Quarkonium transport in strongly coupled plasmas and a comparison with heavy quark transport

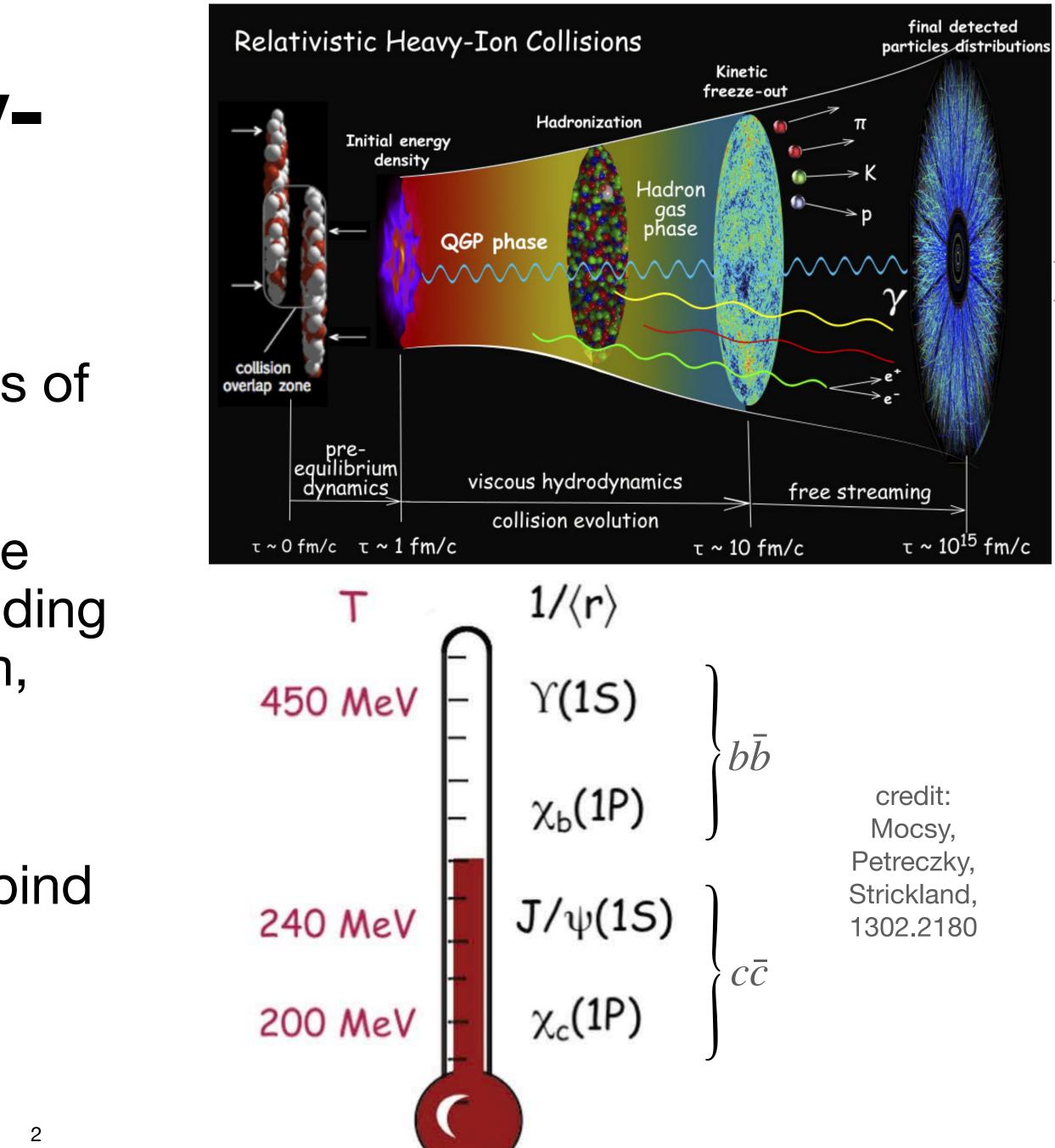
38th Winter Workshop on Nuclear Dynamics Marriott Puerto Vallarta Resort & Spa February 9, 2023

Bruno Scheihing-Hitschfeld (MIT) with Xiaojun Yao (UW) and Govert Nijs (MIT) based on 2107.03945, 2205.04477, 2302.XXXXX

Quarkonium in Heavy-Ion Collisions

- Heavy quarks and quarkonia are amongst the most informative probes of the QGP.
- To interpret the full wealth of data, we need a precise theoretical understanding of heavy quarks in a thermal medium,
 - o as single open heavy flavors, and
 - as pairs of heavy flavors that can bind into quarkonia.

credit: Paul Sorensen and Chun Shen, 1304.3634

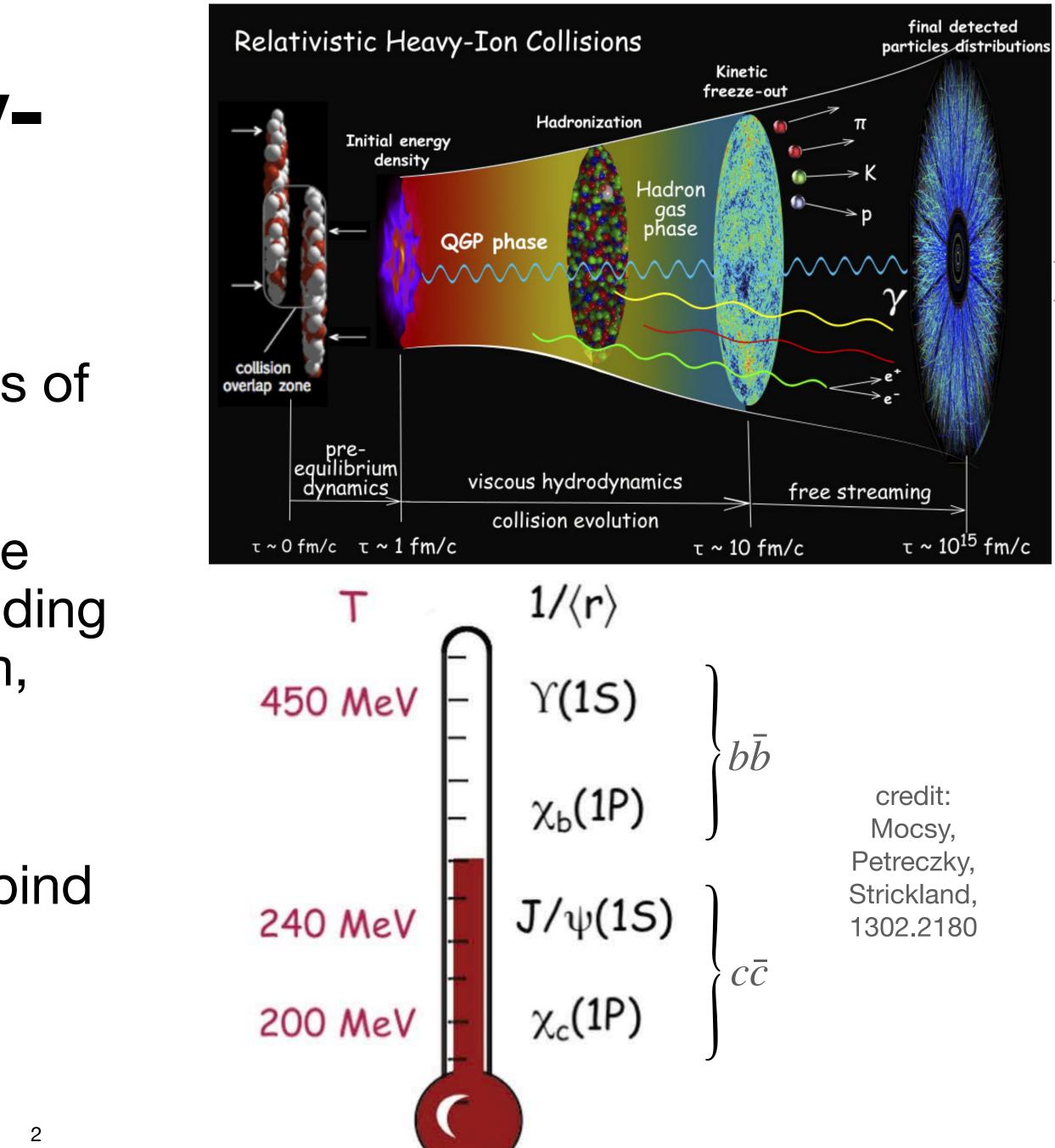


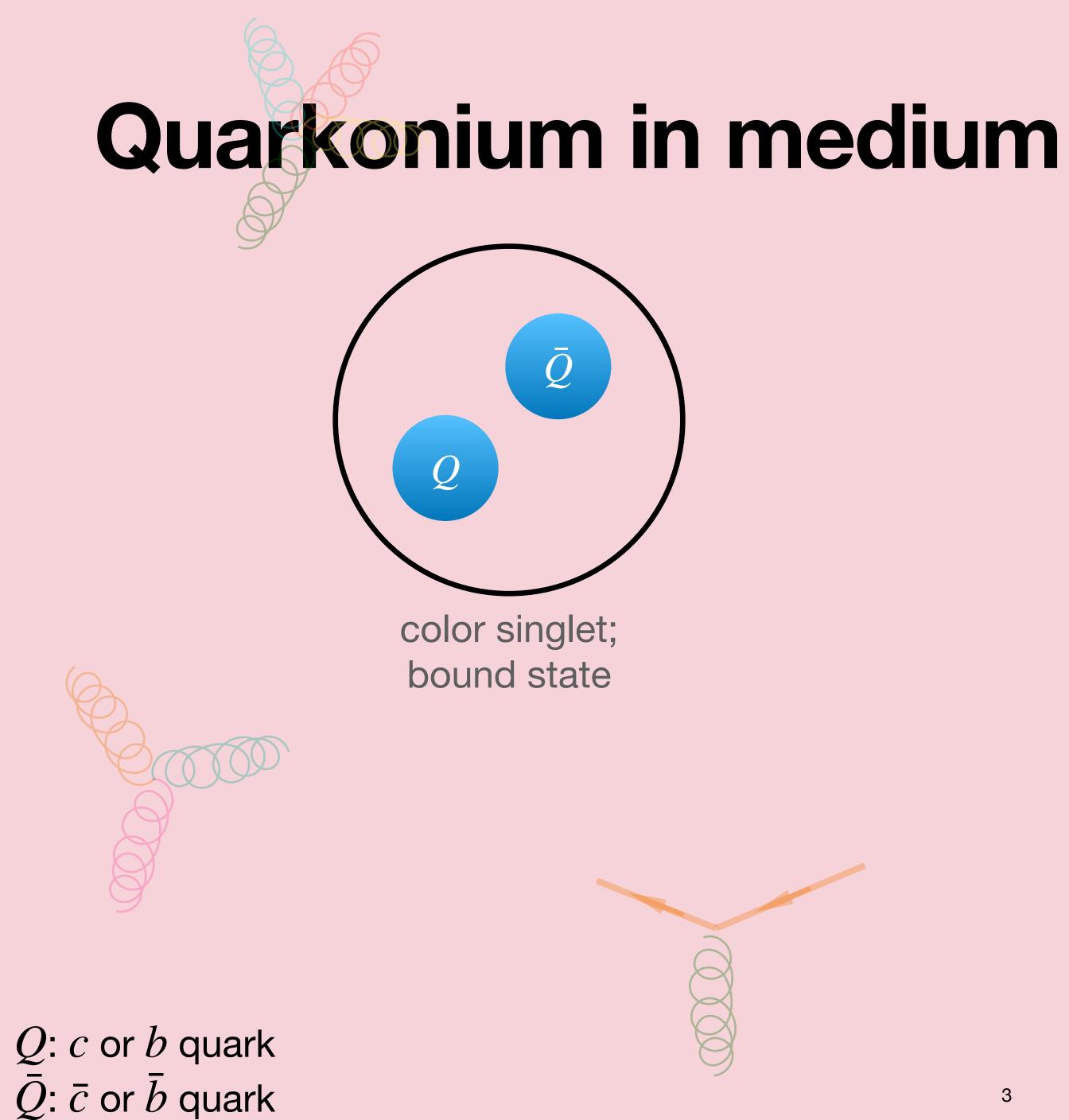
Quarkonium in Heavy-Ion Collisions

- Heavy quarks and quarkonia are amongst the most informative probes of the QGP.
- To interpret the full wealth of data, we need a precise theoretical understanding of heavy quarks in a thermal medium,
 - o as single open heavy flavors, and
 - as pairs of heavy flavors that can bind into quarkonia.

