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M: heavy quark mass
v: typical relative speed

Quarkonium in medium

t At high /, quarkonium “melts” |

because the medium screens the

| interactions between heavy |
quarks (Matsui & Satz 1986)
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M: heavy quark mass
v: typical relative speed

[] N. Brambilla, A. Pineda, J. Soto. A. Vairo
hep-ph/9907240, hep-ph/0410047
| ©

| —> We need to
| understand the above
dynamics in the hierarchy
My >T
—> pNRQCD [*] .

Quarkonium in medium

color singlet;
bound state

color octet;

Q: c or b quark unbound state

O: ¢ or b quark



["] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047 X. Yao, hep-ph/2102.01736

Time scales of quarkonia

Transitions between

. Interaction with the QGP
quarkonium energy levels . .
(the system) environment (the environment)
unbound
2S ) )
1S L B o L
1 o’ 1] I (MV)2 1
— ~ AL ~ My _~T

Tg

lE
gPNRQCD = Z light quarks +Z gluon T Jd3r Trcolor [S T(iaO - HS)S T OT(iD 0 HO)O

+V,(Or - gES+h.c.)- ZBOT{r . gE, 0} + ---



["] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047 X. Yao, hep-ph/2102.01736

Time scales of quarkonia

Transitions between

. Interaction with the QGP
quarkonium energy levels . .
(the system) environment (the environment)
unbound
2S ) )
1S L B o L
1 o’ 1] I (MV)2 1
— ~ AL ~ My _~T

- 3 : :
gpNRQCD — 3light quarks T ggluon T Jd rTrcolor [ST(laO o Hs)S + OT(ZDO o HO)O

+V,(Or - gES+h.c.)- ZBOT{r . gE, 0} + ---



["] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047 X. Yao, hep-ph/2102.01736

Time scales of quarkonia

Transitions between

. Interaction with the QGP
quarkonium energy levels . .
(the system) environment (the environment)
unbound
25 2 .
1S L B o L
| , 17 A (Mv)?




["] N. Brambilla, A. Pineda, J. Soto, A. Vairo hep-ph/9707481, hep-ph/9907240, hep-ph/0410047 X. Yao, hep-ph/2102.01736

Time scales of quarkonia

Transitions between
quarkonium energy levels
(the system)

Interaction with the QGP
environment (the environment)

(@D

25
1 H? T2
1S o Int - T
| 7] I (Mv)?

unbound

Z pNRQCD — light quarks gluon

+ Jd%TrCm [ST(iaO — H)S + O0'(iD, — H,)O

+V,(O'r-gES+h.c.

) ZBOT{r-gE,O} + -




What do we need to calculate?



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408
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Why are these correlators
interesting?
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A comparison with heavy quark
diffusion

Different physics with the same building blocks
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*kicks” from the medium.
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Heavy quark diffusion

an analogous picture 2
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Heavy quark diffusion

an analogous picture

the heavy
quark carries
color charge
and interacts
with the
medium
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The difference, qualitatively

winding around the Schwinger-Keldysh contour
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Path integral representations

Im{z}4

How to do calculations

the Schwinger-Keldysh contour

* |maginary time calculations:

equilibrium #: (O) = Z_lTr[@e—ﬁH] |

---------------------------------------
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e Real time calculations:
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* |maginary time calculations:
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How to do calculations

the Schwinger-Keldysh contour

and also two-point functions:

(0(1)0(0)) = Z~'Tr|6(0)e ™ O(0)e V"]
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Path integral representations

