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Motivation

Shear viscosity h is an important property of the quark–gluon plasma:

Bernhard, Moreland & Bass, 
Nature Phys (2019)

h or h/s: is an input function to viscous hydrodynamics;
is generated by interactions in transport models: relation?

h/s can be extracted from data/model comparisons:

1/(4p) bound from AdS/CFT
Kovtun, Son & Starinets, 
Phys Rev Lett (2005)
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In this study, we only consider a massless parton matter 
in thermal equilibrium under 2-to-2 elastic scatterings.

Isotropic versus forward-angle two-body scatterings

• Isotropic scattering:

• Forward-angle scattering:
As the example, we take the parton cross section used in AMPT/ZPC/MPC:
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Isotropic versus forward-angle two-body scatterings

Transport cross section 𝜎(, often appears in shear viscosity expressions:

𝜎(, = :𝑑𝜎 sin" 𝜃-.

• Isotropic scattering:

• Forward-angle scattering:
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Isotropic versus forward-angle two-body scatterings

Thermal average:
even if 𝜎 is a constant, 𝜎(, is not since it depends 𝑎 ≡ #!

!̂ .

For a parton matter in thermal equilibrium at temperature T, 
the thermal average for Boltzmann statistics is
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Kolb & Raby, Phys Rev D (1983)

ℎ/(𝑤) is just an average of the anisotropy function h(a)
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Comparison of h and h/s from different methods
Analytical:
• Israel–Stewart (IS) method:

• Navier–Stokes (NS) method:

• Relaxation time approximation (RTA) & modified version (RTA*):

• Chapman–Enskog (CE) method:

Numerical:
• Green–Kubo relation:

𝜂56 =
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Plumari, Puglisi, Scardina & Greco, Phys Rev C (2012)Anderson & Witting, Physica (1974)

Wiranata & Prakash, 
Phys Rev C (2012)𝜂<= =
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2B 𝜀𝜏

de Groot, van Leeuwen & Weert 
book (1980)

𝜏: relaxation time extracted from correlation <…>

Huovinen & Molnar, 
Phys Rev C (2009)
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Analytical:
• Israel–Stewart (IS) method:

• Navier–Stokes (NS) method:

• Relaxation time approximation (modified version RTA*):

• Chapman–Enskog (CE) method:

Numerical:
• Green–Kubo relation:

Comparison of h and h/s from different methods

Plumari, Puglisi, Scardina & Greco, Phys Rev C (2012)

generalized to 
anisotropic scatt.
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𝜏: relaxation time extracted from correlation <…>
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Comparison of h and h/s from different methods
More on analytical methods:

• Relaxation time approximation (modified version RTA*):

• Chapman–Enskog (CE) method:
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MacKay & ZWL, Eur Phys J C (2022)

ℎ2(𝑤) & ℎ"(𝑤) are different averages of the anisotropy function h(a)
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Comparison of h and h/s from different methods
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Analytical results of h 
for massless gluons & 𝜎=2.6mb (or µ~0.7GeV):

• For isotropic scatterings:
IS=RTA*=CE
≈NS (~5% higher)

• For forward scatterings:
IS≈RTA*≈NS  < CE mostly

T<<µ → almost isotropic
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Comparison of h and h/s from different methods

0.0 0.2 0.4 0.6 0.8 1.0

0.1

1

<�
πx
y (t
+
t')
�π
xy
(t'
)>
/<
�π
xy
(t'
)2 >

t(fm/c)

T=0.5 GeV, σ=2.6 mb
 Isotropic   Forward
                 New scheme
                 Default ZPC
                 Subdivision
       Navier-Stokes

Q: which analytical result of h  is accurate?
A: compare with numerical results from Green-Kubo:

𝜂 = >
9 ∫/

0𝑑𝑡 < V𝜋?@(𝑡 + 𝑡A)V𝜋?@(𝑡′) > = 1
2B 𝜀𝜏

• With ZPC parton cascade, we
calculated h of gluons in a box
with the Green-Kubo relation.

• Subdivision method (with l=106)
agrees well with NS expectation 
for isotropic scatterings.

Isotropic Forward

Zhao, Ma, Ma & ZWL, Phys Rev C (2020)
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Comparison of h and h/s from different methods

We extracted h/s of gluons in a box 
versus 𝜒 with Green-Kubo relation:

For fixed as ,
h/s is only a function of 𝜒.