This talk

credit: Paul Sorensen and Chun Shen, 1304.3634

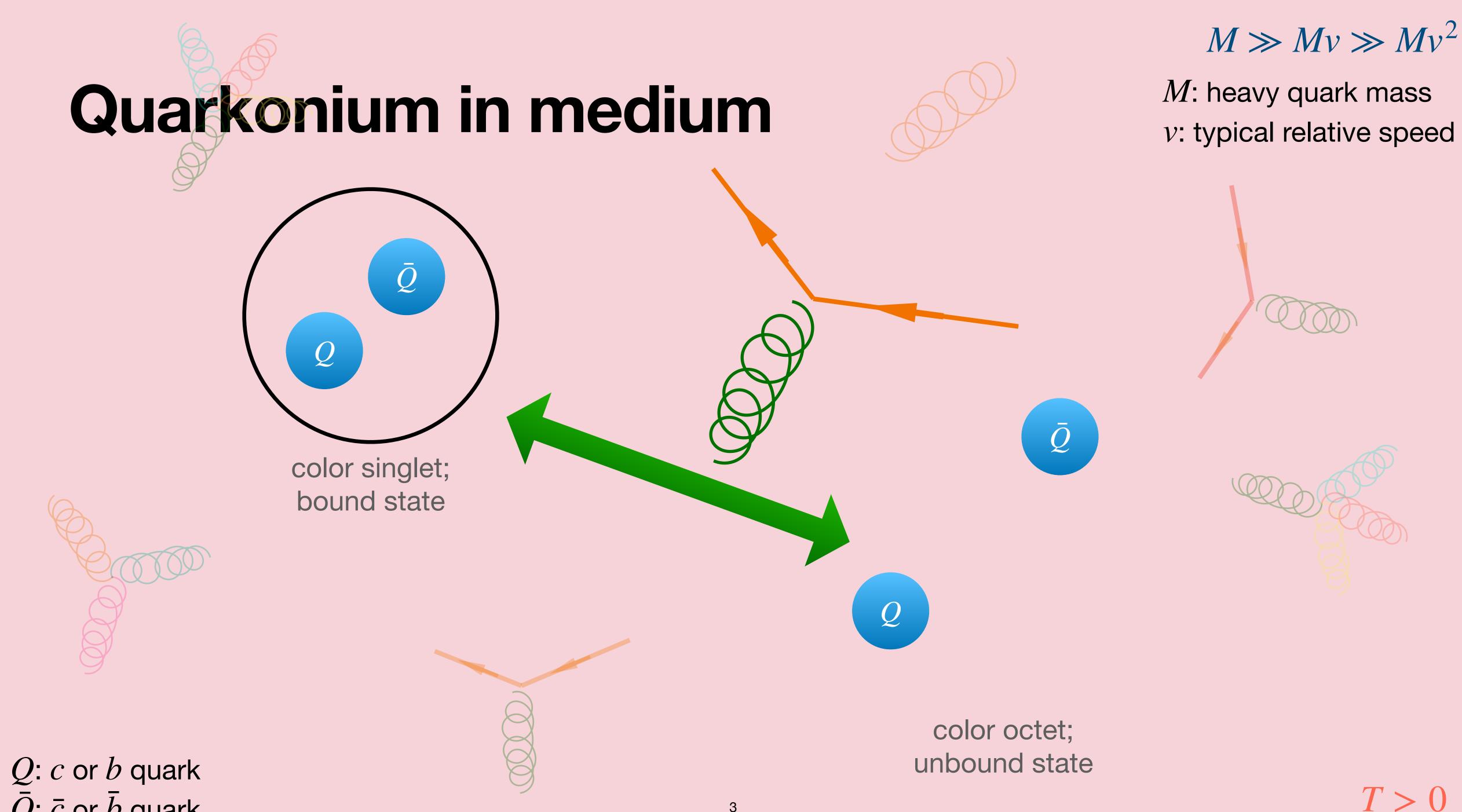




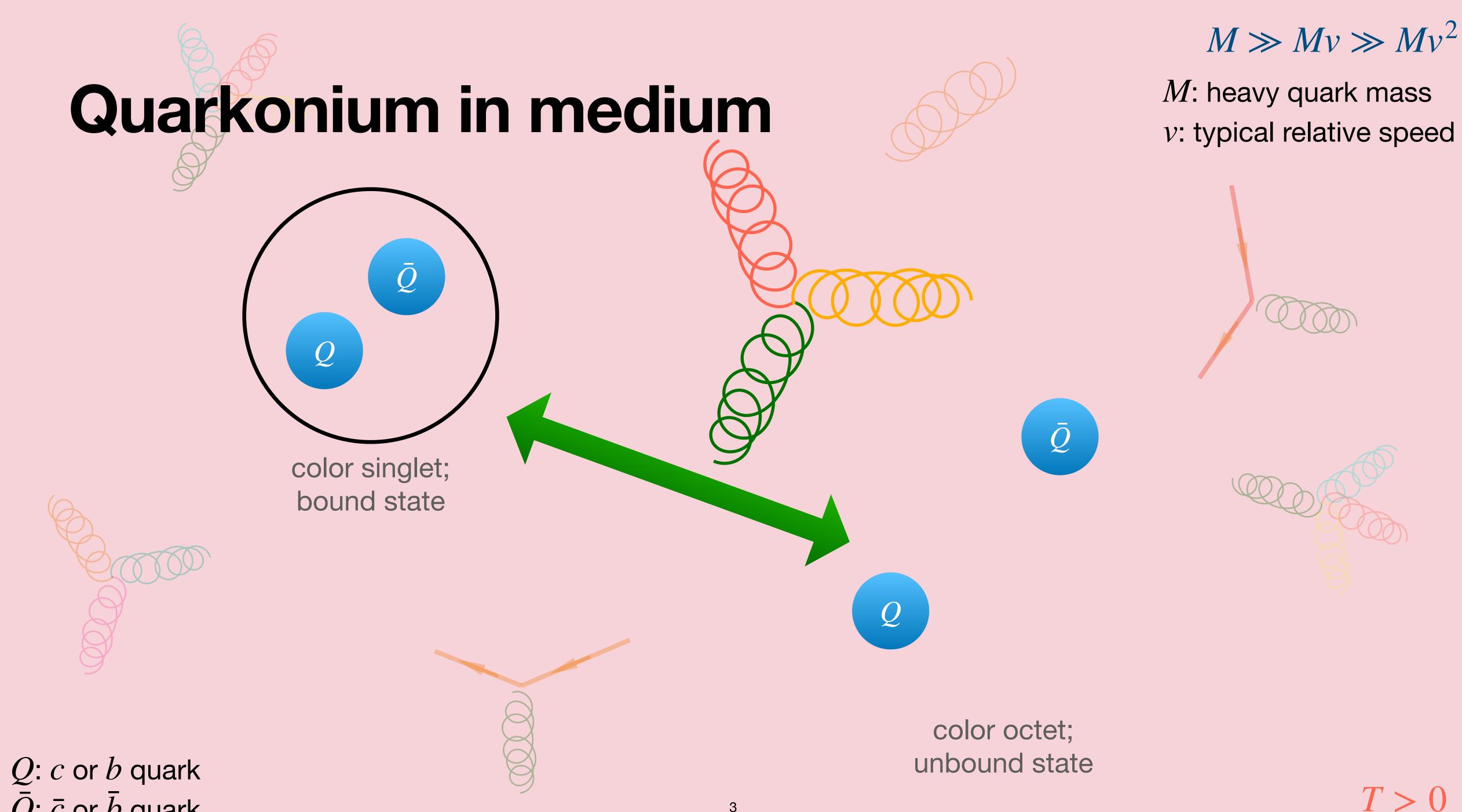
 $M \gg Mv \gg Mv^2$

M: heavy quark mass v: typical relative speed

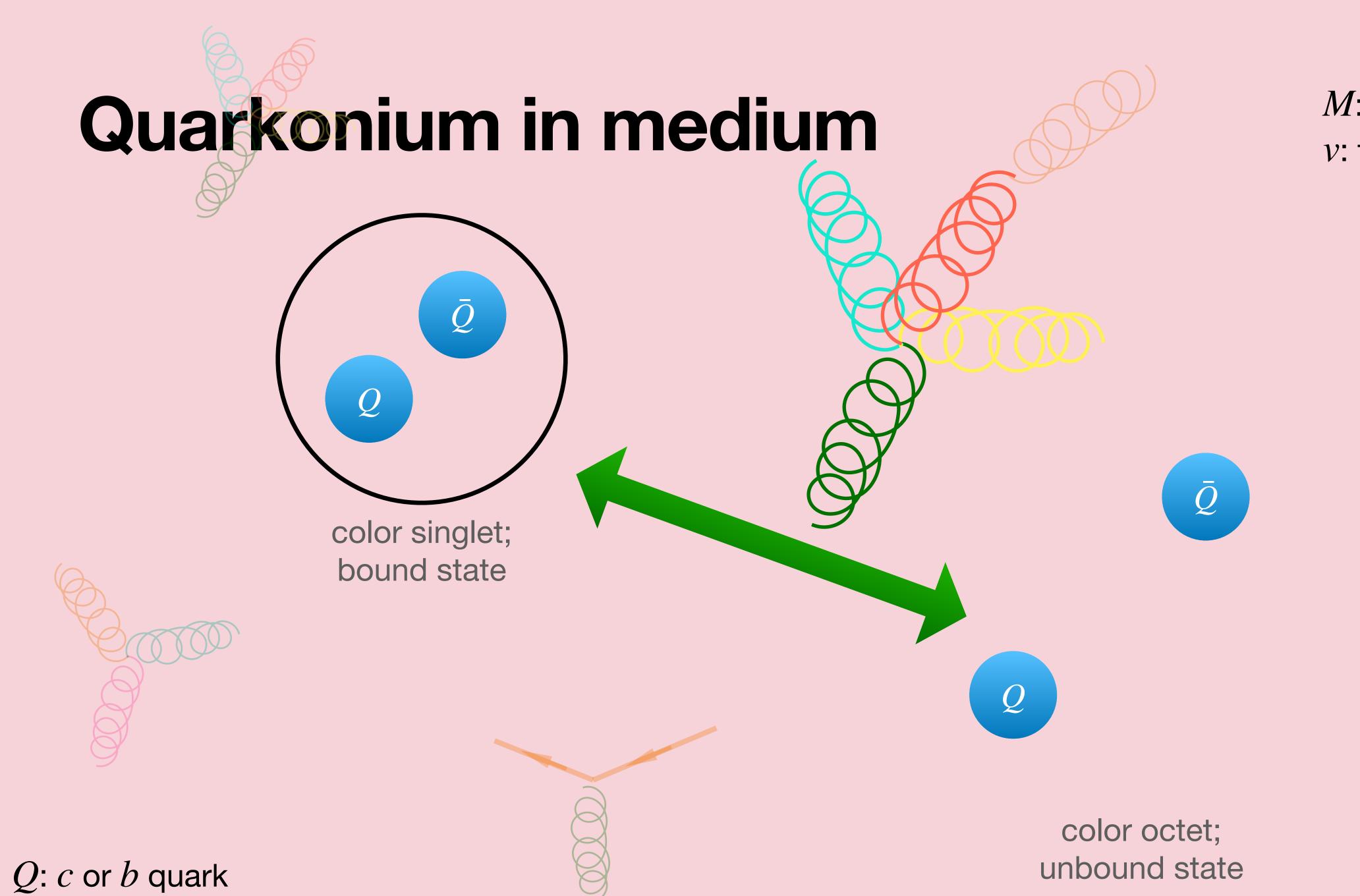




 \bar{Q} : \bar{c} or \bar{b} quark



 \bar{Q} : \bar{c} or \bar{b} quark



 \bar{Q} : \bar{c} or \bar{b} quark

 $M \gg Mv \gg Mv^2$

M: heavy quark mass v: typical relative speed

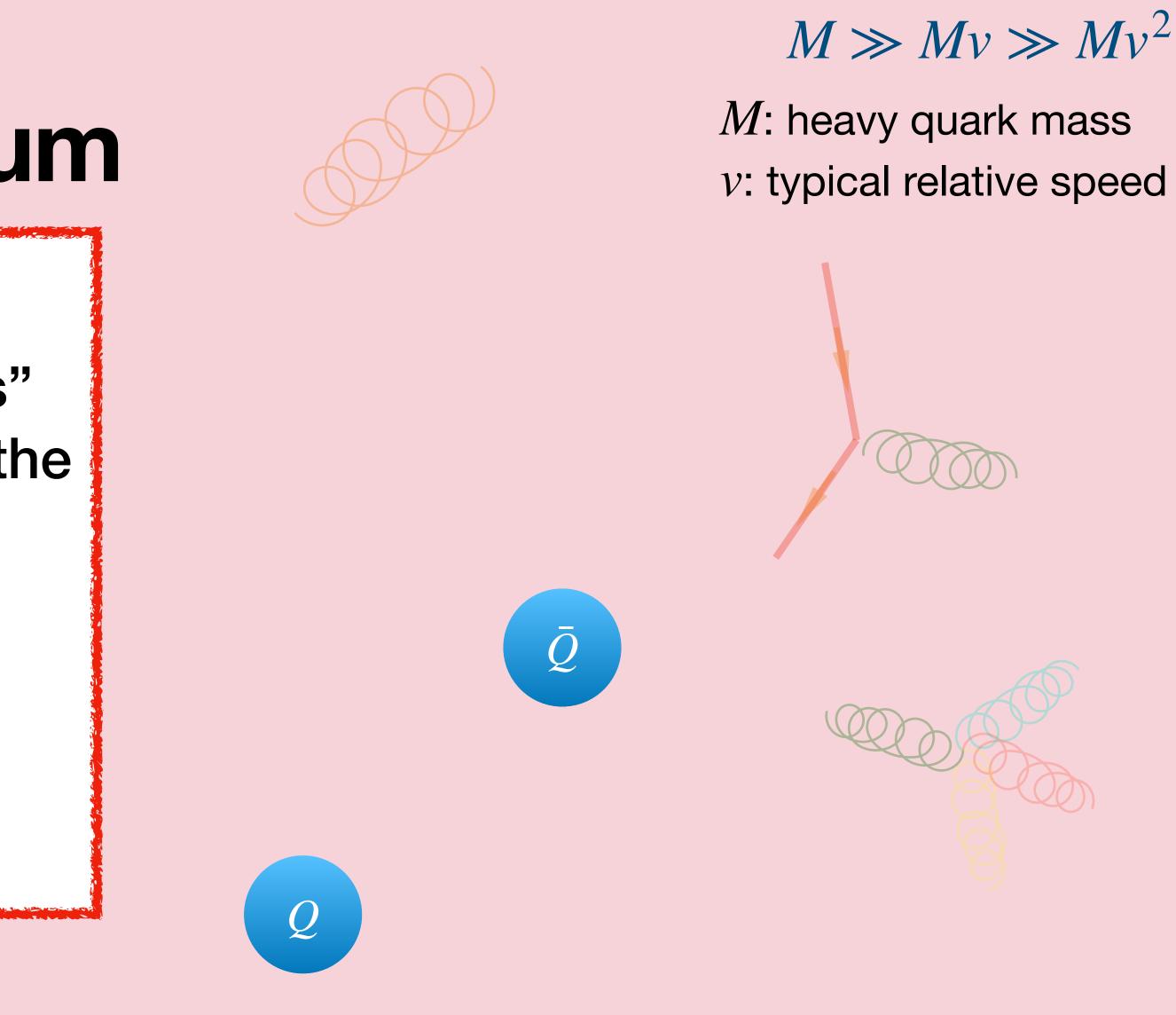


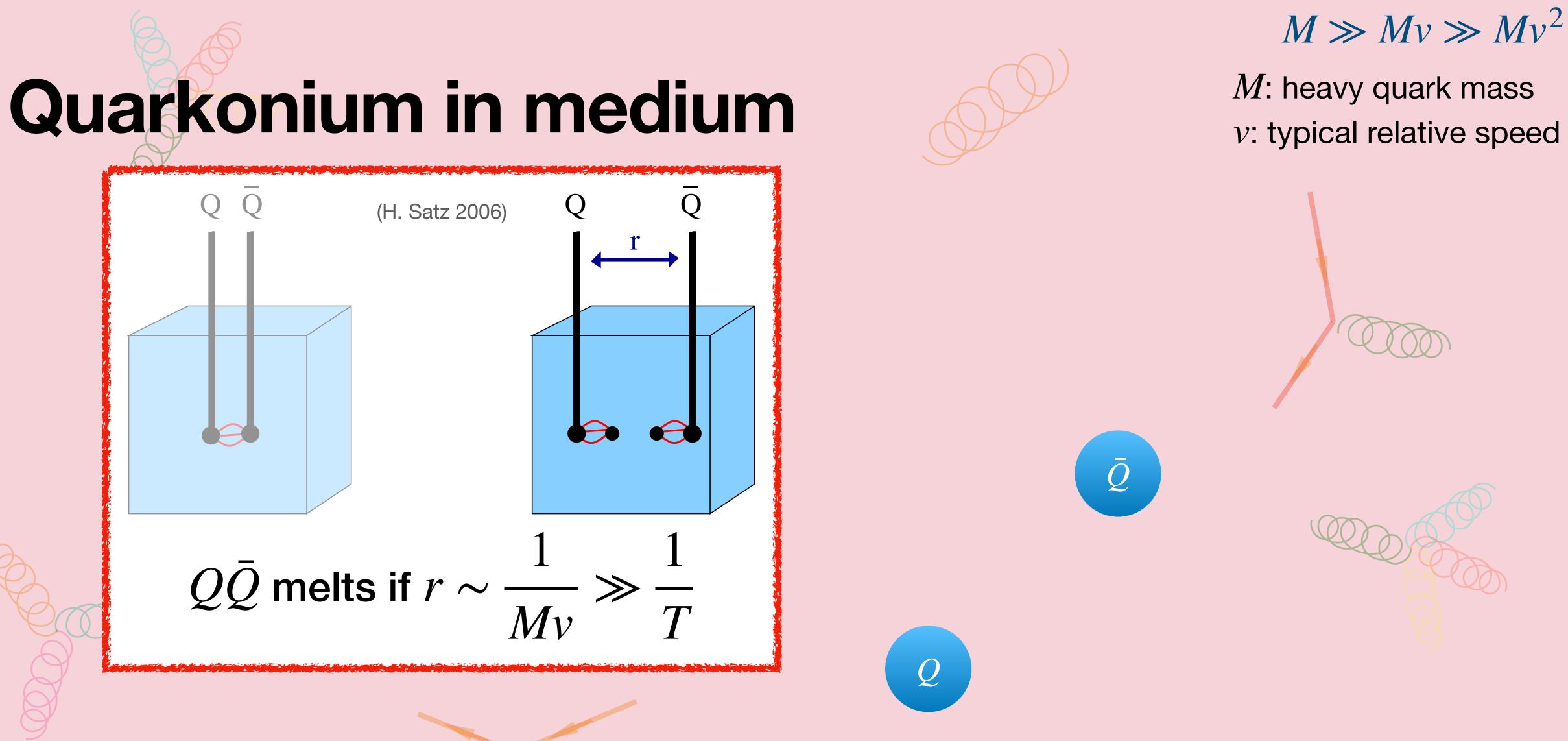
Quarkonium in medium

At high T, quarkonium "melts" because the medium screens the interactions between heavy quarks (Matsui & Satz 1986)

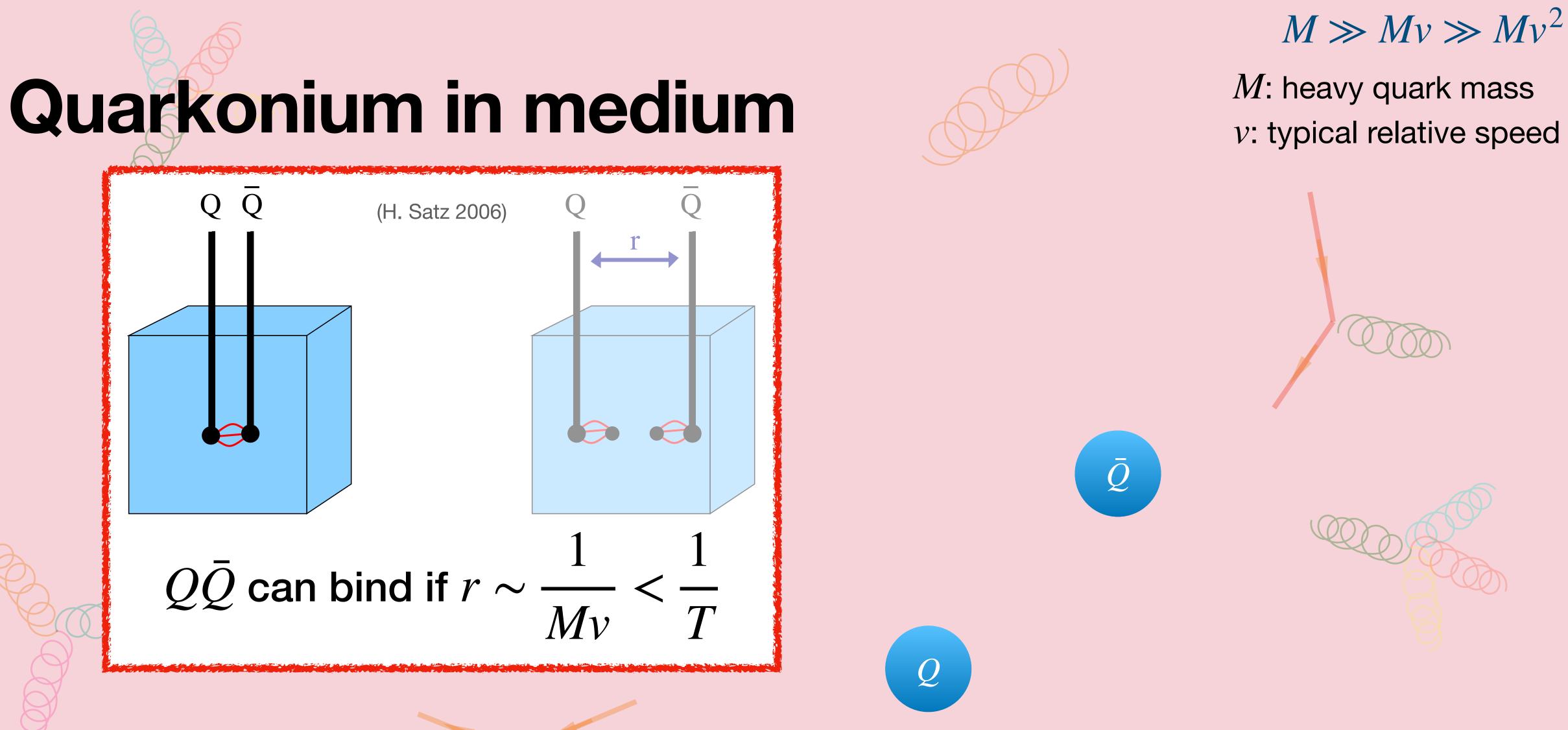
 $Q\bar{Q} \text{ melts if } r \sim \frac{1}{Mv} \gg \frac{1}{T}$

Q: c or b quark \bar{Q} : \bar{c} or \bar{b} quark

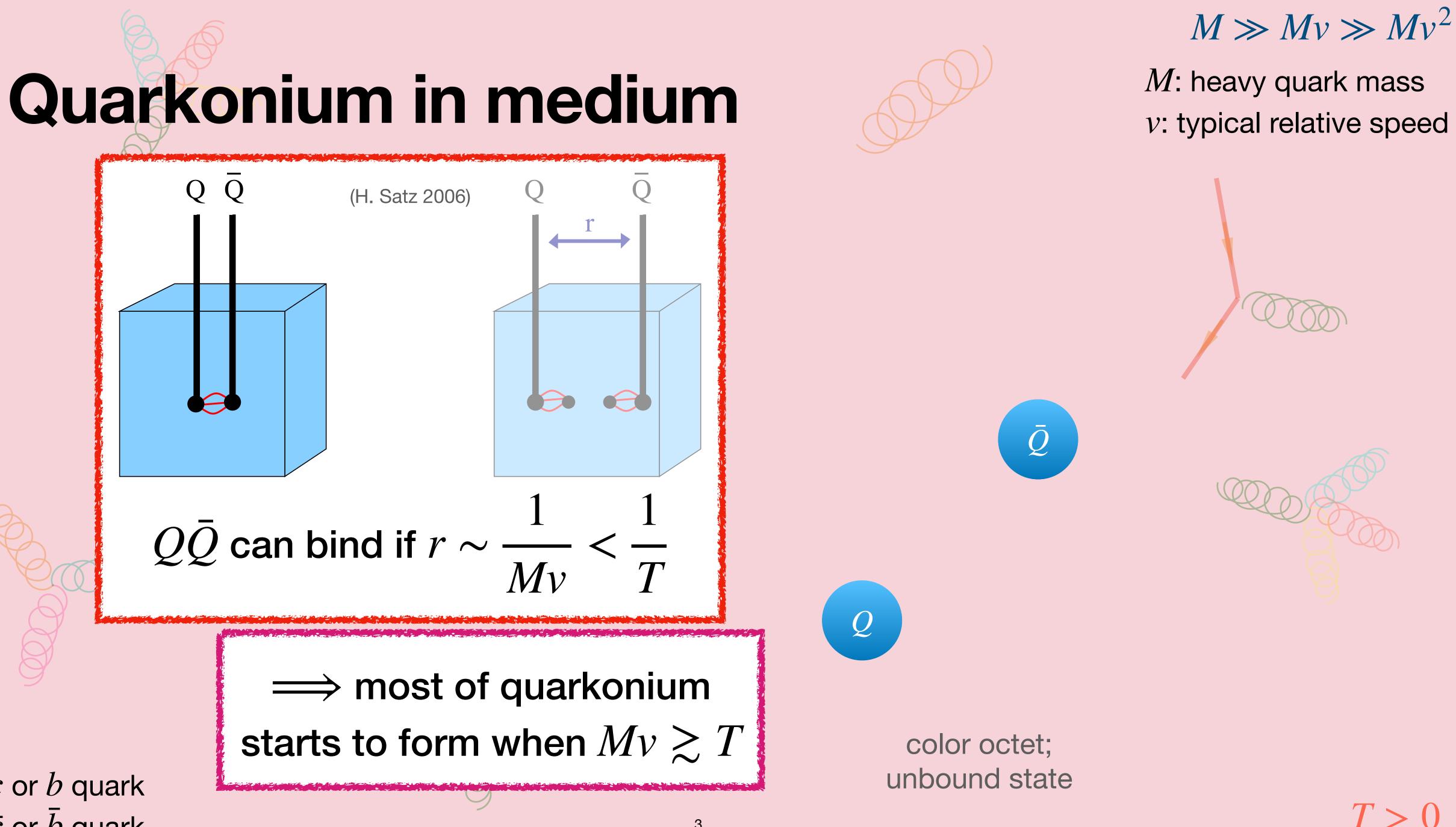




Q: c or b quark \bar{Q} : \bar{c} or \bar{b} quark



Q: c or b quark \bar{Q} : \bar{c} or \bar{b} quark



Q: c or b quark \bar{Q} : \bar{c} or \bar{b} quark

Quarkonium in medium

 \bar{Q}

color singlet; bound state

 \mathcal{Q}

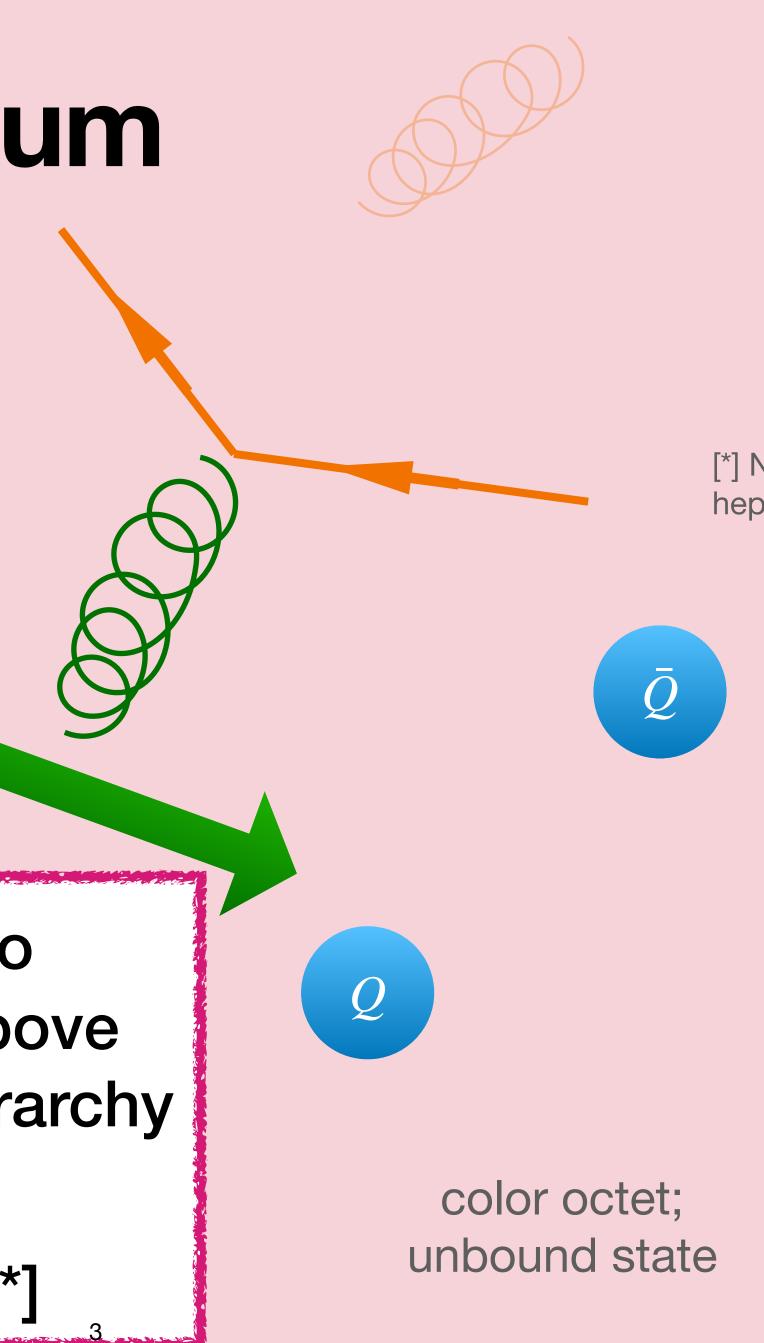
Q: c or b quark

 \bar{Q} : \bar{c} or \bar{b} quark

 \implies We need to understand the above dynamics in the hierarchy

 $Mv \gg T$

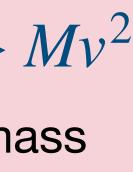
 \implies pNRQCD [*]



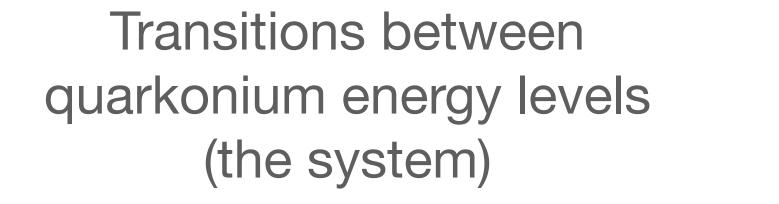
 $M \gg Mv \gg Mv^2$

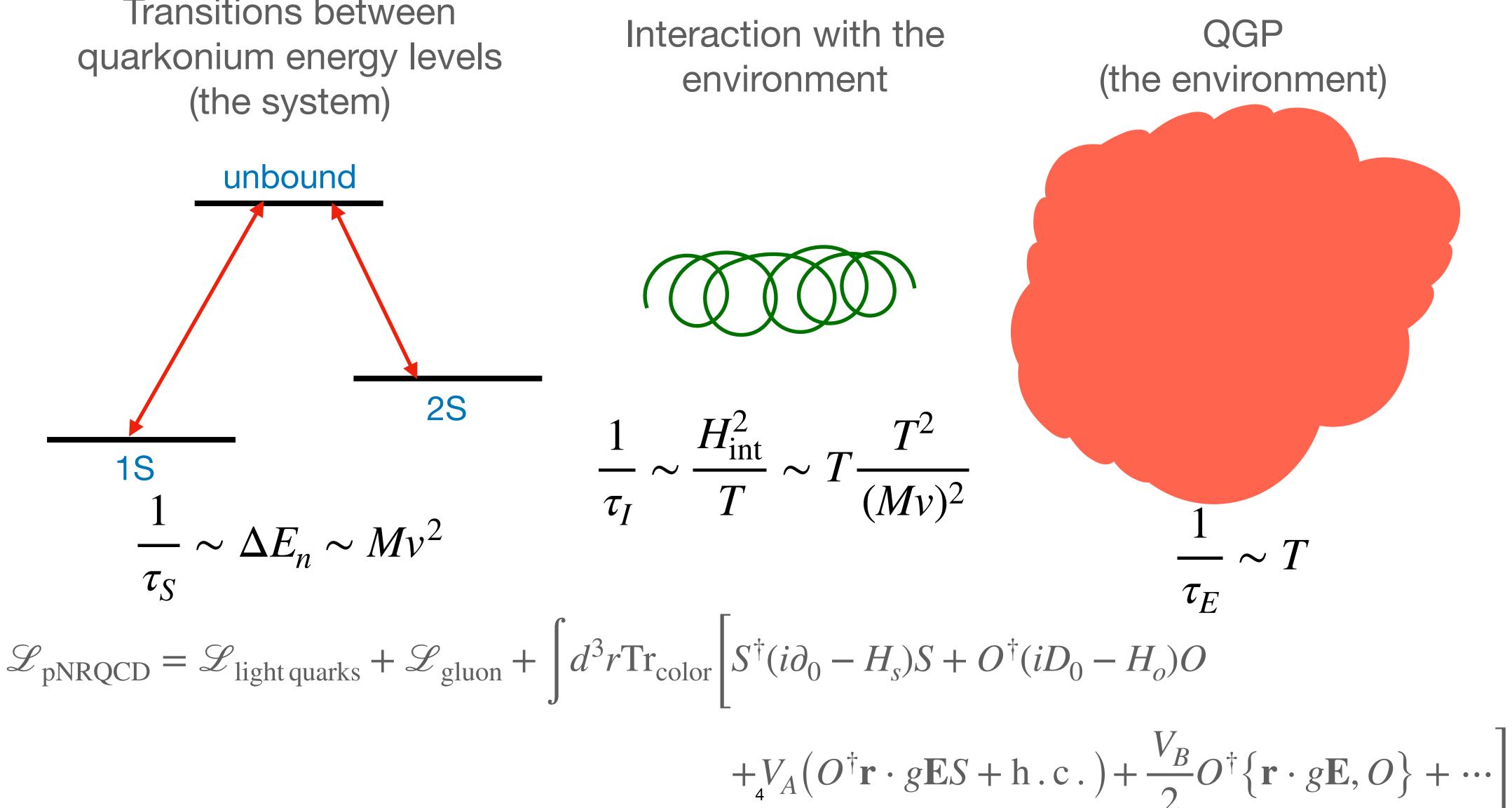
M: heavy quark mass v: typical relative speed

