ = N_s + Q$
$N_1^- = N_s$
$N_2^{+-} = (N_s + Q)N_s$
$N_2^{+-} = (N_s + Q)N_s$
$N_2^{++} = (N_s + Q)(N_s + Q - 1)$
$N_2^{} = N_s(N_s - 1)$

$$I^{-+}(4\pi) = \frac{\langle N_s(N_s+Q)\rangle}{\langle N_s+Q\rangle} - \frac{\langle (N_s+Q)(N_s+Q-1)\rangle}{\langle N_s+Q\rangle}$$
$$= 1 - Q$$
$$I^{+-}(4\pi) = \frac{\langle (N_s+Q)N_s\rangle}{\langle N_s\rangle} - \frac{\langle N_s(N_s-1)\rangle}{\langle N_s\rangle}$$
$$= 1 + Q$$

Integral dominated by the "incoming particles" not the collisions of interest...

Integral of Balance Functions w/ $Q \neq 0$

An easy fix...

$$I^{+-} \equiv \frac{\langle N_2^{+-} \rangle}{\langle N_1^{-} \rangle} - \frac{\langle N_2^{--} \rangle}{\langle N_1^{-} \rangle} - \left(\langle N_1^{+} \rangle - \langle N_1^{-} \rangle \right) \to 1$$
$$I^{-+} \equiv \frac{\langle N_2^{-+} \rangle}{\langle N_1^{+} \rangle} - \frac{\langle N_2^{++} \rangle}{\langle N_1^{+} \rangle} + \left(\langle N_1^{+} \rangle - \langle N_1^{-} \rangle \right) \to 1$$

...where the added terms contribute $\mp Q$.

Also useful to define:

$$I^{s} = \frac{1}{2} \left(I^{+-} + I^{-+} \right) \to 1$$

... which is evidently independent of Q...

Differential BFs — "Pratt et al" - General BFs

General Balance Function:

$$B^{\alpha|\bar{\beta}}(y_1|y_2) = \rho_2^{\alpha|\bar{\beta}}(y_1|y_2) - \rho_2^{\bar{\alpha}|\bar{\beta}}(y_1|y_2) = \frac{\rho_2^{\alpha\bar{\beta}}(y_1,y_2)}{\rho_1^{\bar{\beta}}(y_2)} - \frac{\rho_2^{\bar{\alpha}\bar{\beta}}(y_1,y_2)}{\rho_1^{\bar{\beta}}(y_2)}$$

 $\alpha \mid \beta$ pronounced α "given" β ...

Conditional densities:

College of Liberal Arts & Sciences Department of Physics and Astronomy

$$\rho_2^{\alpha|\beta}(y_1|y_2) = \frac{\rho_2^{\alpha\beta}(y_1, y_2)}{\rho_1^{\beta}(y_2)}$$

Density of a species α at y_1 given a particle of species β is emitted at y_2 .

 $B^{\alpha|\bar{\beta}}(y_1|y_2)$: function of y_1 only since y_2 is ``given" (i.e., a parameter), for particle β , the reference, while particle α is the associate (the one that balances the charge of the trigger)

Note: $B^{\alpha|\bar{\beta}}(y_1|y_2)$ is not a density— it can be negative in specific ranges of "y"

Inclusive Charge BFs and their Integrals

Let
$$\alpha = \beta = +; \ \bar{\alpha} = \bar{\beta} = -$$

 $B^{+|-}(y_1 | y_2) = \frac{\rho_2^{+-}(y_1, y_2)}{\rho_1^{-}(y_2)} - \frac{\rho_2^{--}(y_1, y_2)}{\rho_1^{-}(y_2)}$

CHARGE CONSERVATION:

Creation of $\alpha = +$ must be accompanied by the production of $\bar{\alpha} = -$:

In the 4π , full p_{T} acceptance limit yields.