How to do calculations Im(1)4

the Schwinger-Keldysh contour

 Real time calculations: t=—1f

(O(1)0(0)) = Z7'Tr[e™ 0(0)e " ' O(0)e 1|

b i

12



The difference, qualitatively

winding around the Schwinger-Keldysh contour

' %0 t=1—if

13

Im{z}4




Im{z}4

The difference, qualitatively

winding around the Schwinger-Keldysh contour

 The heavy quark Is present at all —
times: -

o |t is part of the construction of

the thermal state of the QGP. RN

o The Wilson line, which enforces i U
the Gauss’ law constraint due to E
the point charge, is also present
on the Euclidean segment.
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The difference, qualitatively

winding around the Schwinger-Keldysh contour

13
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Re{r}

* |n this correlator, the heavy quark
pair is present at all times, but it is
only color-charged for a finite time:

O [t is not part of the construction
of the thermal state of the QGP.

o The adjoint Wilson line,
representing the propagation of
unbound quarkonium (in the
adjoint representation), is only
present on the real-time segment.
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The difference in pQCD

operator ordering is crucial!
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The difference is due
to different operator
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insertions).
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The difference in pQCD
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What about the difference at strong
coupling?



[**] J. Maldacena, hep-th/9711200

Wilson loops in AdS/CFT

setup

* The holographic duality provides a way to formulate the calculation of
analogous correlators in strongly coupled theories. [**]

o Wilson loops can be evaluated by solving classical equations of motion;

(W[E = 0Z]), = e™Ncl™

D-brane

3 J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal
16 and U. A. Wiedemann, hep-ph/1101.0618



How do Wilson loops help?

setup — pure gauge theory

* Field strength insertions along a Wilson loop can be generated by taking
variations of the path 6
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How do Wilson loops help?

setup — pure gauge theory

* Field strength insertions along a Wilson loop can be generated by taking
variations of the path 6

WIE| = (8 Tregior| Ut Fop (o750 Uy Foor ()0 Uy )
=0
 Same as the lattice calculation of the heavy quark diffusion coefficient:
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Wilson loops In /' = 4 SYM

a slightly different observable

* A holographic dual in terms of an extremal surface exists for

G Al = —Tr | Pexp [ igd dsTo[A%5 + hGs) - VR
WBPS[ ;1] _V Loolor cXp | 14 ; S [ X + n(s) - gb X ] :

C

which Is not the standard Wilson loop.
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Wilson loops In /' = 4 SYM

a slightly different observable

* A holographic dual in terms of an extremal surface exists for

W@l = T | Pexp (i dsTe [ + o) /P
BPS[ 9n] _V Leolor CXP | 18 . S ,ux + I”l(S) ¢ X ;

C

which Is not the standard Wilson loop.

» /N =4 SYM has 6 scalar fields 5", which enter the above Wilson loop through
a direction 71 € Ss. Also, its dual gravitational description is AdSs X Ss.
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Wilson loops In /' = 4 SYM

a slightly different observable

* A holographic dual in terms of an extremal surface exists for

Wl A1 =T | Pexp i dsTe[ st + o) - 7/
BPS[ 9n] _V Leolor CXP | 18 . S /,tx T n(S) §b X ,

C

which Is not the standard Wilson loop.

» /N =4 SYM has 6 scalar fields E‘l, which enter the above Wilson loop through
a direction 71 € Ss. Also, its dual gravitational description is AdSs X Ss.

» What to do with this extra parameter? For a single heavy quark, just set n = n,

18



Choosing 7

what is the best proxy for an adjoint Wilson line?

* A key property of the adjoint Wilson line is

WP = LTr [97{T“U T°U" }]
[52»t1] ,

[6,5] :
2.1 T+ [15,1]
which means that we can obtain the correlator w? want by studying
deformations of a Wilson loop of the form W = VTI‘[UUT] = 1.
C
* This leads us to consider the following loop:
., n =1 .,



[**] J. Maldacena, hep-th/9711200

Wilson loops in AdS/CFT

setup

* The holographic duality provides a way to formulate the calculation of
analogous correlators in strongly coupled theories. [**]

o Wilson loops can be evaluated by solving classical equations of motion;

(W[E = 0Z]), = e"nal*

D-brane

Metric of interest for finite 1 calculations:

R? 1
ds? = = |- f(2) dt* + dx* + @ dz* + 7°dQz

_ 4
f(Z) — 1 T (ﬂTZ) J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal
0 and U. A. Wiedemann, hep-ph/1101.0618



D-brane




D-brane




D-brane




D-brane

¢ Our task is to solve for |

f the perturbed
worldsheet for

arbitrary (but small)

21



["**] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

Review: Heavy Quark
Diffusion in AdS/CFT

using the same computational n T
technique vV T

time-ordered branch of SK
contour

Steps of the calculation: B N

1. Find the appropriate Ads/Schwarzsehid ’
background solution

anti time-ordered branch of
SK contour

22
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["**] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

Review: Heavy Quark
Diffusion in AdS/CFT

using the same computational
technique

time-ordered branch of SK
contour

[
/

Steps of the calculation: By

[ |

1. Find the appropriate Ads/Schwarzsehid ’
background solution

2. Introduce perturbations g

3. Evaluate the deformed e T
Wilson loop and take P
derivatives

anti time-ordered branch of
SK contour
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["**] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

Review: Heavy Quark
Diffusion in AdS/CFT

using the same computational
technique

time-ordered branch of SK
contour

[
/

Steps of the calculation: Ry

[ |

1. Find the appropriate AdS/Schwarzschid ’ St it bttt i i
background solution L H

2. Introduce perturbations B o RS s

3. Evaluate the deformed g T
Wilson loop and take P
derivatives anti time-ordered branch of

0 3 SK contour
From here: k = 7y / g°N_. T



Quarkonium correlator in AdAS/CFT



Quarkonium correlator in AdS/CFT

a very similar picture

|

e Same steps as before:

1. Find background solution

2. Introduce perturbations
3. Evaluate the derivatives

e Differences:

o Boundary conditions

O Time-ordered correlator;
not retarded



Boundary conditions

Quarkonium correlator

Fluctuations are matched at the turnaround points of the extremal
surface. No direct sensitivity to the imaginary time segment.
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Boundary conditions

Quarkonium correlator Re{t)

Fluctuations are matched through the imaginary time segment
solving the equations of motion = factors of eﬁ“), KMS relations




Comparison of spectral functions

—— Pogi(W)
pfund(w)
100 ... Pagi(w) small @ limit
.-<
3 I? Prung(W) small @ limit
Q| k= -
) IEEEEE Large w limit
ol =
0.1
0.01



Summary and conclusions

e \WWe have discussed how to calculate the chromoelectric correlators of the
QGP that govern quarkonium transport

A. at weak coupling in QCD

B. at strong coupling in /' = 4 SYM
* Next steps:
o (Generalize the calculations to include a boosted medium
o Use them as input for quarkonia transport codes

e Stay tuned!
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QGP that govern quarkonium transport
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B. at strong coupling in /' = 4 SYM
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o Use them as input for quarkonia transport codes
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Extra slides



X. Yao, hep-ph/2102.01736

Open quantum systems
“tracing/integrating out” the QGP

» Given an initial density matrix p,.(f = 0), quarkonium coupled with the QGP
evolves as

Prot(D) = U(0)po(t = 0) UT(I).

 We will only be interested in describing the evolution of quarkonium and its
final state abundances

= py(1) = Trogp |UDpet = OVUT (1)

» Then, one derives an evolution equation for p¢(#), assuming that at the initial
time we have p,_(t = 0) = p(t = 0) @ e o'l | OGP -

30



X. Yao, hep-ph/2102.01736

Open guantum systems

“tracing/integrating out” the QGP: semi-classic description

Unitary evolution of environment + subsystem |

Trace out the environment degrees of freedom
OQS: p¢ has non-unitary, time-irreversible evolution |

Markovian approximation <= weak coupling in H;