[*] N. Brambilla, A. Pineda, J. Soto. A. Vairo hep-ph/9907240, hep-ph/0410047



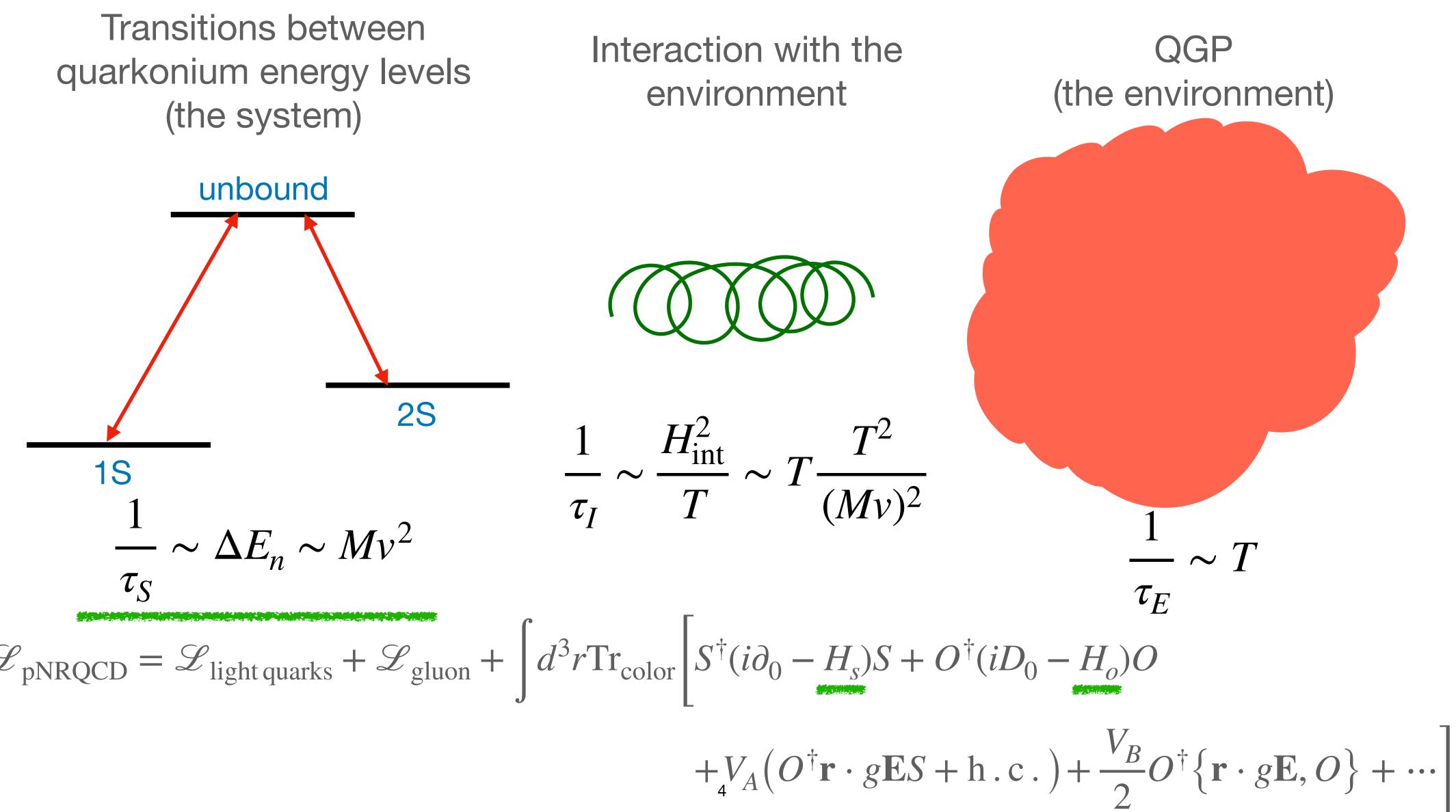
Time scales of quarkonia

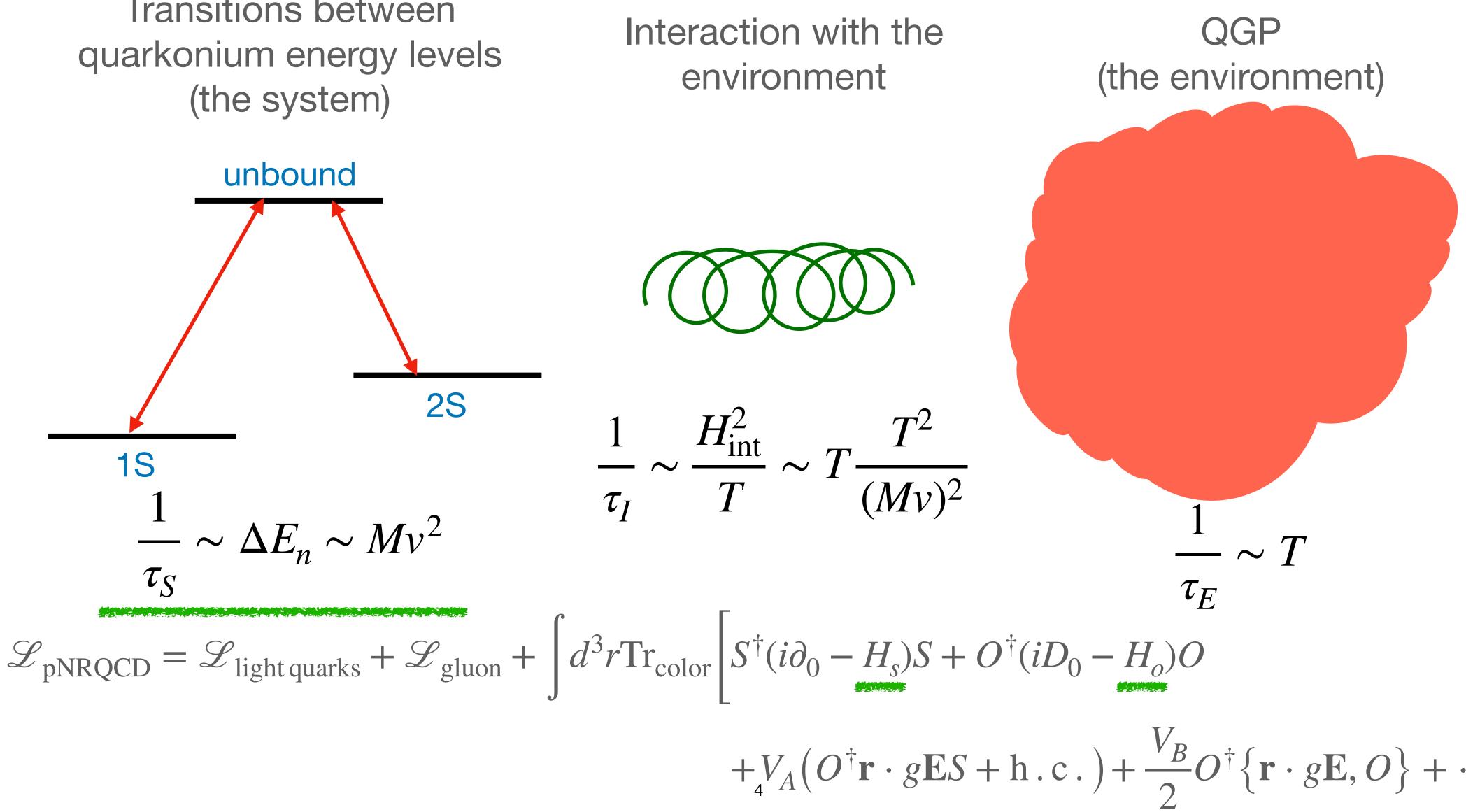




X. Yao, hep-ph/2102.01736

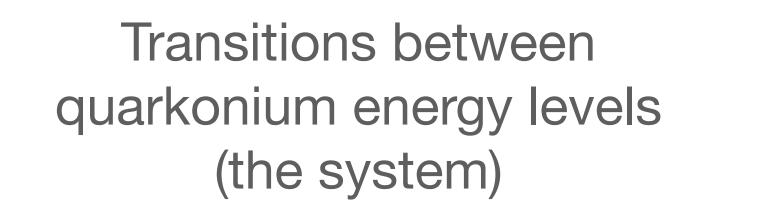
Time scales of quarkonia

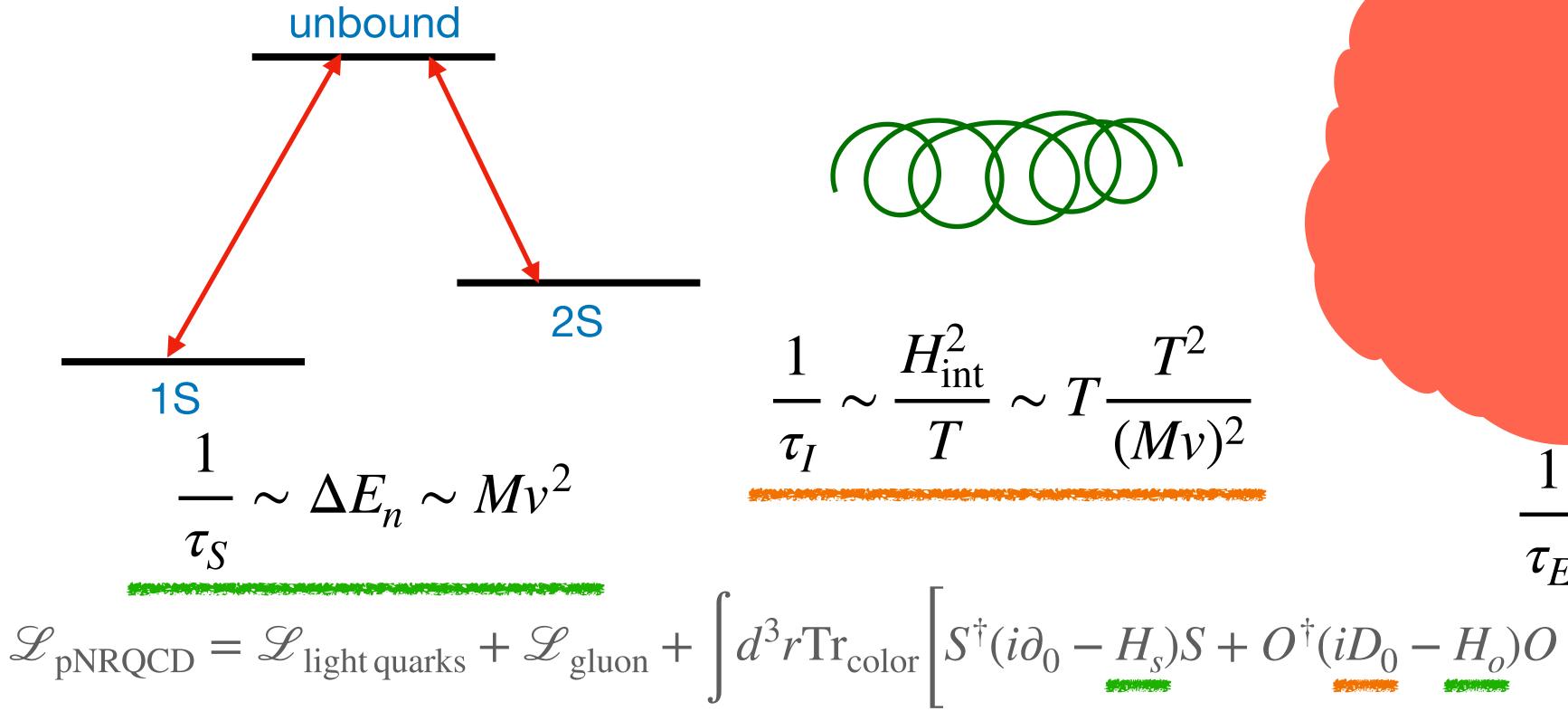




X. Yao, hep-ph/2102.01736

Time scales of quarkonia

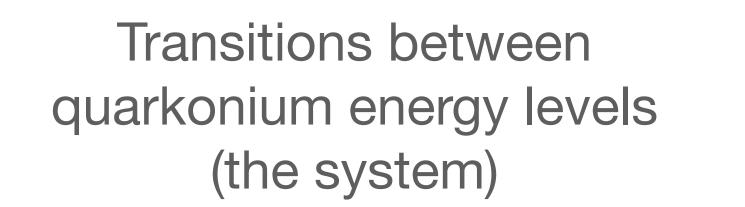


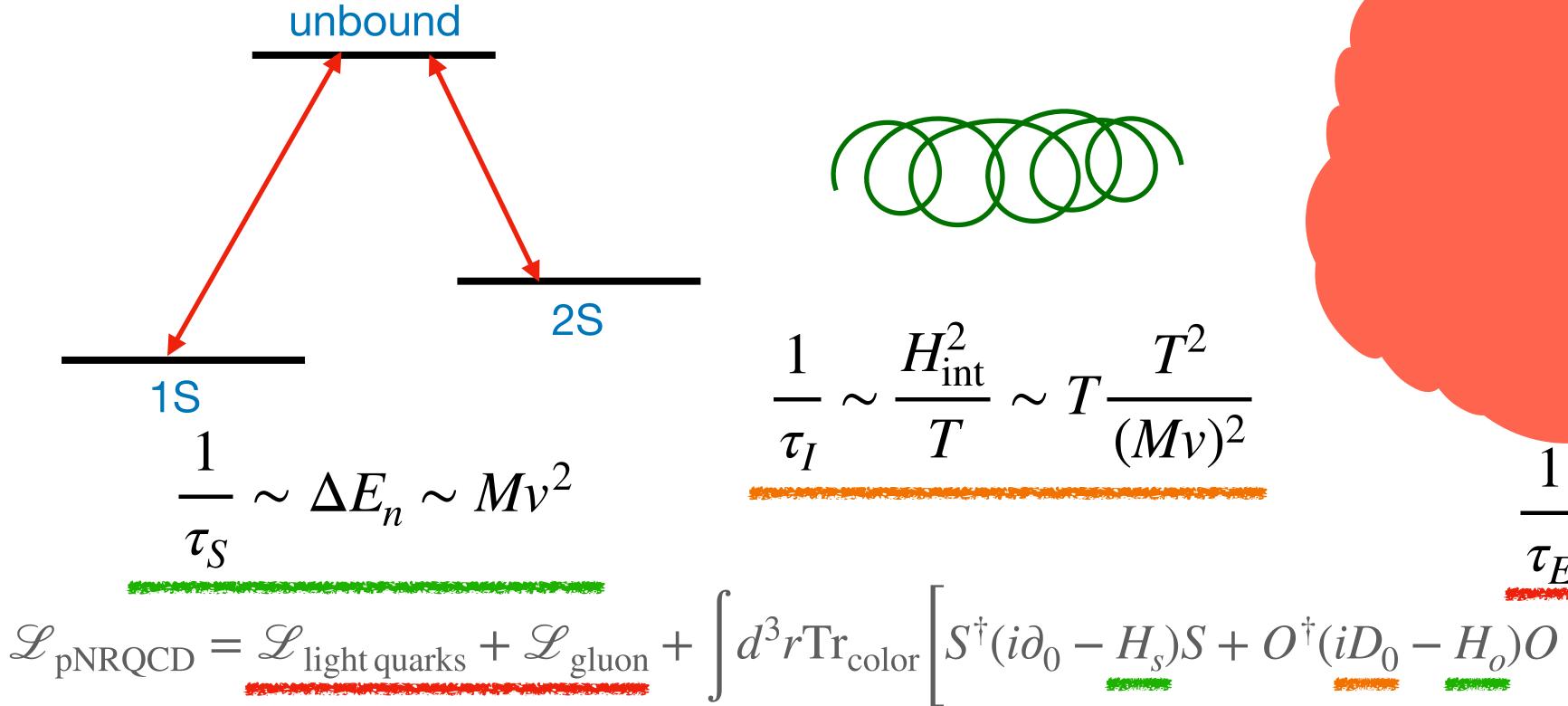


X. Yao, hep-ph/2102.01736

Interaction with the QGP (the environment) environment $\sim \frac{H_{\rm int}^2}{\sim} \sim T - \frac{T^2}{\sim}$ $(Mv)^2$ $- \sim T$ au_E $+ V_A \left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S + \mathbf{h} \cdot \mathbf{c} \right) + \frac{V_B}{2} O^{\dagger} \left\{ \mathbf{r} \cdot g \mathbf{E}, O \right\} + \cdots$

Time scales of quarkonia



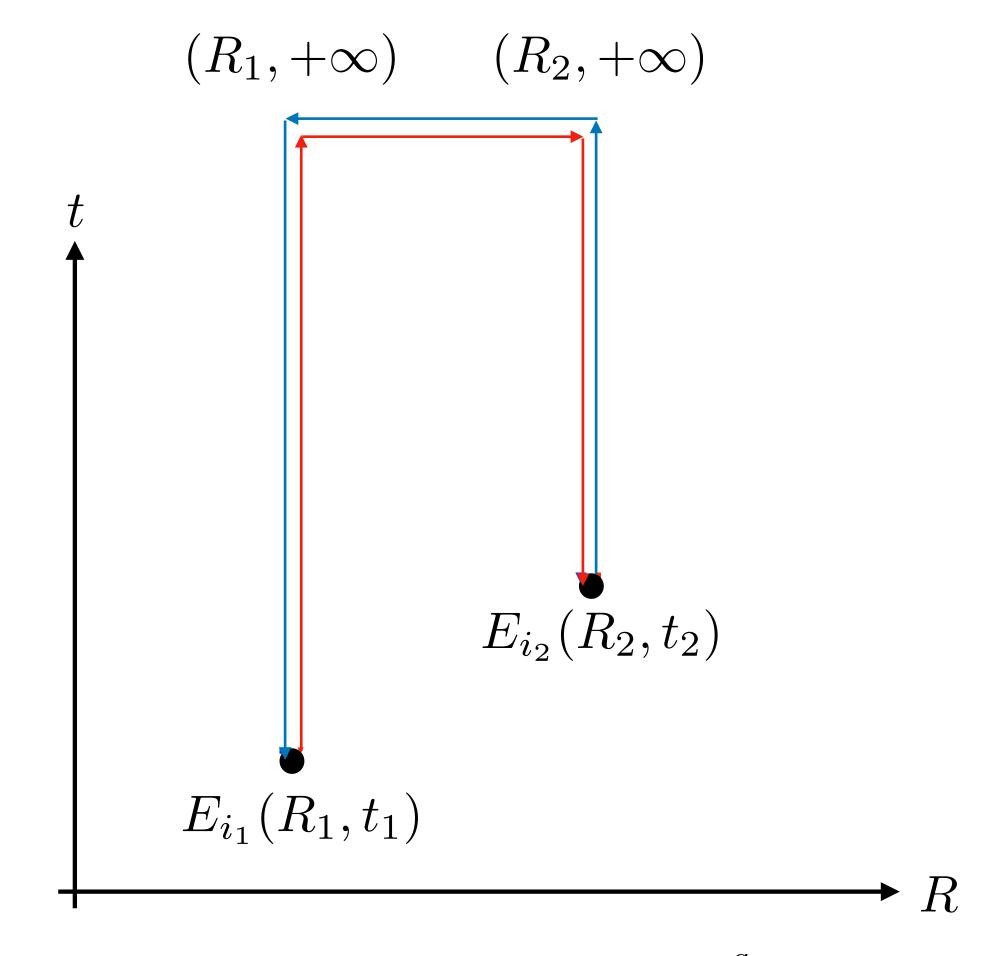


X. Yao, hep-ph/2102.01736

Interaction with the QGP (the environment) environment $\sim \frac{H_{\rm int}^2}{\sim} \sim T - \frac{T^2}{\sim}$ $(M_V)^2$ $- \sim T$ τ_E $+ V_A \left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S + \mathbf{h} \cdot \mathbf{c} \right) + \frac{V_B}{2} O^{\dagger} \left\{ \mathbf{r} \cdot g \mathbf{E}, O \right\} + \cdots$

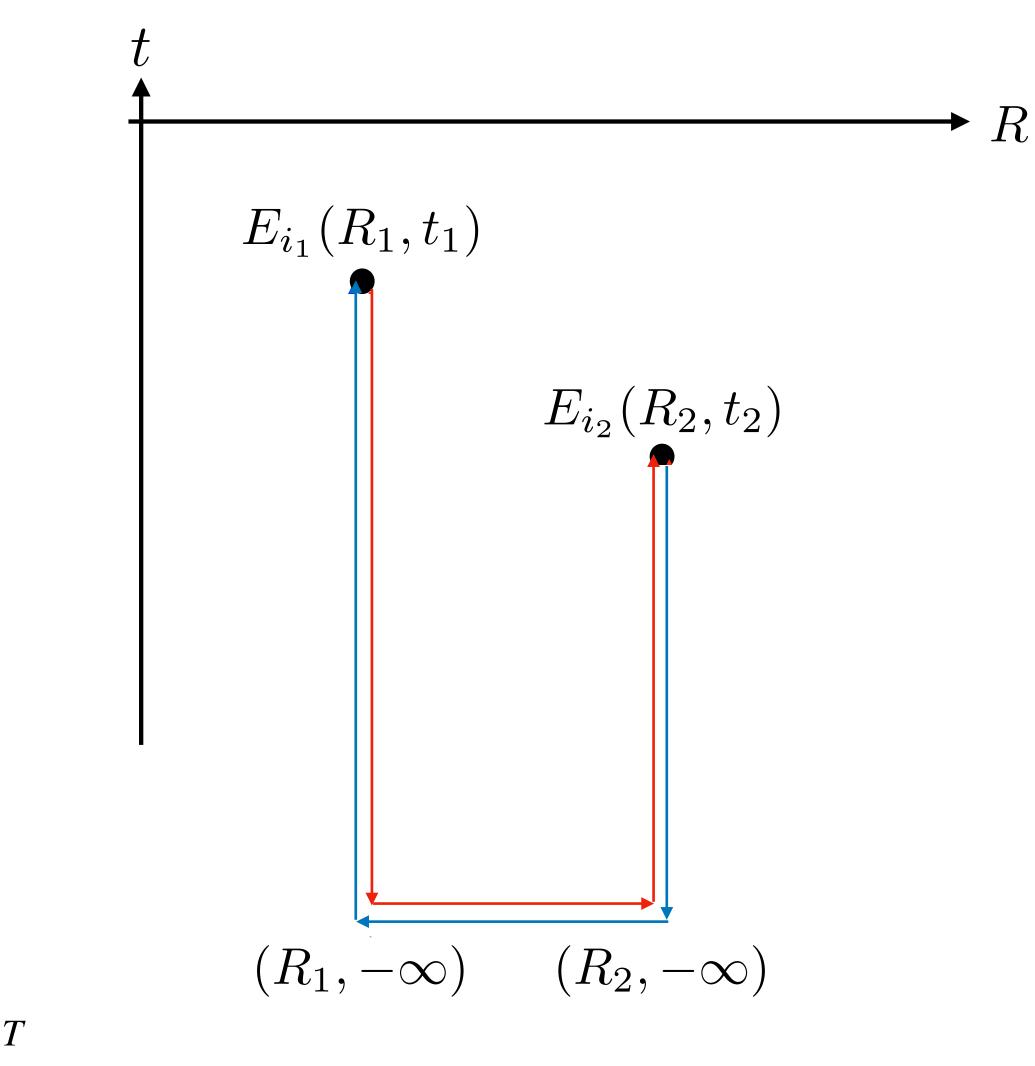
What do we need to calculate?