$$\lim_{\Omega \to 4\pi} I^{+|-}(y_2 \,|\, \Omega) \to 1$$

Accepted BFs

College of Liberal Arts & Sciences Department of Physics and Astronomy

"Bound" Balance Function Associated particle functions: $A_{2}^{\alpha|\beta}(y_{1}|y_{2}) = \frac{C_{2}^{\alpha\beta}(y_{1},y_{2})}{\rho_{1}^{\beta}(y_{2})} = \frac{\rho_{2}^{\alpha\beta}(y_{1},y_{2})}{\rho_{1}^{\beta}(y_{2})} - \rho_{1}^{\alpha}(y_{1})$ Unified" general balance functions: $B^{\alpha|\bar{\beta}}(y_{1}|y_{2}) = A_{2}^{\alpha|\bar{\beta}}(y_{1}|y_{2}) - A_{2}^{\bar{\alpha}|\bar{\beta}}(y_{1}|y_{2})$ $B^{\bar{\alpha}|\beta}(y_{1}|y_{2}) = A_{2}^{\bar{\alpha}|\beta}(y_{1}|y_{2}) - A_{2}^{\alpha|\beta}(y_{1}|y_{2})$

Bound balance functions

$$\begin{split} B^{\alpha\bar{\beta}}(y_1, y_2 \,|\, \Omega) &= \frac{1}{\langle N_1^{\bar{\beta}} \rangle} \left[C_2^{\alpha\bar{\beta}}(y_1, y_2) - C_2^{\bar{\alpha}\bar{\beta}}(y_1, y_2) \right] \\ B^{\bar{\alpha}\beta}(y_1, y_2 \,|\, \Omega) &= \frac{1}{\langle N_1^{\beta} \rangle} \left[C_2^{\bar{\alpha}\beta}(y_1, y_2) - C_2^{\alpha\beta}(y_1, y_2) \right], \end{split}$$

Differences of 2-cumulants

For systems involving multiply charged particles, strangeness or baryon balance functions, one must use **charge or baryon or strangeness densities instead of number densities**.

Exploring BF measurements based on Simulations

- Using **pp collisions** at various \sqrt{s} simulated w/ PYTHIA
 - Mostly MONASH tune but some others as well.
- Why PYTHIA?
 - Reproduces measured data.
 - Locally conserves E, \vec{p} + quantum numbers.
 - Easy to use & fast.
- Use a simulation frame work (CAP)
 - Multiple models & types of analysis tasks,
 - Automated sub-sample statistical uncertainty determination, closure tests, and more.
- Compute BFs on <u>grid.wayne.edu</u> w/ CAP
 - Typically 20 jobs, 50 sub-jobs, >200,000
 events each Total 200 millions
 - Enables easy subsample analysis for statistical uncertainties.

e-by-e: Q = +2Average: density difference integrates to Q = +2

Department of Physics and Astronomy

CP, Gonzalez, Hanley, et al, e-Print: 2211.10770 [hep-ph]

General Balance Functions (no compensation for Q)

CP, Gonzalez, Hanley, et al, e-Print: 2211.10770 [hep-ph]

Cumulative Integrals of General Balance Functions

Only the integral of B^s properly converges to unity B^{-+} and B^{+-} do not and are not suitable as BFs Can this be fixed?

CP, Gonzalez, Hanley, et al, e-Print: 2211.10770 [hep-ph]

"Unified" Balance Functions

$$B^{\bar{\alpha}\beta}(y_1, y_2|y_0) = \frac{1}{\langle N_1^{\beta} \rangle} \left[C_2^{\bar{\alpha}\beta}(y_1, y_2) - C_2^{\alpha\beta}(y_1, y_2) \right]$$

$$B^{\rm s} \equiv (B^{\alpha\bar{\beta}} + B^{\bar{\alpha}\beta})/2$$

CP, Gonzalez, Hanley, et al, e-Print: 2211.10770 [hep-ph]

Integrals of Unified Balance Functions

CP, Gonzalez, Hanley, Basu, e-Print: 2211.10770 [hep-ph]