For example:

for gluons (dg=16) 
under isotropic scatterings

Zhao, Ma, Ma & ZWL, Phys Rev C (2020)

𝜒 (opacity parameter):
= radius of interaction / mean free path

Zhang, Gyulassy & Pang, Phys Rev C (1998)
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Comparison of h and h/s from different methods
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MacKay & ZWL, Eur Phys J C (2022)

4 analytical methods vs Green-Kubo results of 
h/s versus 𝜒: 

• All methods agree well for isotropic scatterings
• For anisotropic scatterings: CE results agrees well with Green-Kubo;

but the other analytical methods are not accurate 
• h/s decreases with 𝜒 & T:  due to constant 𝜎
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Comparison of h and h/s from different methods

The fact that Green-Kubo agrees with CE (but not RTA*)
has been shown in
Plumari, Puglisi, Scardina & Greco, Phys Rev C (2012) • Relaxation time approximation 

(modified version RTA*):

• Chapman–Enskog (CE) method:

However, there are 2 typos in those h results, 
as pointed out in MacKay & ZWL, Eur Phys J C (2022): should be
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Application to parton matter in the AMPT model

We then apply the Chapman–Enskog (CE) method to study
h and h/s of the parton matter in string melting AMPT for A+A.

ZWL, Phys Rev C (2014)
The AMPT model can reasonably describe 
the bulk matter properties at low pT in A+A collisions:
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A+B

Hadronization (Quark Coalescence)

ZPC (parton cascade)

Strings melt to q & qbar 
via intermediate hadrons

HIJING1.0:
minijet partons (hard),    excited strings (soft),  spectator nucleons

Extended ART (hadron cascade)

Partons freeze out

The String Melting version of AMPT:

Hadrons freeze out;
strong-decay remaining resonances

Final particle spectra

Application to parton matter in the AMPT model

ZWL, Ko, Li, Zhang & Pal, 
Phys Rev C (2005);
ZWL & Zheng, Nucl Sci Tech (2021)

Currently, only 
2-to-2 elastic 
scatterings at
constant 𝜎 or µ
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Application to parton matter in the AMPT model
For the parton matter in the center cell,
we extracted effective temperatures.

𝜀 = 3\"
]!
𝑇1, 𝑇 _# = 1

3]
𝑝9 , …

𝑇 _# < 𝑇 → the parton matter is not in chemical equilibrium

ZWL, Phys Rev C (2014)
For example, central Au+Au at 200A GeV: 
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We have extracted effective temperatures 
for 4 different collision systems: 

Application to parton matter in the AMPT model
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ZWL, Phys Rev C (2014)

𝑇 _# & 𝑇

MacKay & ZWL, Eur Phys J C (2022)

We use these temperatures to calculate h and h/s of the center cell.
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Application to parton matter in the AMPT model
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1) When treating the matter as a QGP in full equilibrium (Nf=3), 
we use temperature 𝑇 to calculate both h and s.

• <h/s> (time-averaged value weighted by collision rate) is quite small
• Temperature dependence of h/s is “wrong”, due to constant 𝜎
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Application to parton matter in the AMPT model
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2) When treating the matter as a QGP in partial chemical equilibrium, 
we use temperature 𝑇 _# to calculate h but use 𝑇 to calculate s,
since h is determined by momentum transfer but not density:

<h/s> is very small
• h is lower in partial equilibrium due to 𝑇 _# < 𝑇 : 

lower T makes scattering more isotropic and effective
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Application to parton matter in the AMPT model
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• We can use a ℎ"(𝑤) fit function for forward scattering

𝜂′= based on IS: Magdy et al., Eur Phys J C (2021) 

• Our results improve previous calculations of h for parton matter, such as

MacKay & ZWL, Eur Phys J C (2022)

𝜂<== 
#$

%&('(*)
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Application to parton matter in the AMPT model

h2(w) fit

𝜂
𝑠
≈

5.12
𝑔1 ln(2.42/𝑔)

µ ∝ 𝑔𝑇

Arnold, Moore & Yaffe, JHEP (2003);
Csernai, Kapusta & McLerran, Phys Rev Lett (2006)

→ 𝜎 ∝ 1/µ" will be larger at lower T
→ h/s ∝ 𝑇/𝜎 will have the expected 

T- and t-dependences
→ a direction to improve ZPC/AMPT

When using

pQCD
with µ ∝ 𝑔𝑇:
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• The Chapman–Enskog (CE) method gives accurate expression of h
for parton matter under 2-to-2 scatterings

• The other analytical methods (IS, NS, RTA & RTA*) are not accurate 
for anisotropic scatterings as they disagree with Green-Kubo results

• Applying the CE method, <h/s> for parton matter in the center cell of 
high energy A+A collisions is found to be quite small at (1-3)/(4p)

• T-dependence or time-dependence of h/s in AMPT is opposite to 
pQCD expectation, because of the constant 𝜎 or screening mass µ

• This problem can be resolved by adopting µ ∝ 𝑔𝑇;
will lead to a better ZPC/AMPT 
as a dynamical model for non-equilibrium studies

Summary