QGP chromoelectric correlators for quarkonium transport $[g_E^{--}]_{i,i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \langle ($

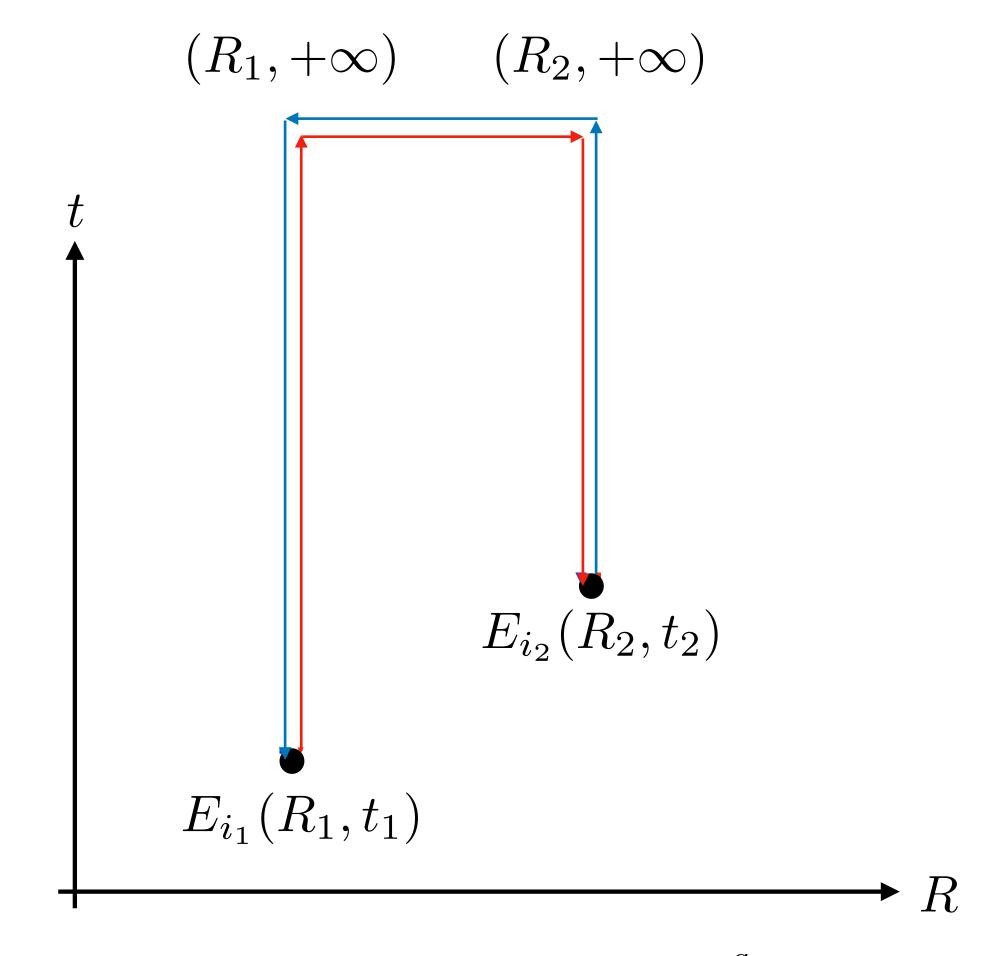


 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_6^a \right\rangle_T$

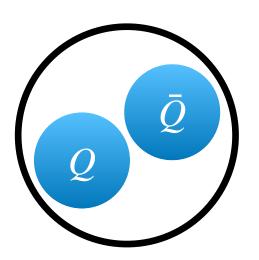
 $[g_{E}^{--}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(\mathscr{W}_{2'} E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \right)^{a} \left(E_{i_{1}}(\mathbf{R}_{1}, t_{1}) \mathscr{W}_{1'} \right)^{a} \right\rangle_{T}$



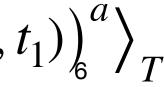
QGP chromoelectric correlators for quarkonium transport



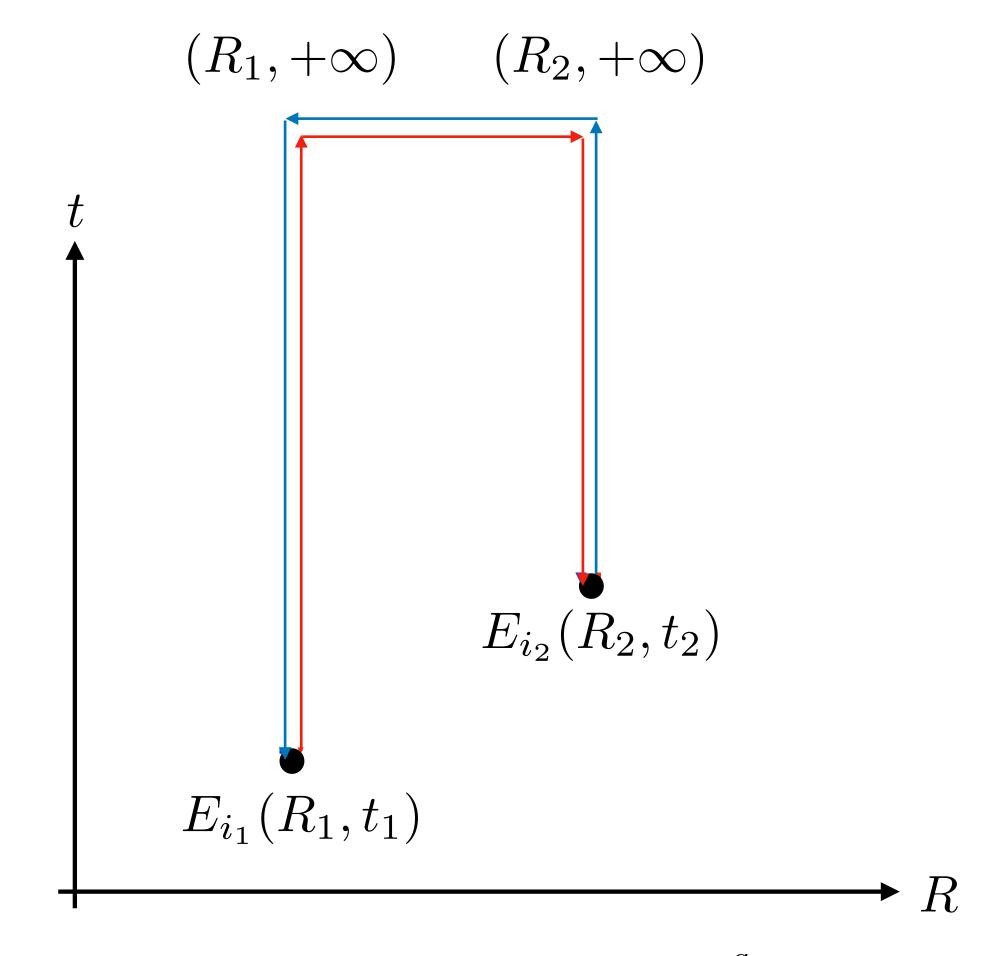
 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{\mathbb{R}}^a \right\rangle_T$



bound state: color singlet

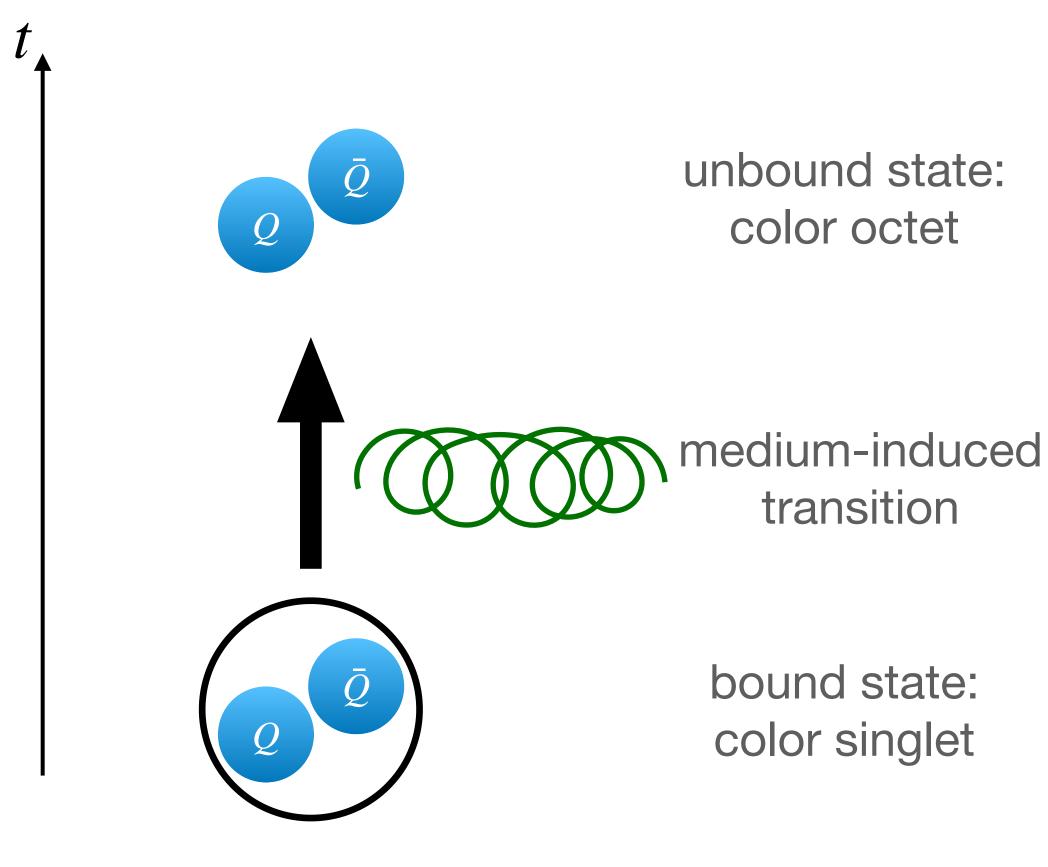


QGP chromoelectric correlators for quarkonium transport

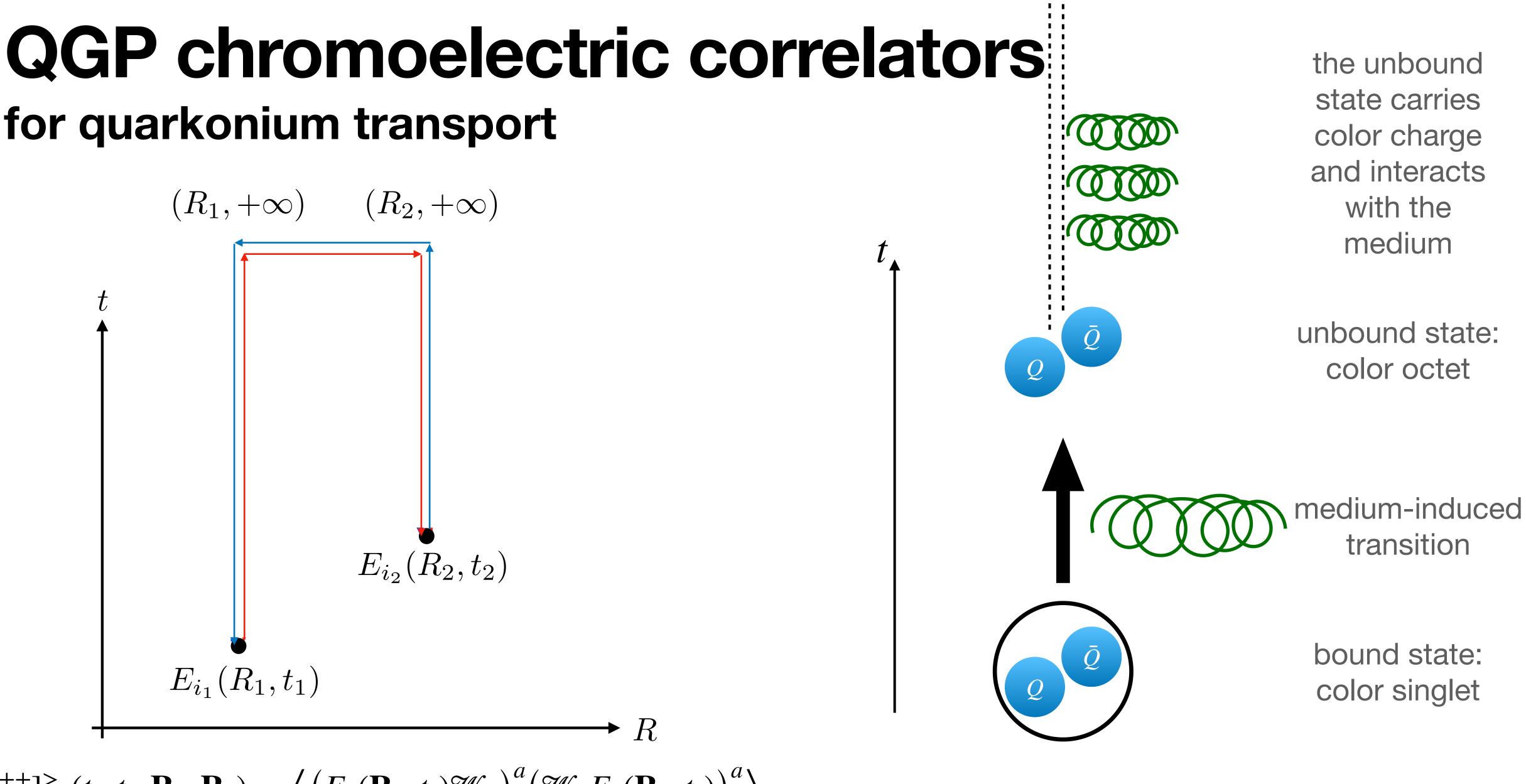


 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, \mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \right\rangle \right\rangle$

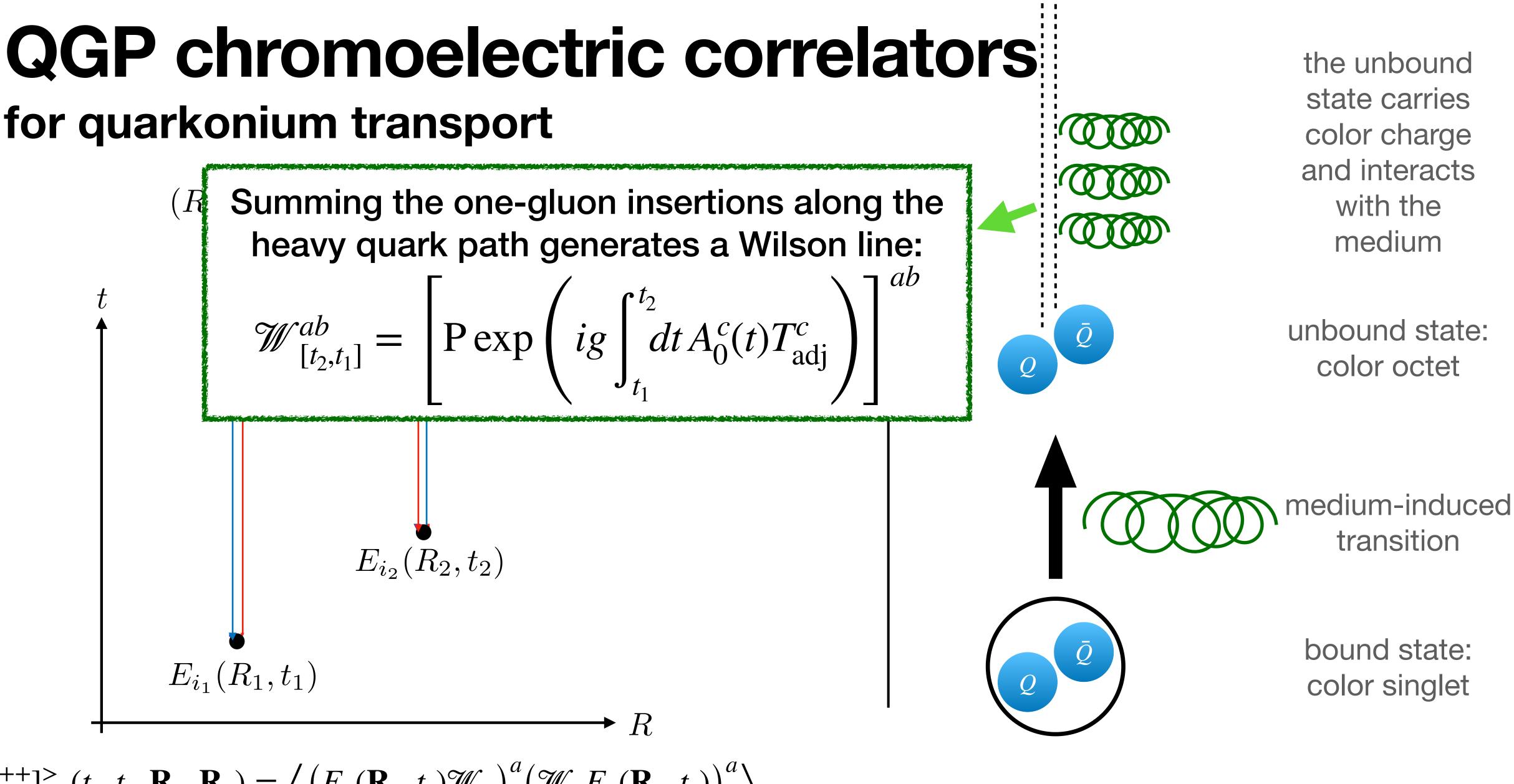
X. Yao and T. Mehen, hep-ph/2009.02408



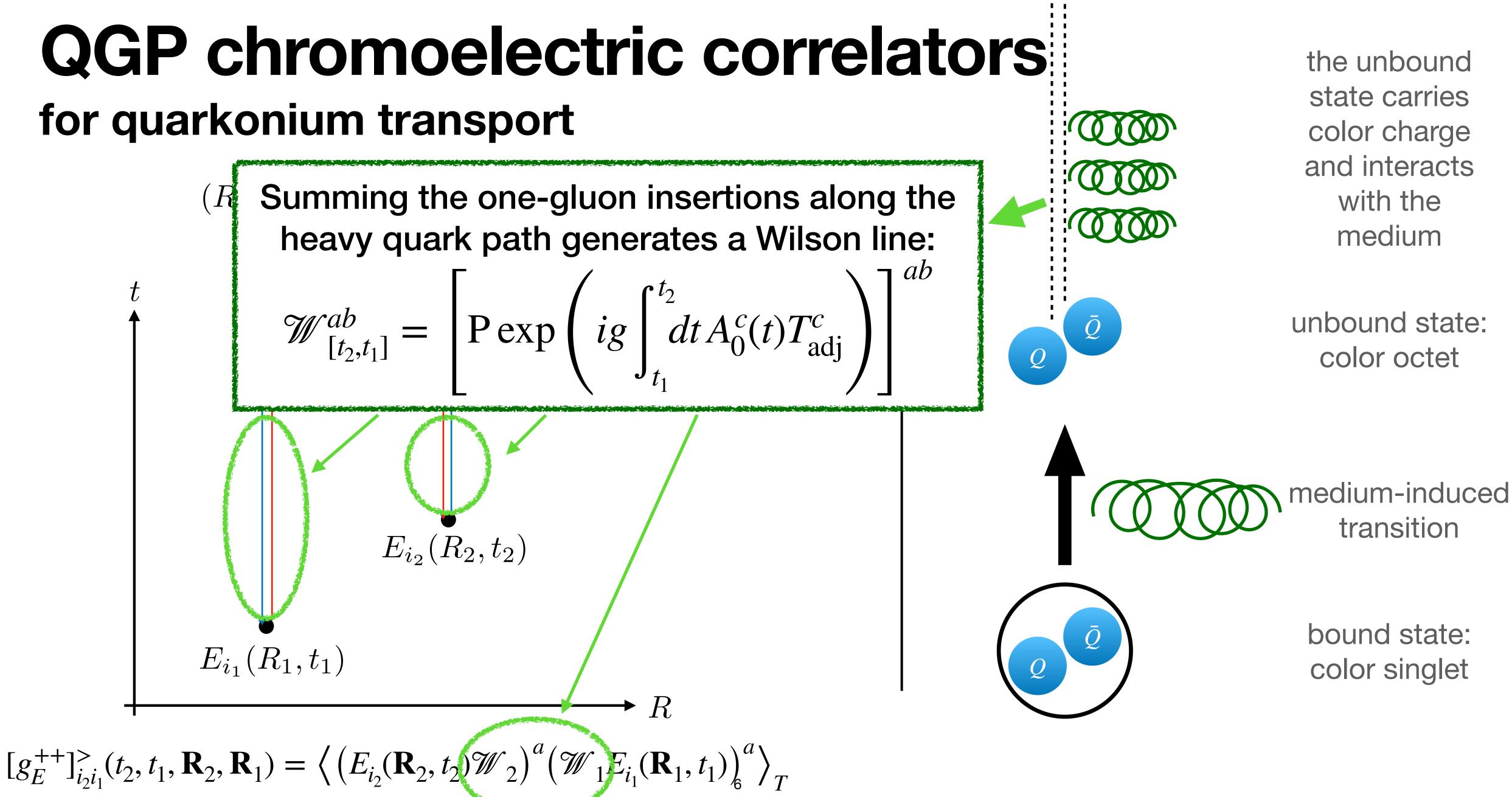
$$, t_1) \Big)_{6}^{a} \Big\rangle_{T}$$

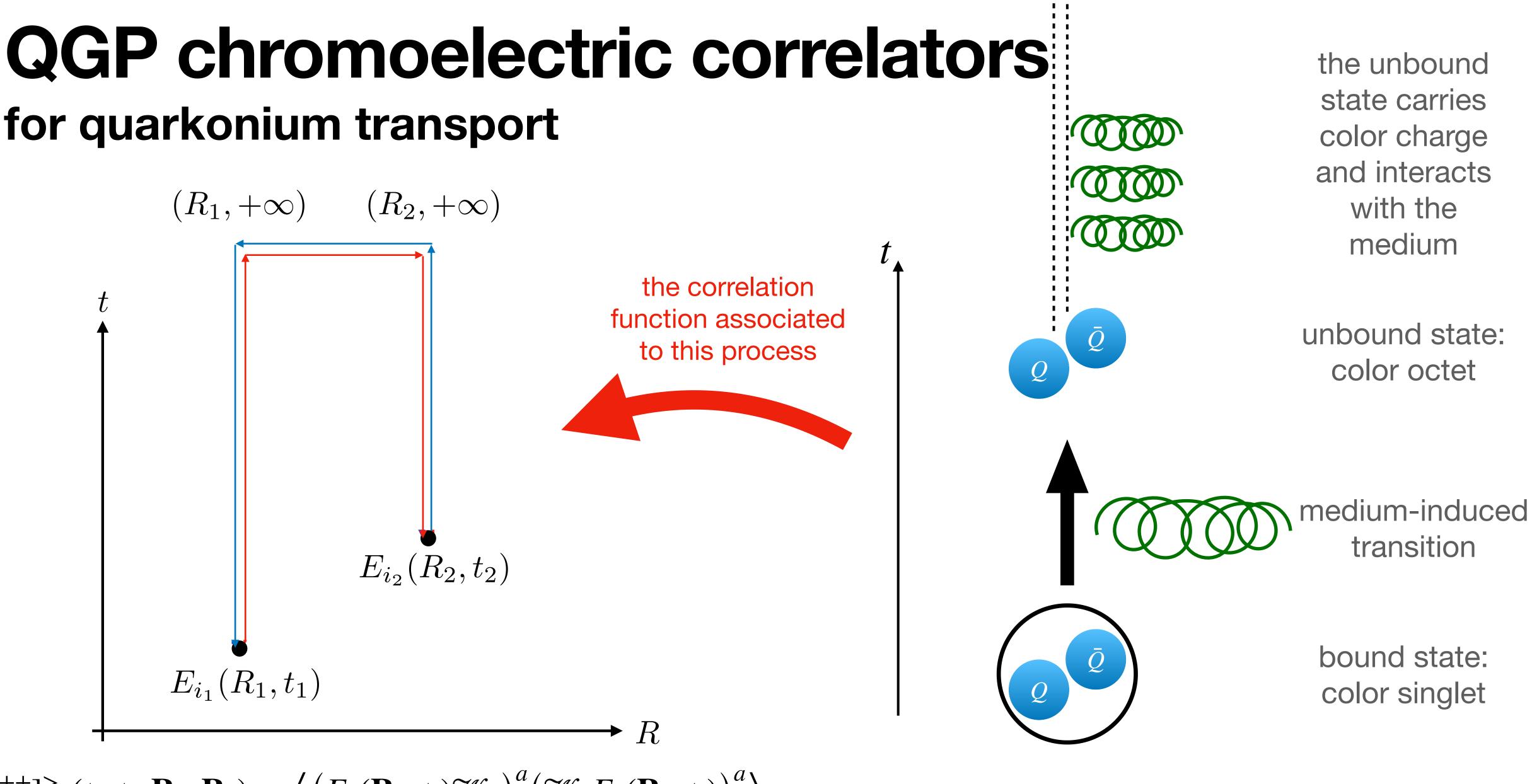


 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{\mathbb{R}}^a \right\rangle_T$