Width of Balance Functions vs. \sqrt{s}

CP, Gonzalez, Hanley, Basu, e-Print: 2211.10770 [hep-ph]

Impact of Acceptance in rapidity & pT

y, pT acceptance impact width & integral

C. Pruneau

Sum Rules

CP, Gonzalez, Hanley, Basu, in progress

"Unified" Balance Functions obey simple sum-rules

Charge Balance Functions

$$B^{+|\bar{\beta}}(y_1 | y_2) = \sum_{\alpha} B^{\alpha|\bar{\beta}}(y_1 | y_2)$$

$$B^{-|\beta}(y_1 | y_2) = \sum_{\alpha} B^{\bar{\alpha}|\beta}(y_1 | y_2)$$

 $lpha,ar{lpha}$ span all particles (anti-) that balance the charge of particles $ar{eta}$ and eta

Baryon Balance Functions

$$B^{B|\bar{\beta}}(y_1 | y_2) = \sum_{\alpha} B^{\alpha|\bar{\beta}}(y_1 | y_2)$$
$$B^{\bar{B}|\beta}(y_1 | y_2) = \sum_{\bar{\alpha}} B^{\bar{\alpha}|\beta}(y_1 | y_2)$$
$$B, \bar{B} \text{ indices: Baryon and Anti-baryon}$$

 $\alpha, \bar{\alpha}$ span all baryons (anti-baryons)

Charged Hadron UBFs: π , K, p

Identified Particles: charged pions, kaons, protons Pairs $\alpha\beta$: β : trigger (reference) α : associate

Findings:

GBFs do not integrate to unity — violate sum rules But UBFs DO satisfy sum-rules

Light hadron UBFs: π , K, p

Department of Physics and Astronomy

23

PYTHIA $\sqrt{s} = 13$ TeV - π, K, p

Fractional Integrals: Monash vs Ropes vs Shoving

Fractions w/ Shoving "identical" to MONASH Finite change observed w/ Ropes Relative fractions indeed dependent on production mechanisms!

(Small effect in PYTHIA8)

Baryon UBFs

- PYTHIA: Disable weak decays of low mass states
- Baryons included (and their anti-particles)
 - p: proton
 - n: neutron only measurable in practice at >> 1 GeV/c
 - Λ^0 : "easy" to observe: $\Lambda^0 \to \mathbf{p} + \pi^-$
 - Σ^- : hard to observe: $\Sigma^- \to n + \pi^-$
 - Σ^0 : hard to observe: $\Sigma^0 \to \Lambda^0 + \gamma$
 - Σ^+ : hard to observe: $\Sigma^+ \to p + \pi^0$; $\Sigma^0 \to n + \pi^+$
 - Ξ^- : measurable from: $\Xi^- \to \Lambda^0 + \pi^-$
 - Ξ^0 : hard to observe: $\Xi^0 \to \Lambda^0 + \pi^0$
 - Ω^- : measurable from: $\Omega^- \to \Lambda^0 + K^-$

UBFs – Baryons – pp @ $\sqrt{s} = 13$ TeV

UBFs Integrals – Baryons – pp @ $\sqrt{s} = 13$ TeV

UBFs Integrals – Baryons – pp @ $\sqrt{s} = 13$ TeV

Department of Physics and Astronomy

Summary

- Must use UBFs instead of general balance functions
 - Properly accounts for a system's net-charge, Q
 - UBF Integrals converge to unity in the full acceptance limit
 - Integrals and widths (shape) affected by acceptance
- "Triggered" UBFs
 - Obey a simple sum-rule
 - Have fractional integrals that depend on the particles and their production mechanism(s)
 - Will depend on transport when measured in a narrow acceptance.
- UBFs provide a tool to study long range quantum number conservation and transport.
- UBFs provide additional and stringent constraints on particle production models.

UBFs vs. Beam Energy: $\sqrt{s} = 0.9, 13.0, 30.0$ **TeV**

Fractional Integrals: Monash vs Ropes vs Shoving