- k, nas / s

Wigner transform: f(x, K, 1) = J
P

Semi-classic subsystem: Boltzmann/Fokker-Planck equation



X. Yao, hep-ph/2102.01736

Lindblad equations for quarkonia at low 7

quantum Brownian motion limit & guantum optical limit in pNRQCD

» After tracing out the QGP degrees of freedom, one gets a Lindblad-type

equation:
ap |
_ F__)rir.
o Z[Hff’szyf( P z{LJ‘Lf’p})

* This can be done in two different limits within pNRQCD:

Quantum Brownian Motion: Quantum Optical:
T > Tg Ty > Tg
Tg > T Ty > Tg

relevant for Mv > T > Mv? _ relevant for Mv > Mv*, T > m;,



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408

QGP chromoelectric correlators

for quarkonia transport (8771 (0 11 Ry, R = (72 E, (R, 1)) (E, Ry 1)7 1))
(Ri,400)  (Ry,+00) !
< > R

Related by KMS
conditions and
parity + time

reversal E;, (R, t2)
o

)

>

Eil (Rl ? tl)

@
Eig (R27 tQ)

[
Eil (Rl 9 tl)

> R
(82117 (1, 11, Ry, Ry) = ((E; (R, fz)Wz)a(WlEil(Rhtl)):l)T

bl

(R1,~00)  (Ra,—0)



>, . 4 bad

The correlators we discussed are also directly related to the correlators that define the
transport coefficients in the quantum brownian motion limit:

2

y = g—ImJ' ds (T E%(s,0)7|(s,0), (0,0)]E*(0,0)),

ON.

2

K = g—ReJ ds (T E%'(s, )7 |(s,0), (0,0)]E>(0,0)) .

6

g D TE SN0 Y T ETRESE T A e C ; RIS e - DTS TS A A . = e DR A e O o e e S "
. STy ~ PP S N Y VY L m - I\ U W i S N A S VT ~ ML DA y - - QN o o T S N U= L - °
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T. Binder, K. Mukaida, BS and X. Yao, hep-ph/2107.03945

The spectral function of quarkonia

symmetries and KMS relations

The KMS conjugates of the previous correlators are such that
OrT —— T, ——
(g7 (@) = e (g 15(q) . [ 15(q) = e g7 15(q) .
and one can show that they are related by

877 15(q) = (8 15 (—q) . (8 17(q) = (g7 5(—q) .

/

The spectral functions [pz ™~ "1:(q) = [g; K ];.(q) — [g+t ];.(q) are not

necessarily odd under g <> — g. However, they do satisfy:

[Pljerr]ji(Q) — e 1i(=4q) .



T. Binder, K. Mukaida, BS and X. Yao, hep-ph/2107.03945

Weakly coupled calculation in QCD

I | I |
I | I |

I | I |

I | I I N
I | I I

I | I I

I | I I

I I

I I

I I

| The real-time
calculation proceeds
| by evaluating these |
| diagrams (+ some |

permutations of
them) on the |
| Schwinger-Keldysh |
?" ~contour |




T. Binder, K. Mukaida, BS and X. Yao, hep-ph/2107.03945

The spectral function at NLO

and a comparison with its heavy quark counterpart

It Is simplest to write the integrated spectral function:
d3

++ I P .. +4]4a
Foo =7 | Tt W)

We found

2(NT2 3
2 4+ 8" (N: — Dpy A2 + o2
I ﬂ

2( N2
2 HQ _ g (NS — l)pO 472 + o2
Pr (Do) o) g




How the calculation proceeds

what equations do we need to solve?

* The classical, unperturbed equations of motion from the Nambu-Goto action
to determine 2:

1
Sy = — dd,/—det( daX/"aX”).
NG Zﬂa’J tao Suv p

 The classical, linearized equation of motion with perturbations in order to be
able to calculate derivatives of (W[Cgf]h = e'"Nall;

5 SnGl 2]
of (t))of (1)

f)f() + O(f) .
£=0
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