 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{\mathbb{R}}^a \right\rangle_T$



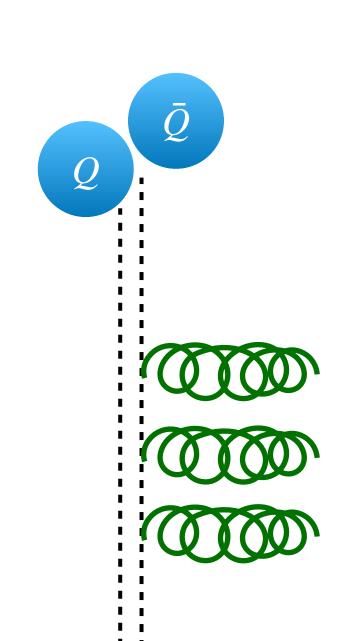


 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_{\mathcal{A}}^a \right\rangle_{T}$

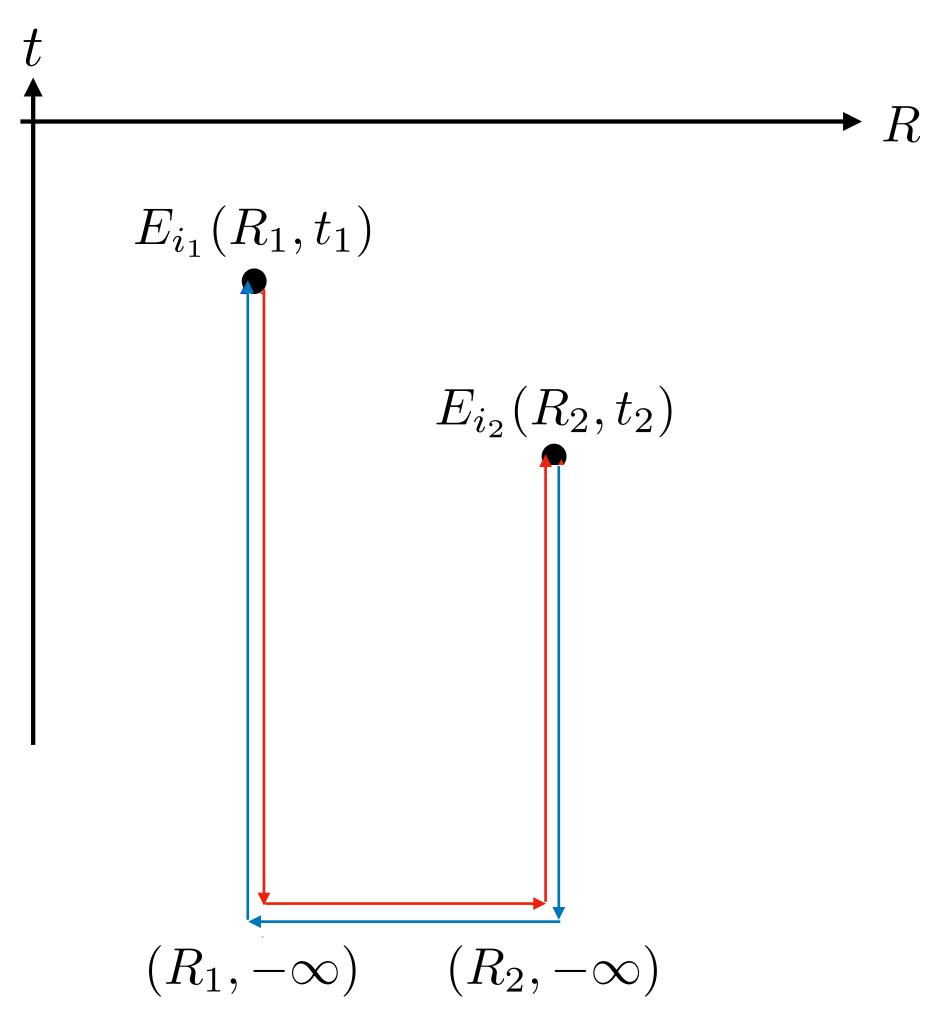
QGP chromoelectric correlators for quarkonium transport $[g_E^{--}]_{i,i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \langle ($

unbound state: color octet

the unbound state carries color charge and interacts with the medium



 $[g_{E}^{--}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(\mathscr{W}_{2'} E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \right)^{a} \left(E_{i_{1}}(\mathbf{R}_{1}, t_{1}) \mathscr{W}_{1'} \right)^{a} \right\rangle_{T}$

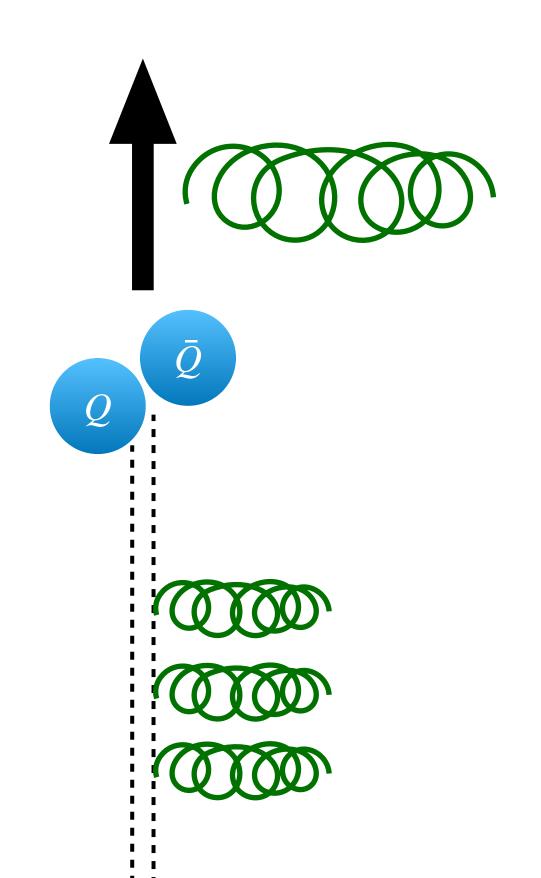


QGP chromoelectric correlators for quarkonium transport $[g_E^{--}]_{i,i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \langle ($

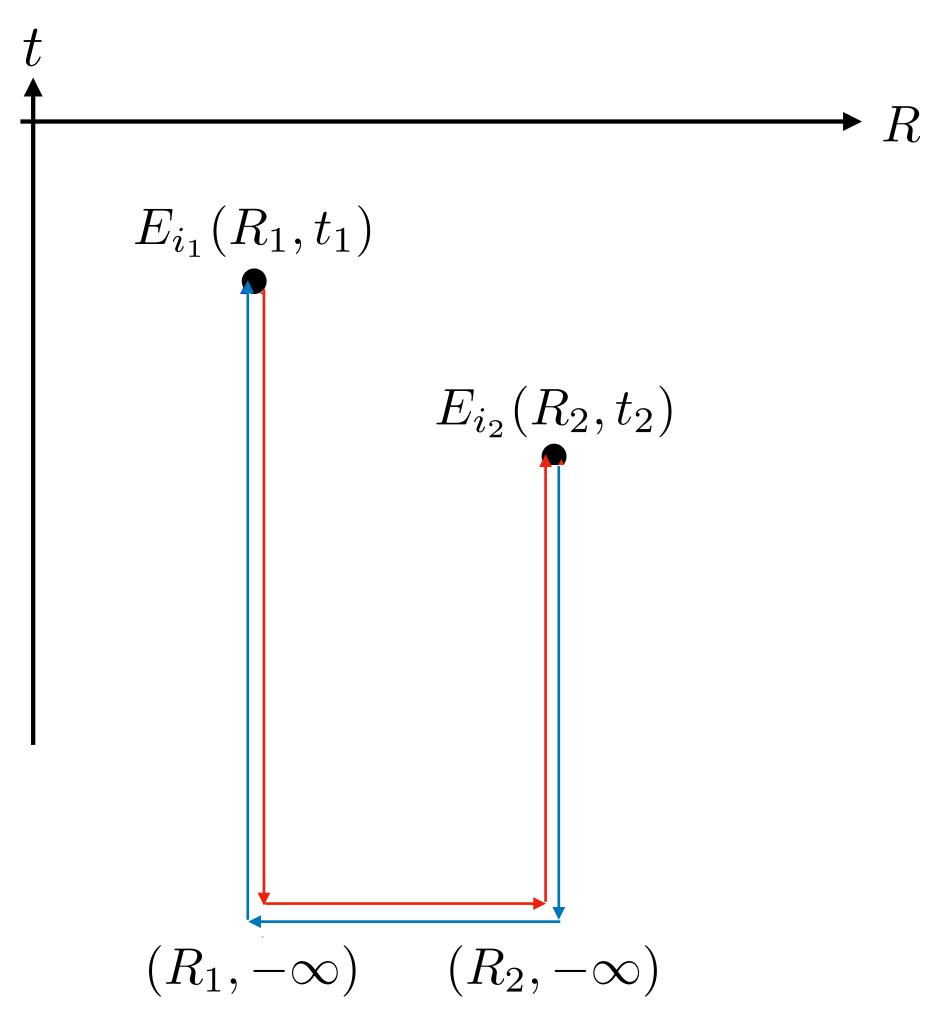
medium-induced transition

unbound state: color octet

the unbound state carries color charge and interacts with the medium



 $[g_{E}^{--}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(\mathscr{W}_{2'} E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \right)^{a} \left(E_{i_{1}}(\mathbf{R}_{1}, t_{1}) \mathscr{W}_{1'} \right)^{a} \right\rangle_{T}$



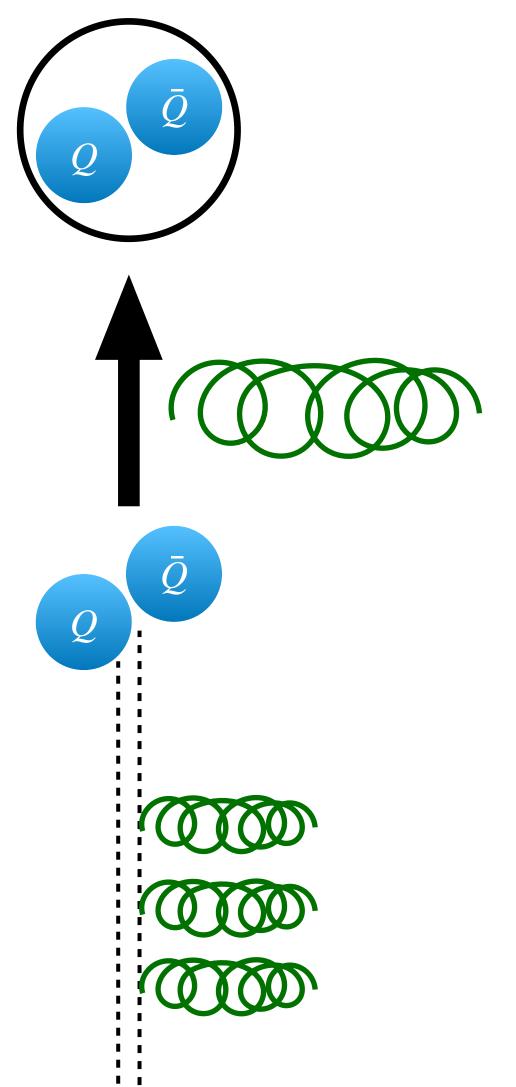
QGP chromoelectric correlators for quarkonium transport $[g_E^{--}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \langle ($

bound state: color singlet

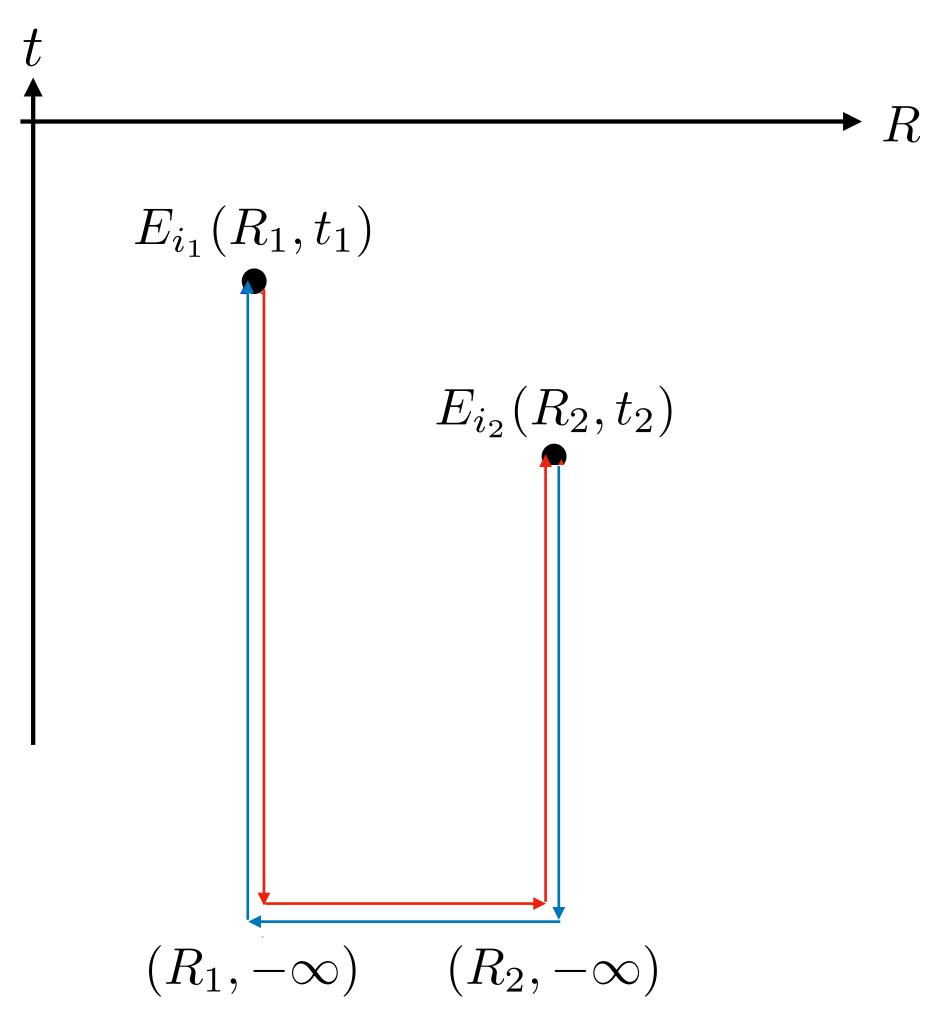
medium-induced transition

unbound state: color octet

the unbound state carries color charge and interacts with the medium



 $[g_{E}^{--}]_{i_{2}i_{1}}^{>}(t_{2},t_{1},\mathbf{R}_{2},\mathbf{R}_{1}) = \left\langle \left(\mathscr{W}_{2'}E_{i_{2}}(\mathbf{R}_{2},t_{2}) \right)^{a} \left(E_{i_{1}}(\mathbf{R}_{1},t_{1}) \mathscr{W}_{1'} \right)^{a} \right\rangle_{T}$



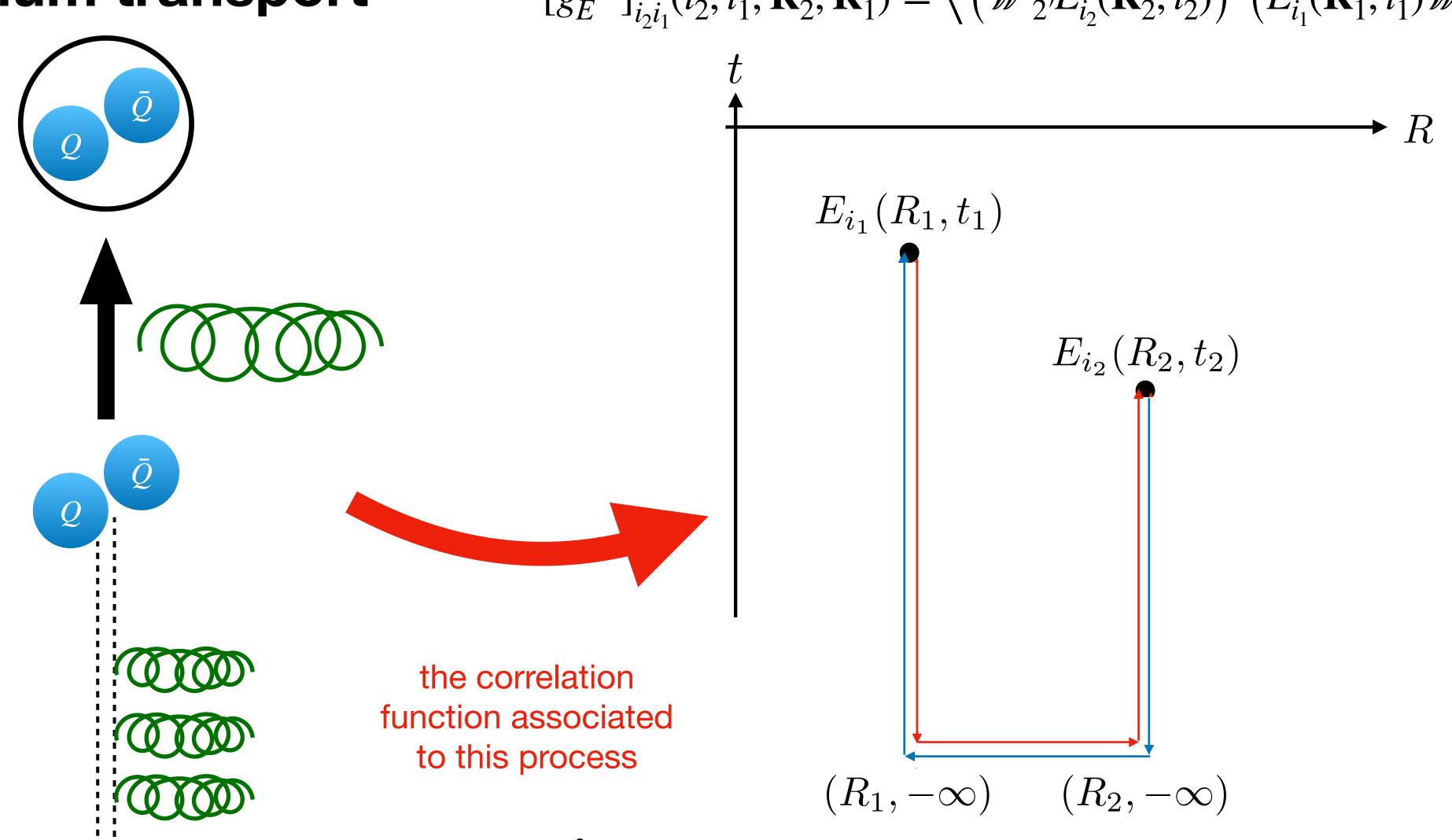
QGP chromoelectric correlators for quarkonium transport $[g_E^{--}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \langle ($

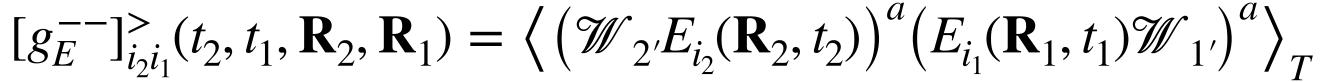
bound state: color singlet

medium-induced transition

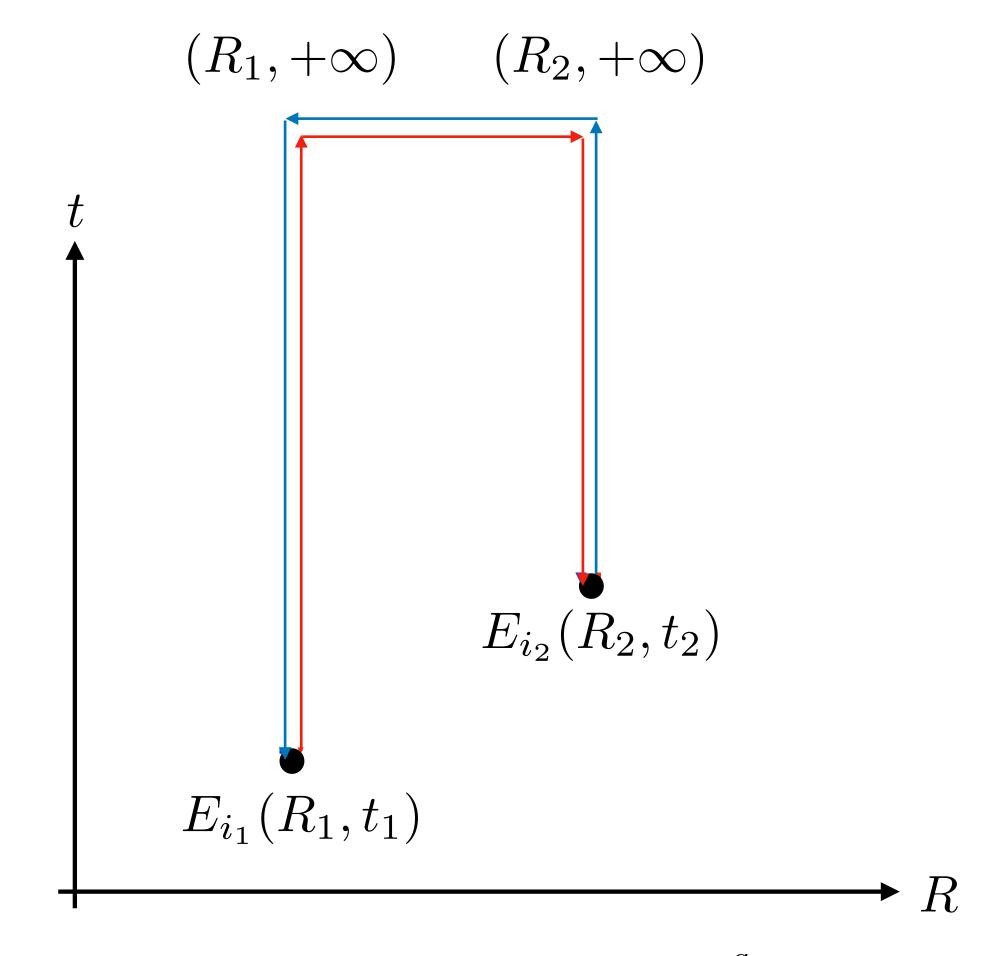
unbound state: color octet

the unbound state carries color charge and interacts with the medium



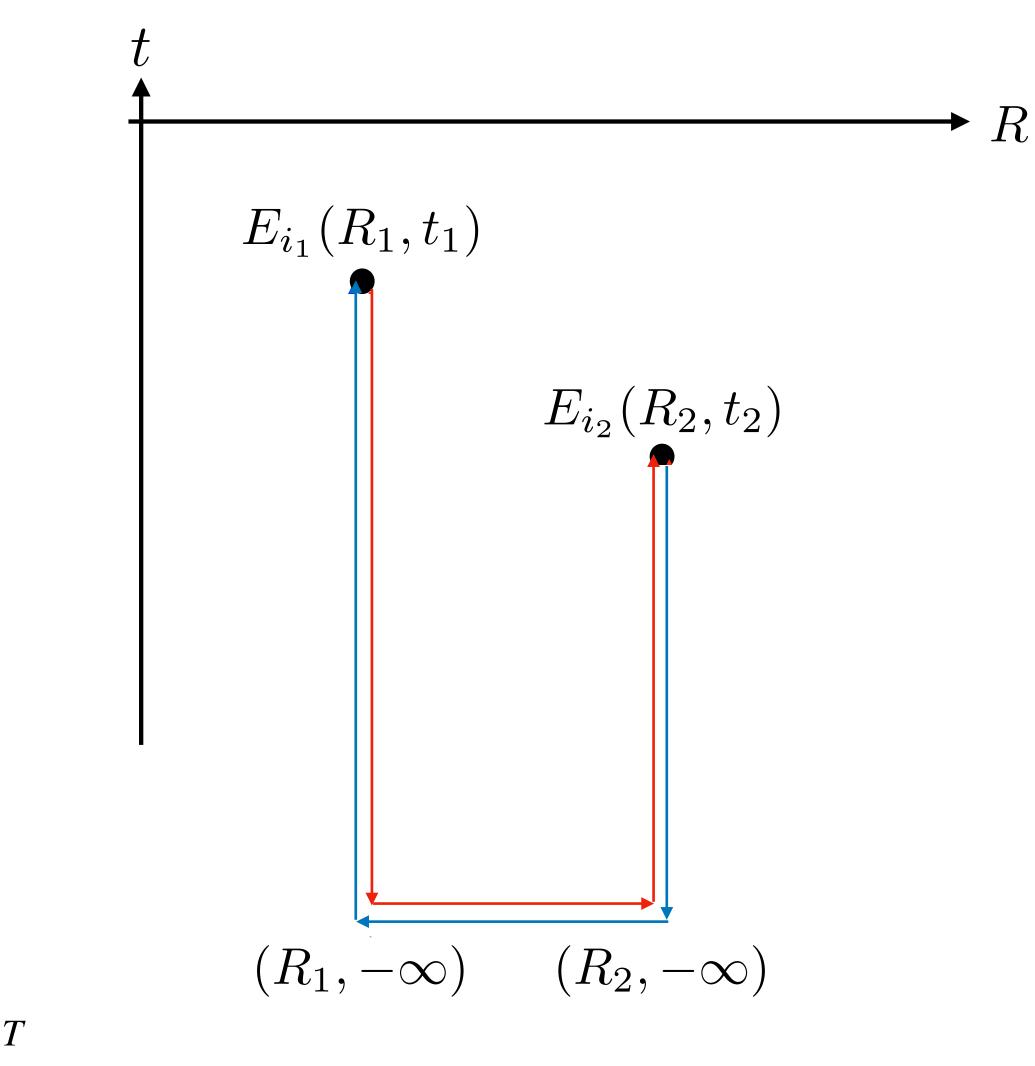


QGP chromoelectric correlators for quarkonium transport $[g_E^{--}]_{i,i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \langle ($



 $[g_E^{++}]_{i_2i_1}^{>}(t_2, t_1, \mathbf{R}_2, \mathbf{R}_1) = \left\langle \left(E_{i_2}(\mathbf{R}_2, t_2) \mathcal{W}_2 \right)^a \left(\mathcal{W}_1 E_{i_1}(\mathbf{R}_1, t_1) \right)_6^a \right\rangle_T$

 $[g_{E}^{--}]_{i_{2}i_{1}}^{>}(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}) = \left\langle \left(\mathscr{W}_{2'} E_{i_{2}}(\mathbf{R}_{2}, t_{2}) \right)^{a} \left(E_{i_{1}}(\mathbf{R}_{1}, t_{1}) \mathscr{W}_{1'} \right)^{a} \right\rangle_{T}$



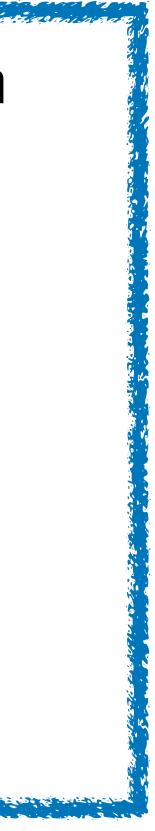
Why are these correlators interesting?

These determine the dissociation and formation rates of quarkonia (in the quantum optical limit):

$$\Gamma^{\text{diss}} \propto \int \frac{\mathrm{d}^{3} \mathbf{p}_{\text{rel}}}{(2\pi)^{3}} \frac{\mathrm{d}^{3} \mathbf{q}}{(2\pi)^{3}} |\langle \psi_{\mathscr{B}} | \mathbf{r} | \Psi_{\mathbf{p}_{\text{rel}}} \rangle|^{2} [g_{E}^{++}]_{ii}^{>} \left(q^{0} = E_{\mathscr{B}} - \frac{\mathbf{p}_{\text{rel}}^{2}}{M}, \mathbf{q}\right),$$

$$\Gamma^{\text{form}} \propto \int \frac{\mathrm{d}^{3} \mathbf{p}_{\text{cm}}}{(2\pi)^{3}} \frac{\mathrm{d}^{3} \mathbf{q}}{(2\pi)^{3}} |\langle \psi_{\mathscr{B}} | \mathbf{r} | \Psi_{\mathbf{p}_{\text{rel}}} \rangle|^{2} [g_{E}^{--}]_{ii}^{>} \left(q^{0} = \frac{\mathbf{p}_{\text{rel}}^{2}}{M} - E_{\mathscr{B}}, \mathbf{q}\right)$$

$$\times f_{\mathscr{S}}(\mathbf{x}, \mathbf{p}_{\text{cm}}, \mathbf{r} = 0, \mathbf{p}_{\text{rel}}, t).$$



A comparison with heavy quark diffusion

Different physics with the same building blocks

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

[***] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

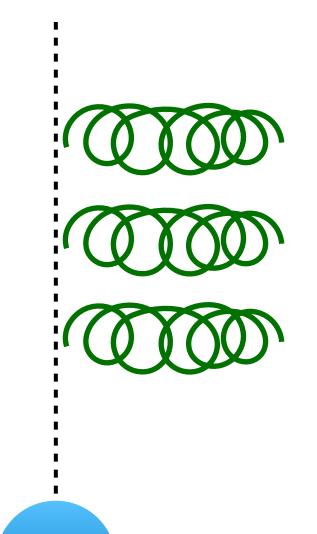
heavy quark

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

[***] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199



Q

the heavy quark carries color charge and interacts with the medium

heavy quark

 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

[***] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199



 The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$\langle \operatorname{Tr} \left[\left(U_{[\infty,t]} E_i(t) U_{[t,-\infty]} \right)^{\dagger} \times \left(U_{[\infty,0]} E_i(0) U_{[0,-\infty]} \right) \right] \rangle$$

• It reflects the typical momentum transfer $\langle p^2 \rangle$ received from "kicks" from the medium.

Q

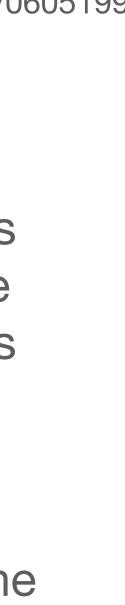
Q

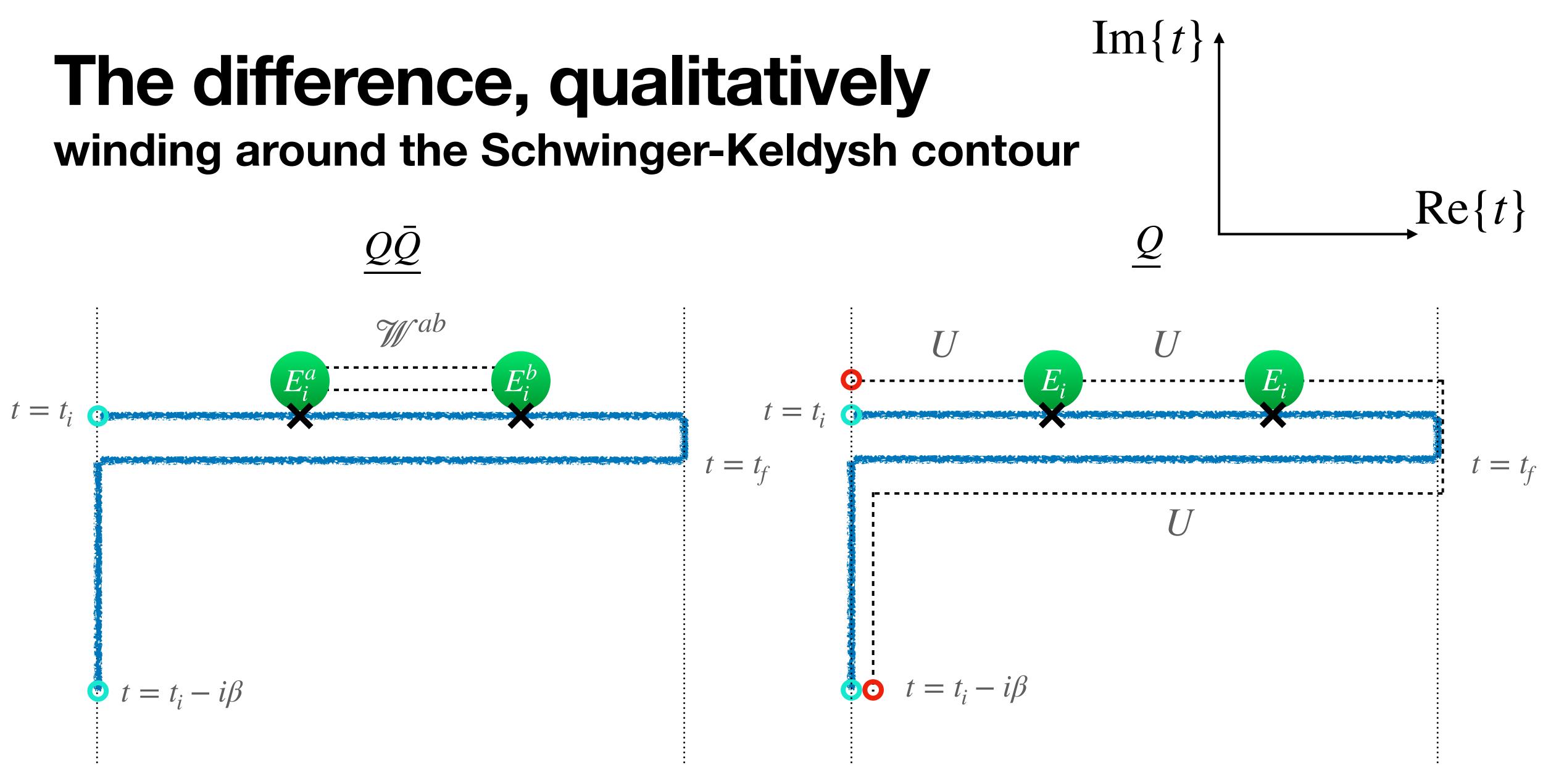
the heavy quark carries color charge and interacts with the medium

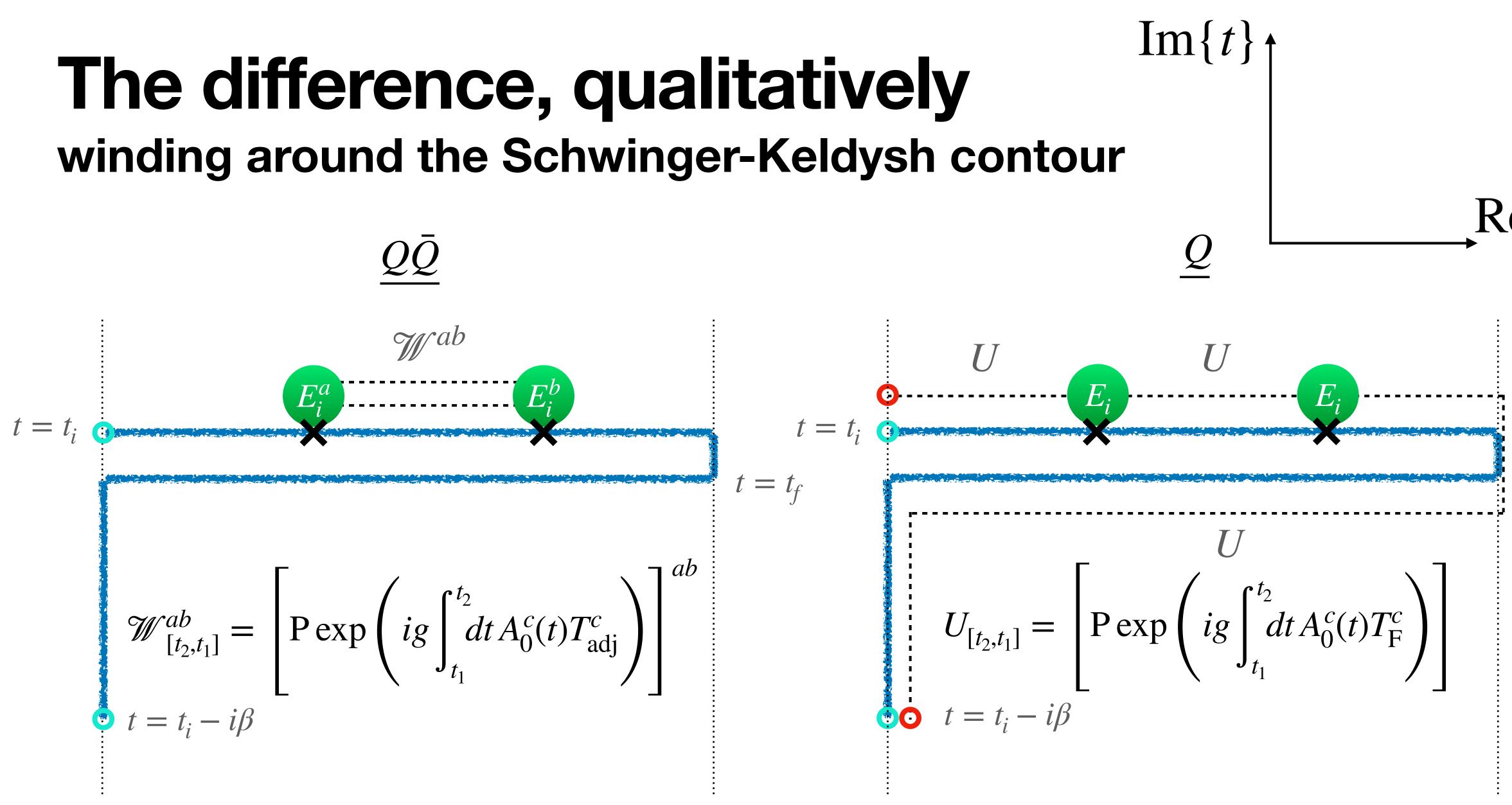
"kick" from the QGP: momentum transfer is effected

> the heavy quark carries color charge and interacts with the medium

heavy quark







Imaginary time calculations:

equilibrium #: $\langle \mathcal{O} \rangle = Z^{-1} \mathrm{Tr} \left[\mathcal{O} e^{-\beta H} \right]$

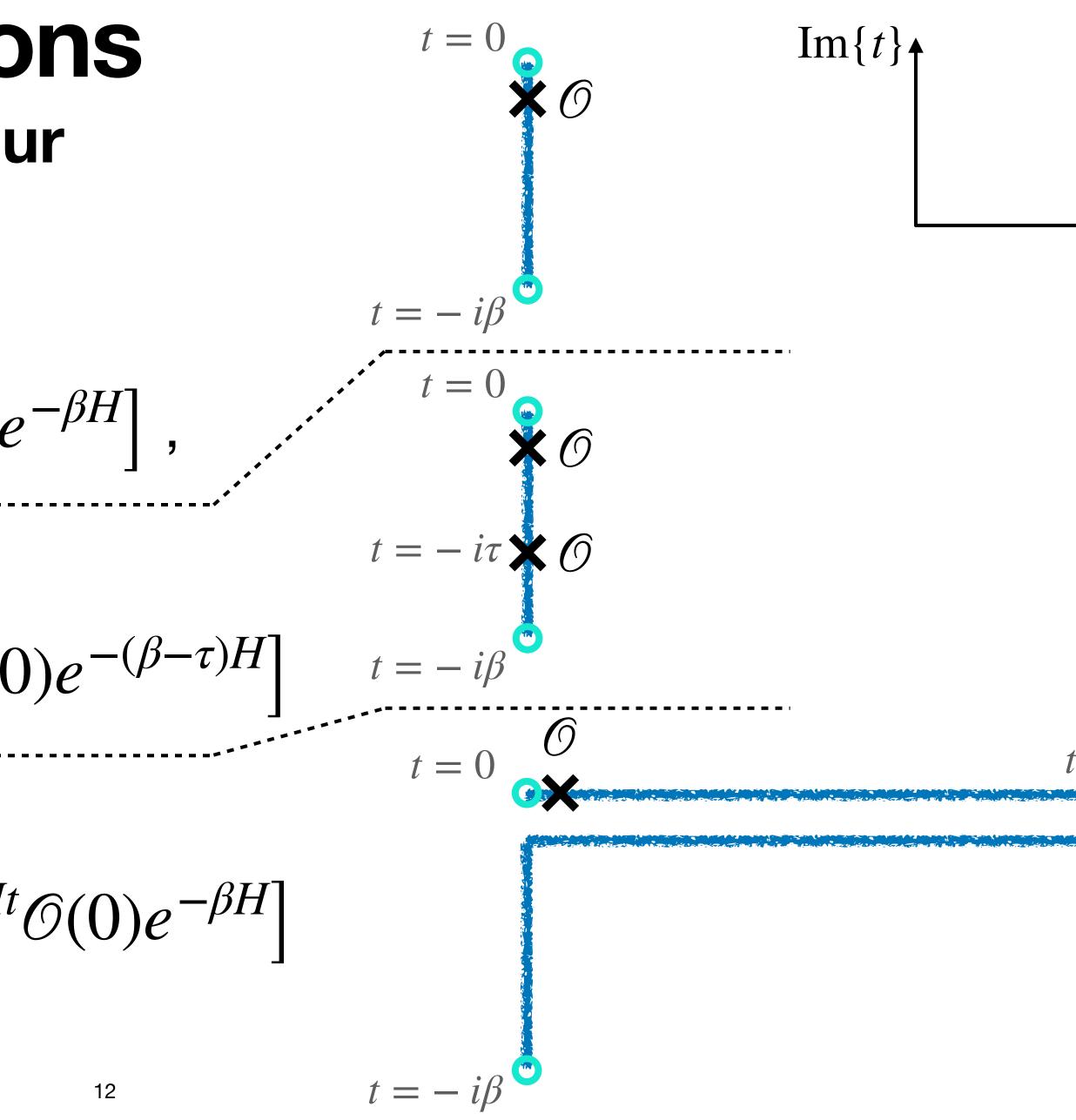
and also two-point functions:

$$\langle \mathcal{O}(\tau)\mathcal{O}(0)\rangle = Z^{-1}\mathrm{Tr}[\mathcal{O}(0)e^{-\tau H}\mathcal{O}(0)]$$

Real time calculations:

 $\left\langle \mathcal{O}(t)\mathcal{O}(0)\right\rangle = Z^{-1}\mathrm{Tr}\left[e^{iHt}\mathcal{O}(0)e^{-iHt}\mathcal{O}(0)e^{-\beta H}\right]$

Path integral representations



$Re{t}$

Imaginary time calculations:

equilibrium #: $\langle \mathcal{O} \rangle = Z^{-1} \mathrm{Tr} \left| \mathcal{O} e^{-\beta H} \right|$

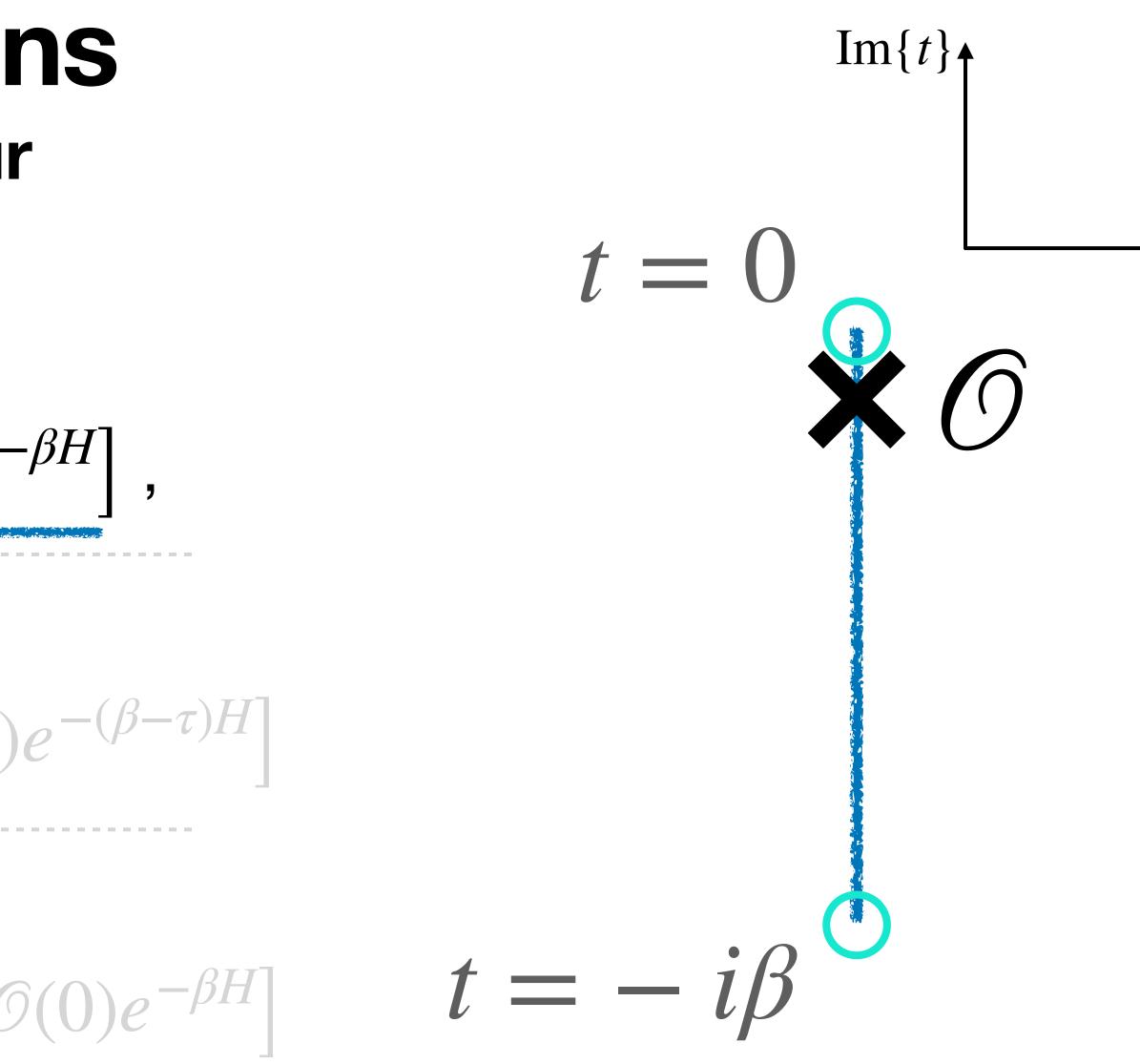
and also two-point functions:

 $\langle \mathcal{O}(\tau)\mathcal{O}(0)\rangle = Z^{-1}\mathrm{Tr}\big[\mathcal{O}(0)e^{-\tau H}\mathcal{O}(0)e^{-(\beta-\tau)H}\big]$

Real time calculations:

 $\langle \mathcal{O}(t)\mathcal{O}(0)\rangle = Z^{-1}\mathrm{Tr}\left[e^{iHt}\mathcal{O}(0)e^{-iHt}\mathcal{O}(0)e^{-\beta H}\right]$

Path integral representations



$Re{t}$

Imaginary time calculations:

equilibrium #: $\langle \mathcal{O} \rangle = Z^{-1} \mathrm{Tr} \left| \mathcal{O} e^{-\beta H} \right|$,

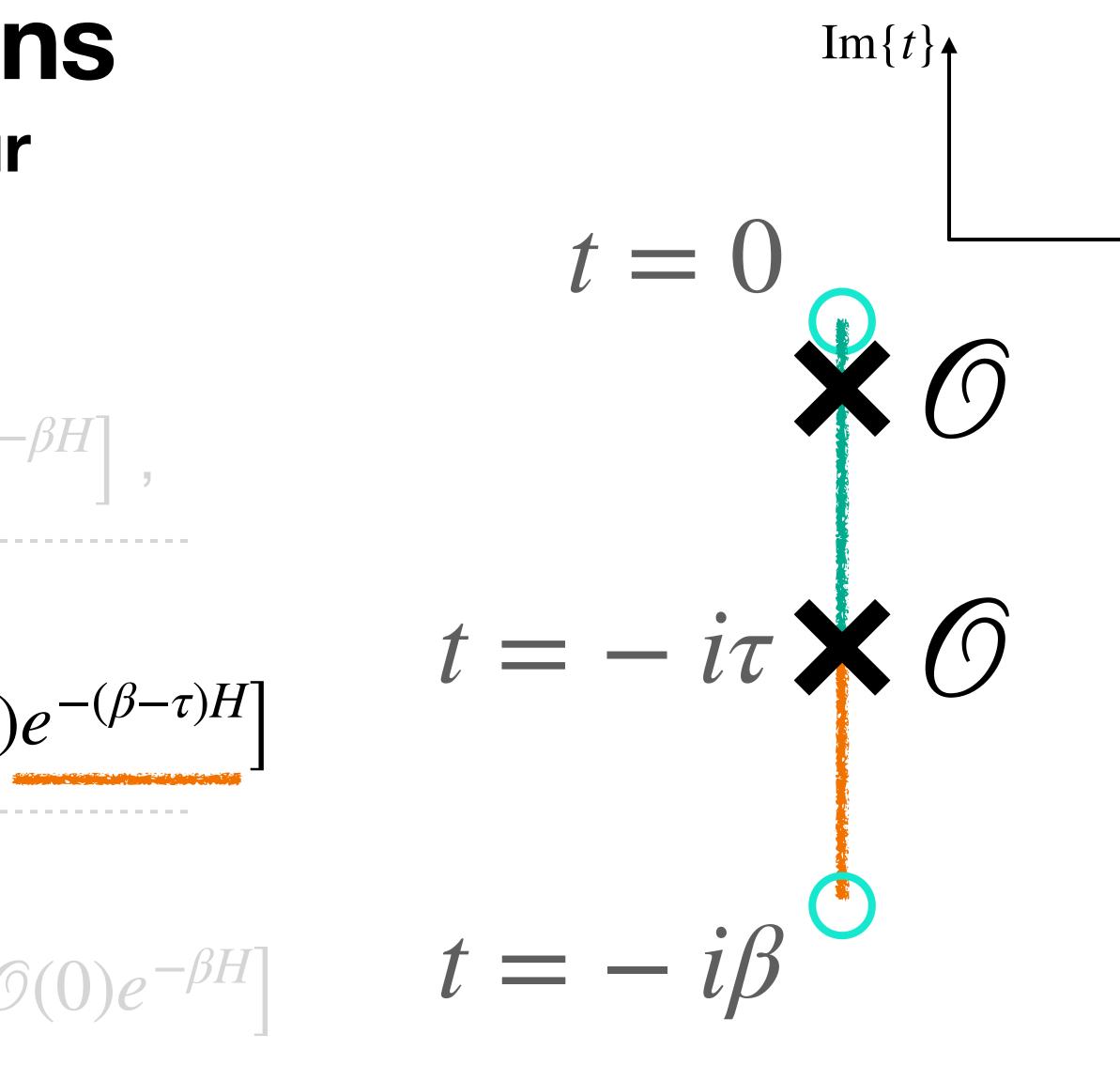
and also two-point functions:

 $\left\langle \mathcal{O}(\tau)\mathcal{O}(0)\right\rangle = Z^{-1} \mathrm{Tr} \left[\mathcal{O}(0)e^{-\tau H} \mathcal{O}(0)e^{-(\beta-\tau)H} \right]$

Real time calculations:

 $\langle \mathcal{O}(t)\mathcal{O}(0)\rangle = Z^{-1}\mathrm{Tr}\left[e^{iHt}\mathcal{O}(0)e^{-iHt}\mathcal{O}(0)e^{-\beta H}\right]$

Path integral representations

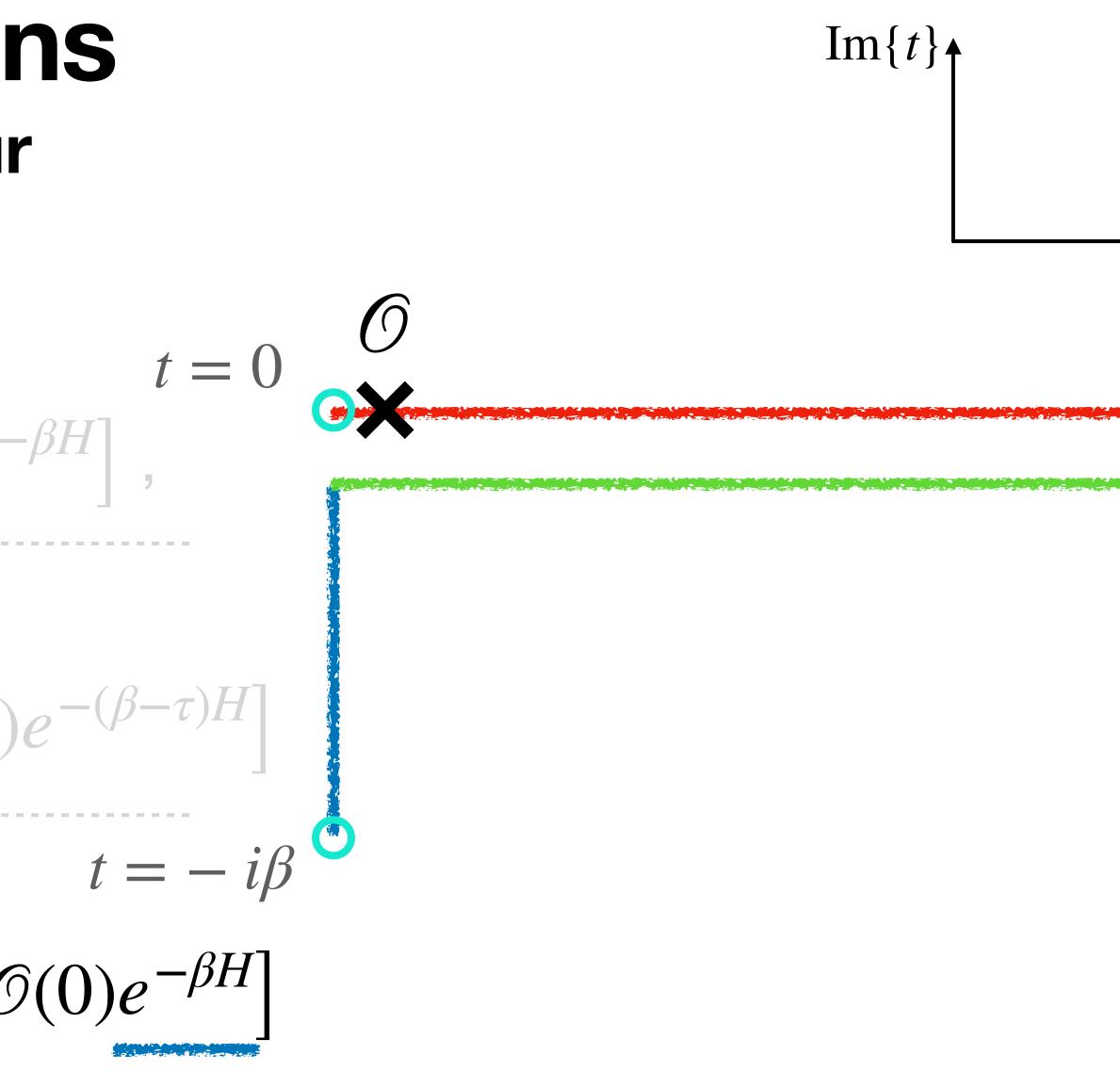


$Re{t}$

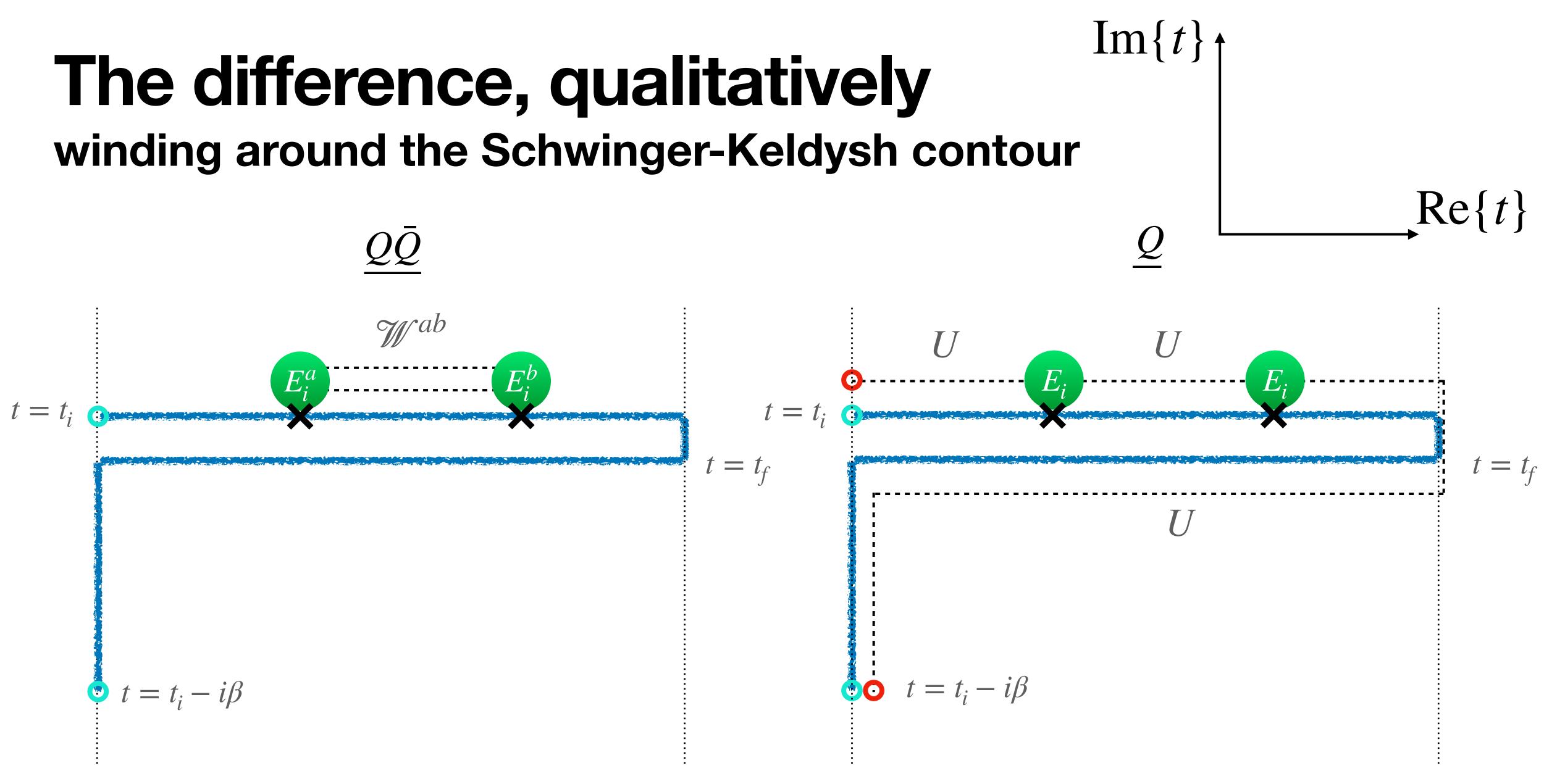
- Imaginary time calculations: equilibrium #: $\langle \mathcal{O} \rangle = Z^{-1} \text{Tr} \left[\mathcal{O} e^{-\beta H} \right]$, and also two-point functions: $\left\langle \mathcal{O}(\tau)\mathcal{O}(0)\right\rangle = Z^{-1} \mathrm{Tr} \left[\mathcal{O}(0)e^{-\tau H} \mathcal{O}(0)e^{-(\beta-\tau)H} \right]$
- **Real time calculations:**

 $\left\langle \mathcal{O}(t)\mathcal{O}(0)\right\rangle = Z^{-1}\mathrm{Tr}\left[e^{iHt}\mathcal{O}(0)e^{-iHt}\mathcal{O}(0)e^{-\beta H}\right]$

Path integral representations

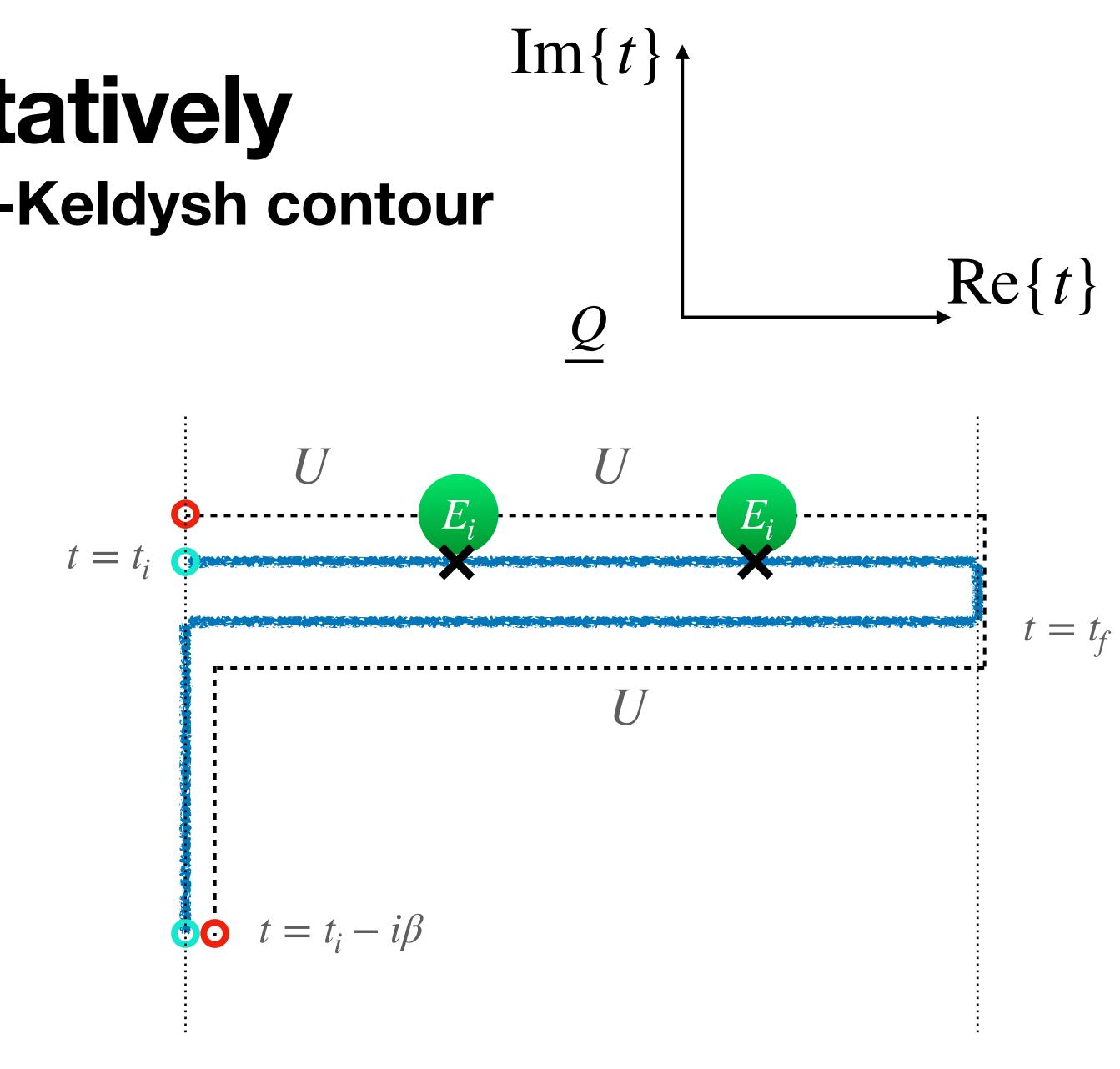




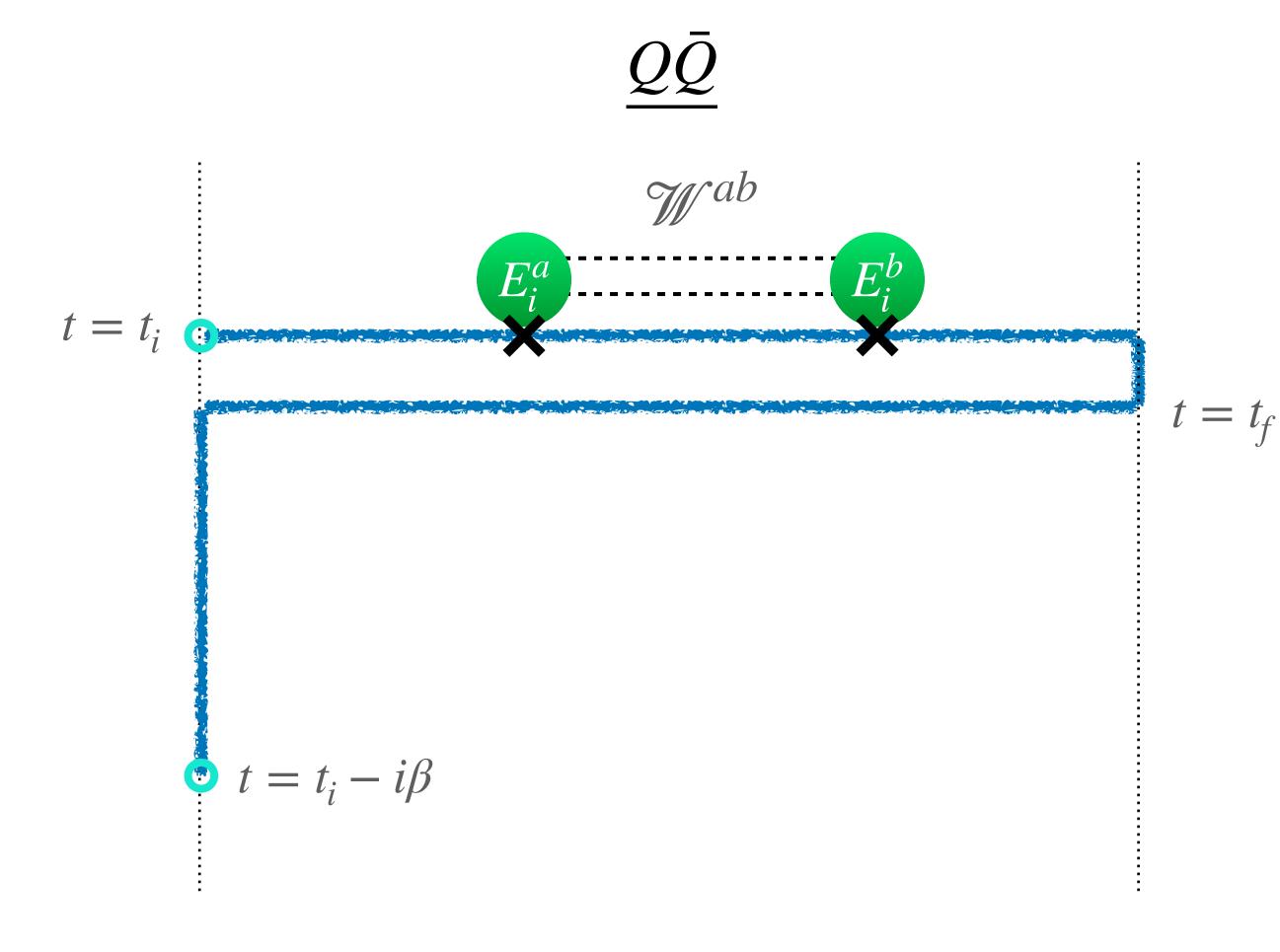


The difference, qualitatively winding around the Schwinger-Keldysh contour

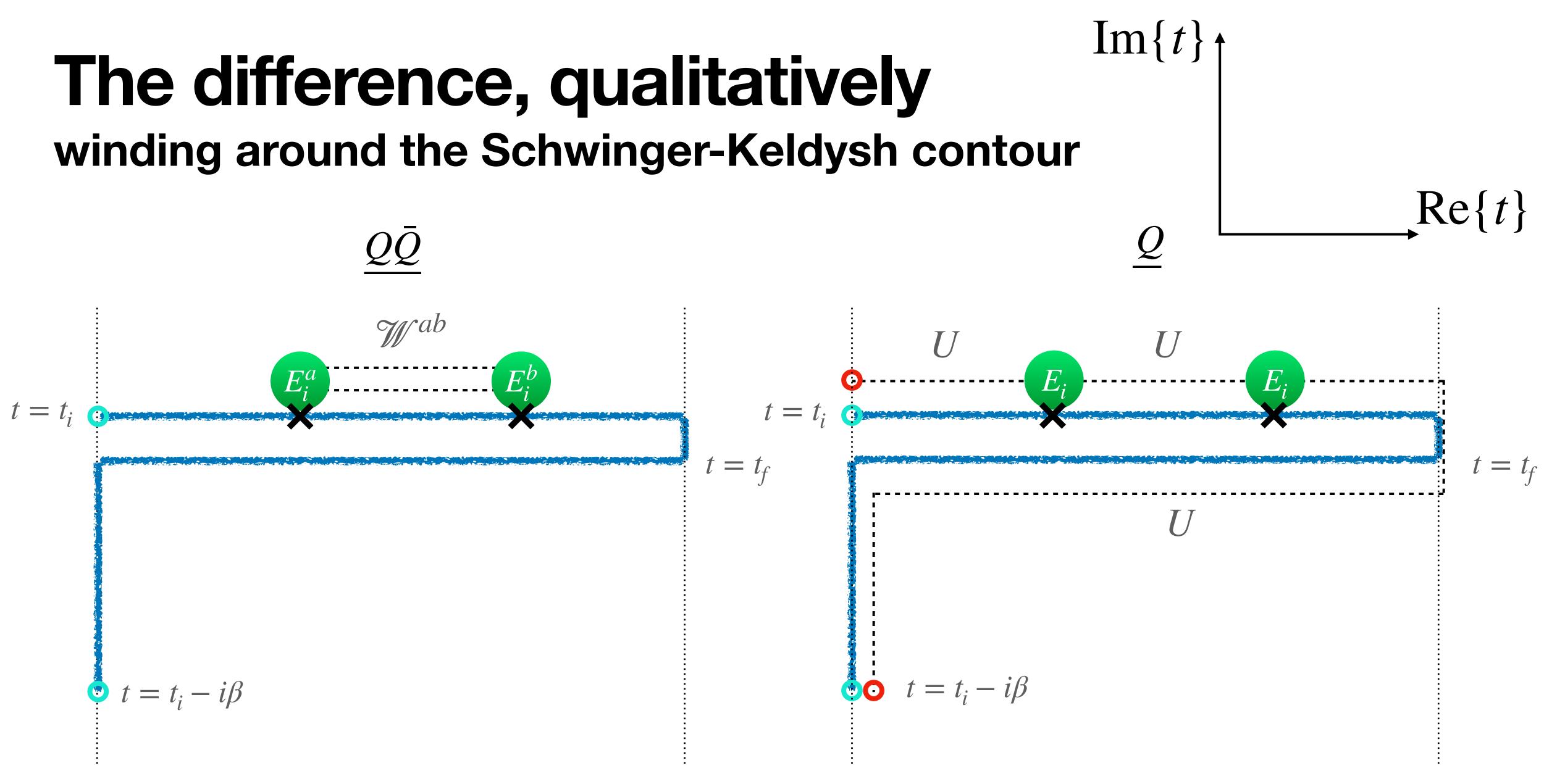
- The heavy quark is present at all times:
 - It is part of the construction of the thermal state of the QGP.
 - The Wilson line, which enforces the Gauss' law constraint due to the point charge, is also present on the Euclidean segment.



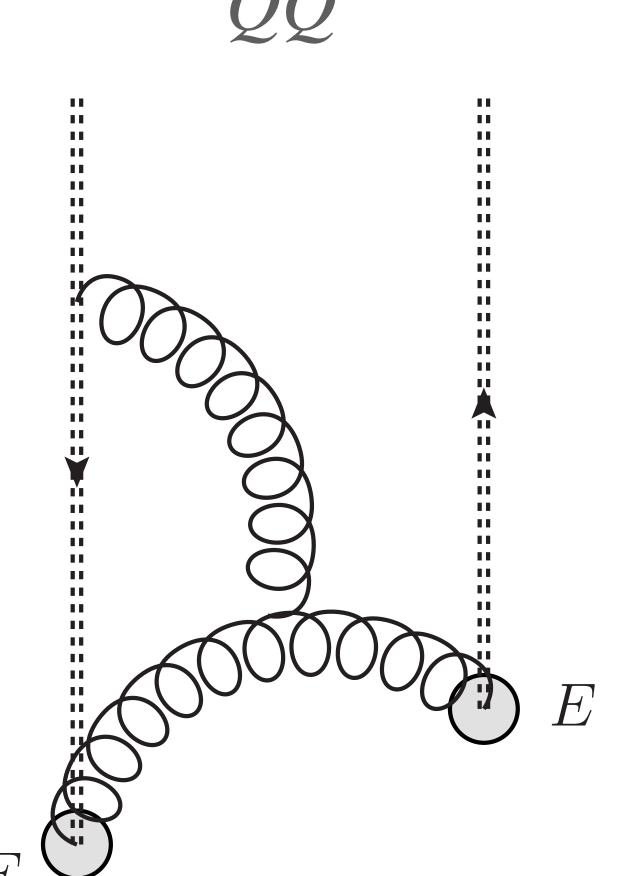
The difference, qualitatively winding around the Schwinger-Keldysh contour



- In this correlator, the heavy quark pair is present at all times, but it is only color-charged for a finite time:
 - It is *not* part of the construction of the thermal state of the QGP.
 - The adjoint Wilson line, representing the propagation of unbound quarkonium (in the adjoint representation), is only present on the real-time segment.

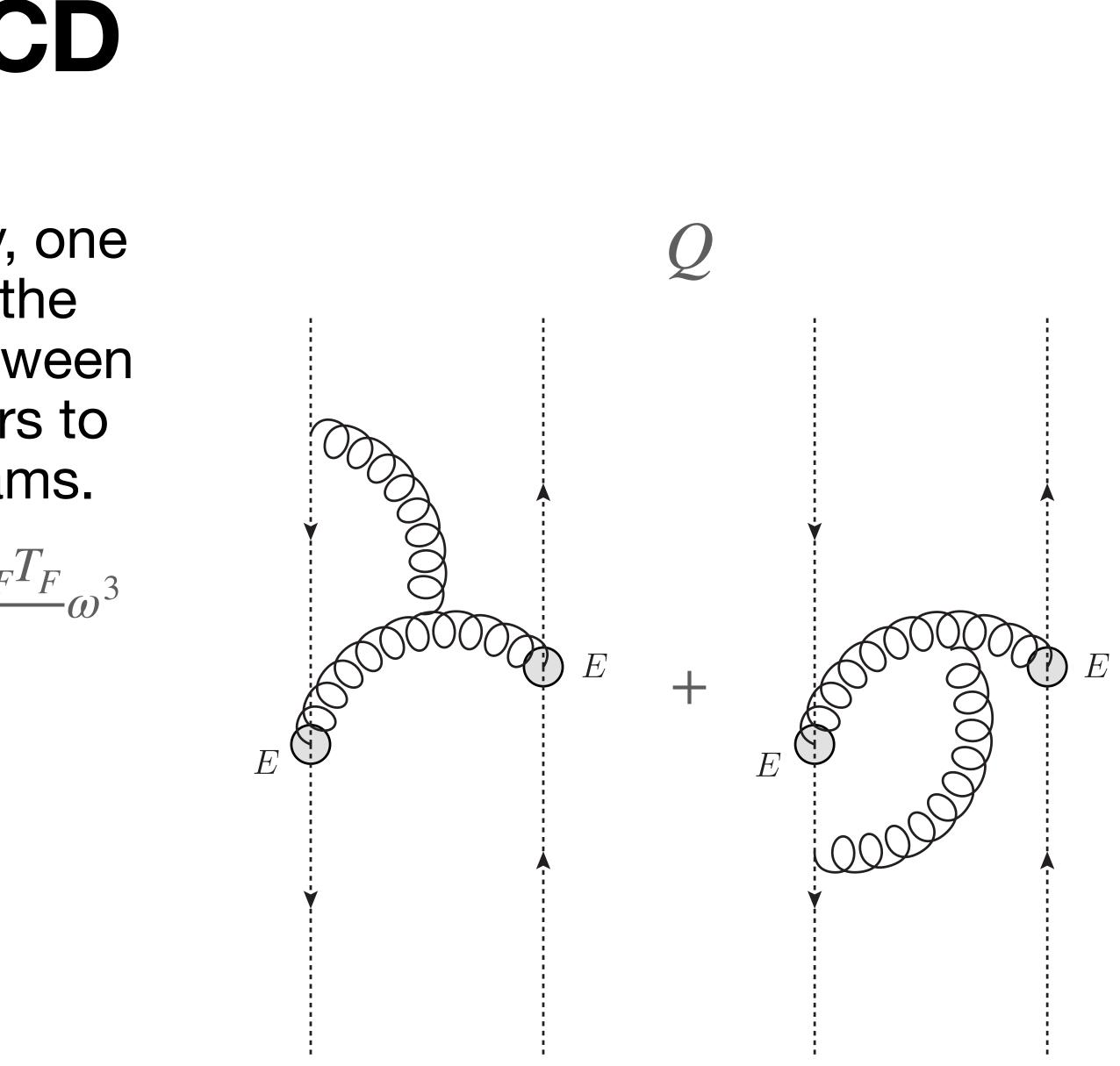


The difference in pQCD operator ordering is crucial!

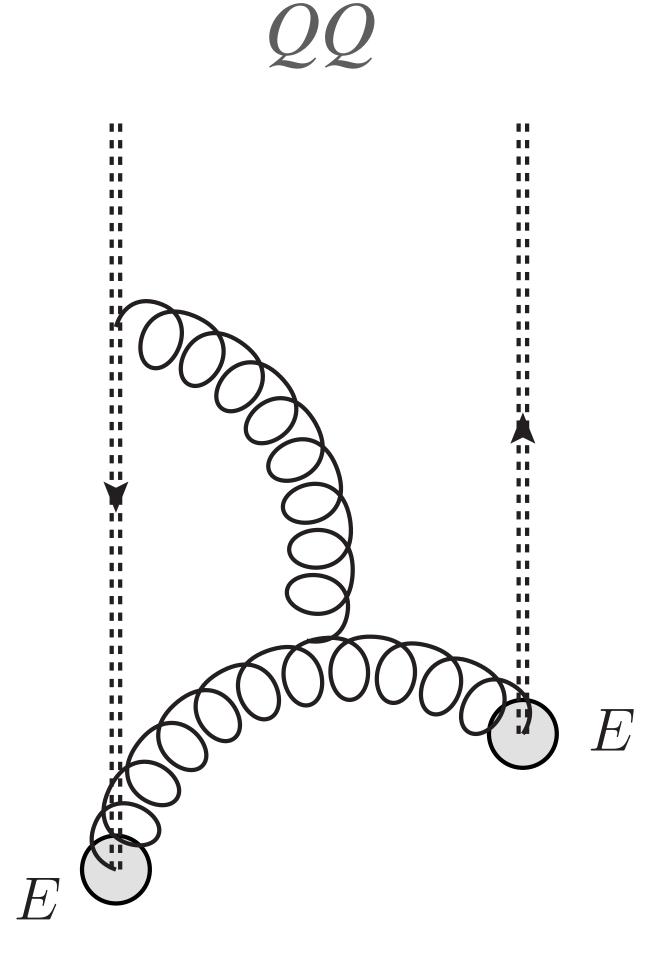


Perturbatively, one can isolate the difference between the correlators to these diagrams.

 $\Delta \rho(\omega) = \frac{g^4 N_c^2 C_F T_F}{4\pi} \omega^3$



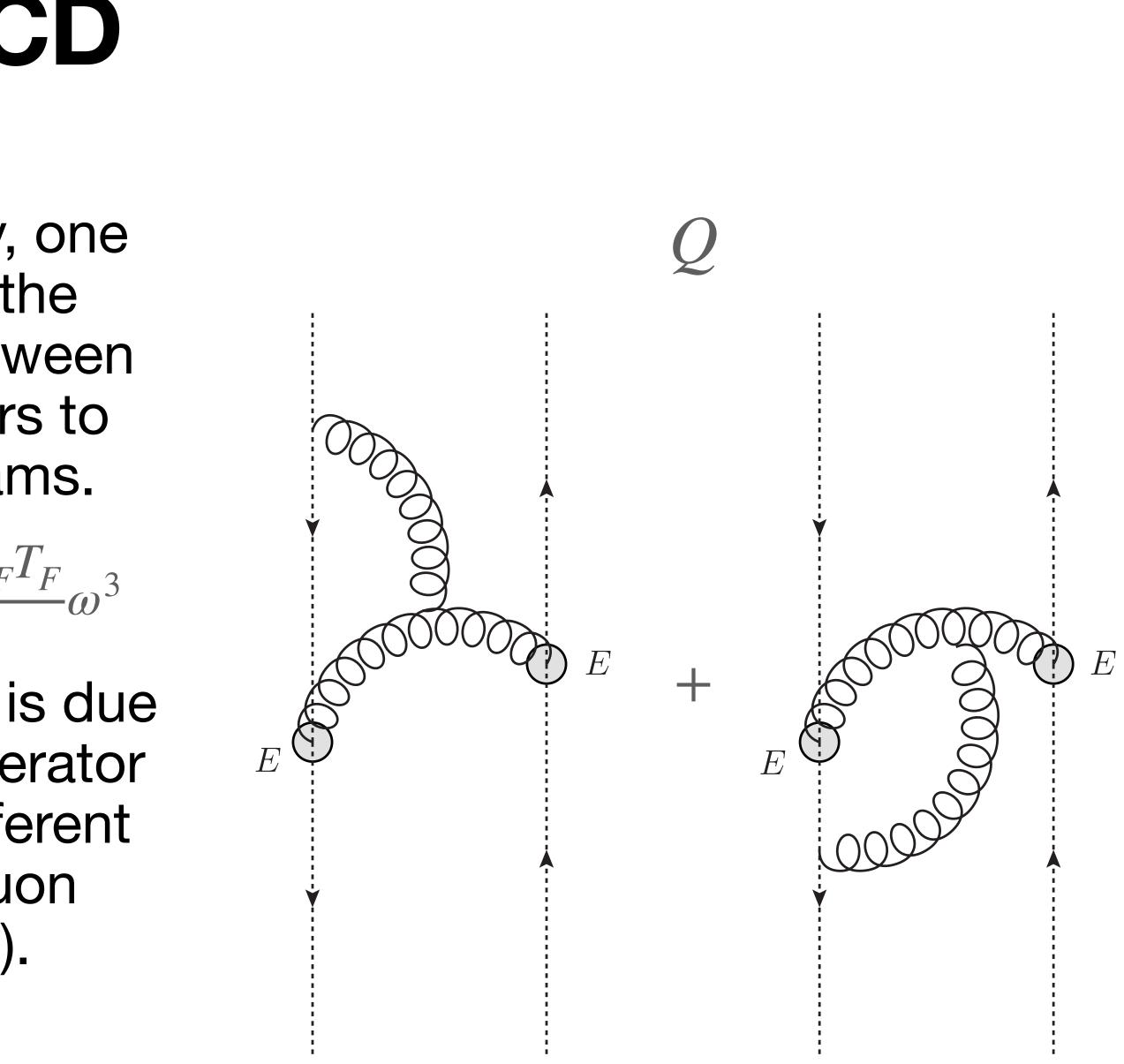
The difference in pQCD operator ordering is crucial!



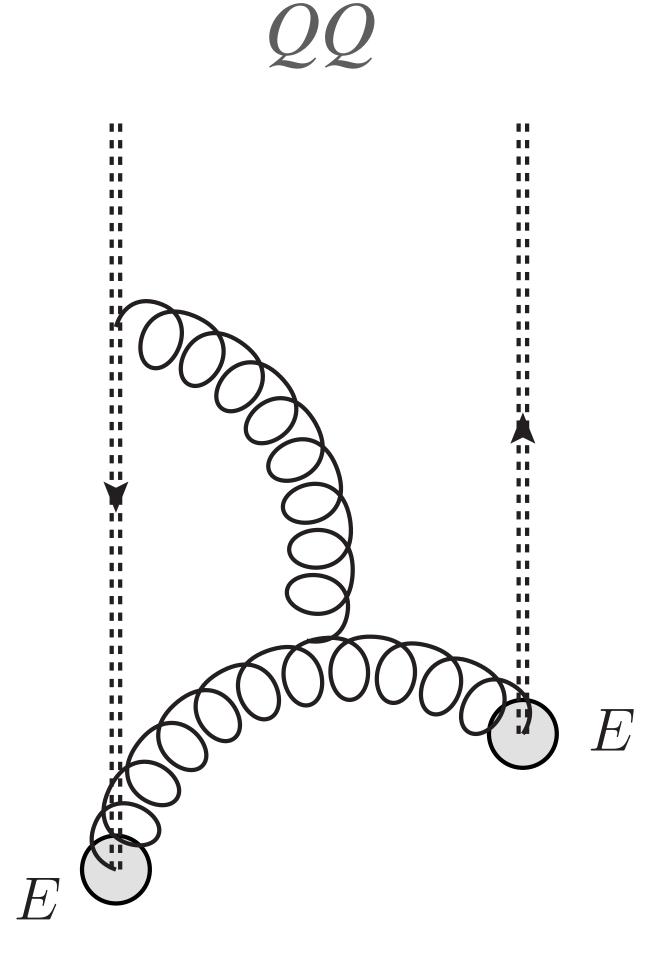
Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C_c}{4\pi}$$

The difference is due to different operator orderings (different possible gluon insertions).



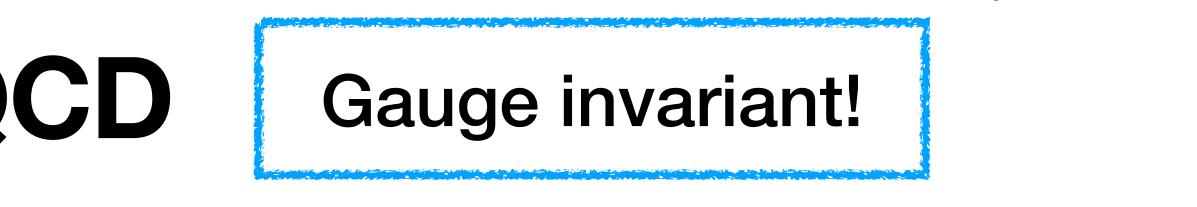
The difference in pQCD operator ordering is crucial!

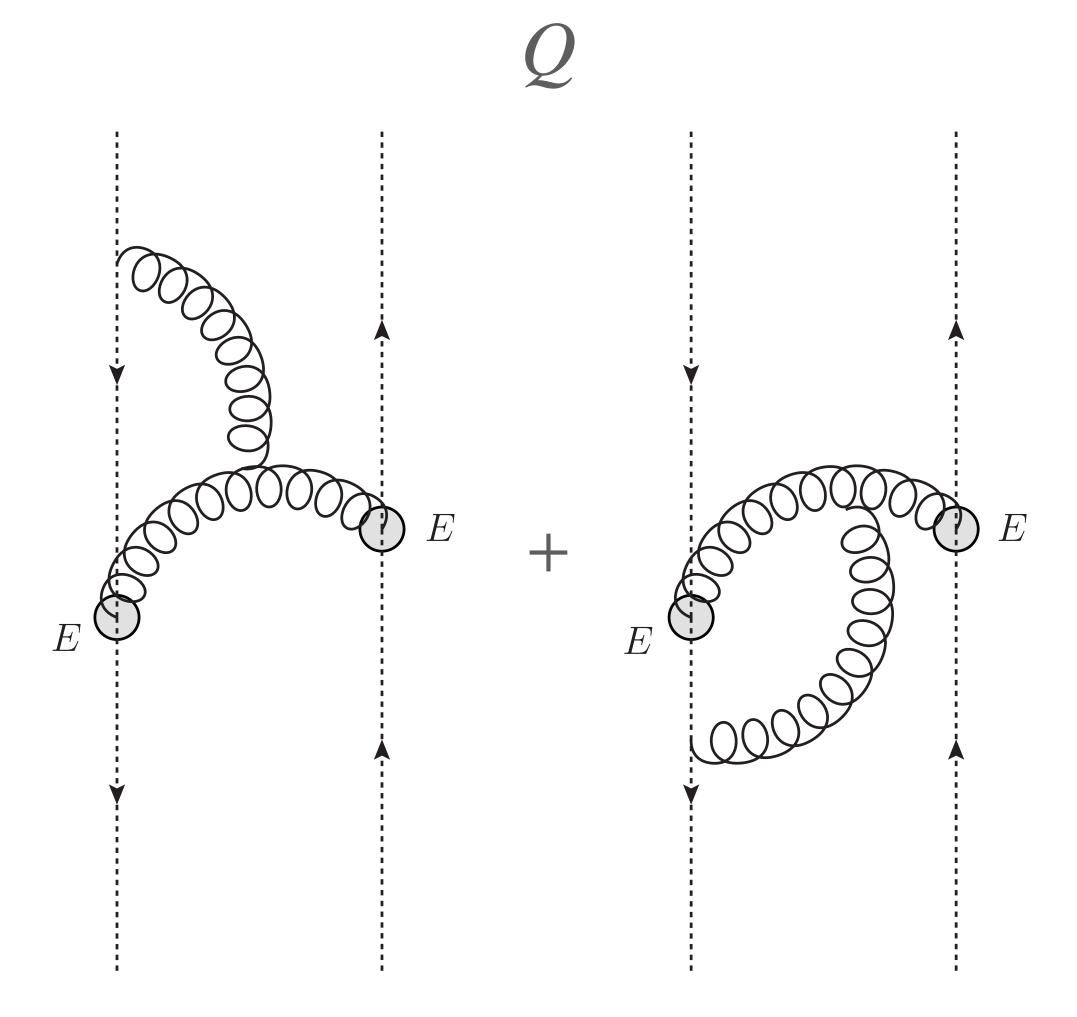


Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C_c}{4\pi}$$

The difference is due to different operator orderings (different possible gluon insertions).



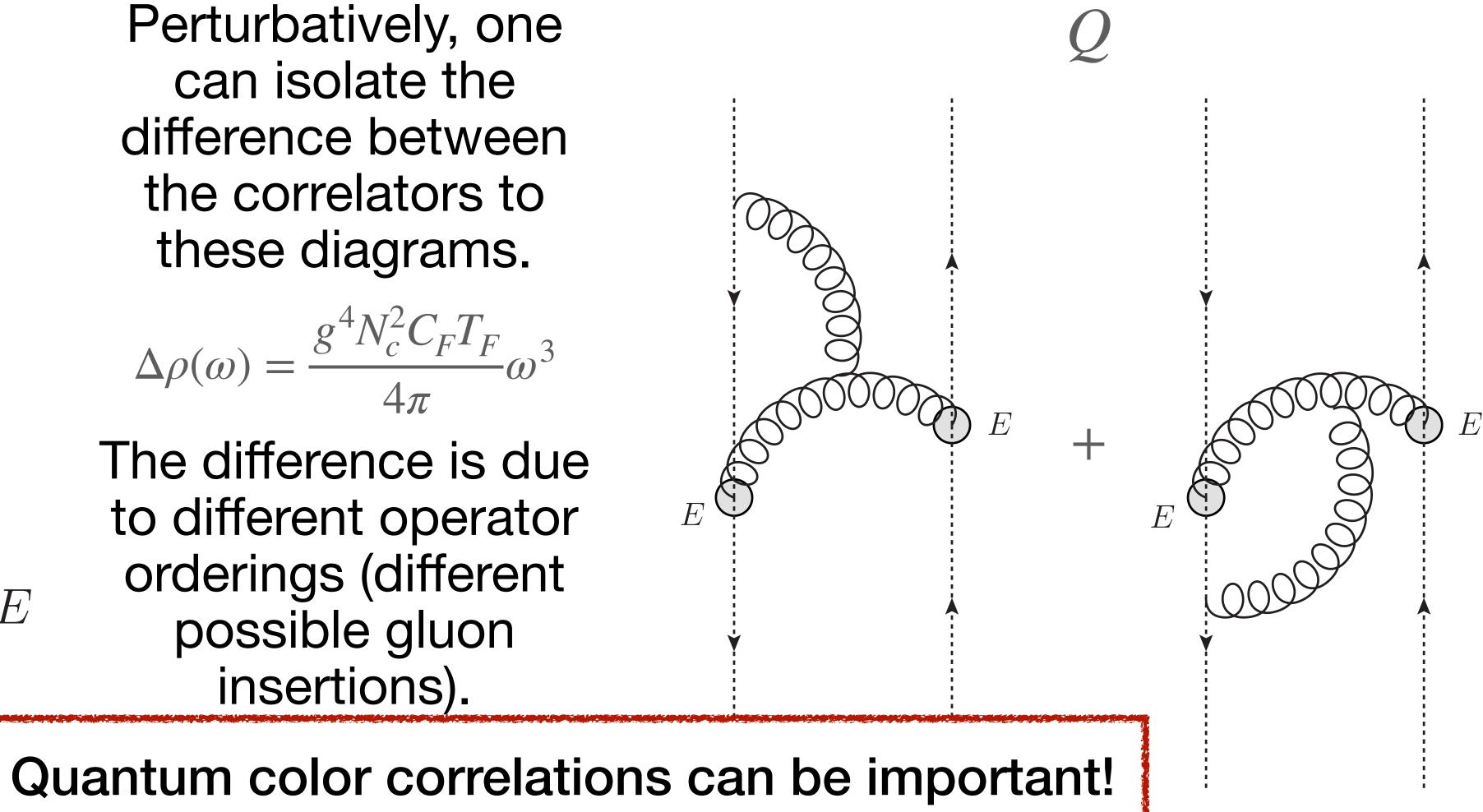


The difference in pQCD Gauge invariant! operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$\Delta \rho(\omega) = \frac{g^4 N_c^2 C}{4\pi}$$

The difference is due to different operator orderings (different possible gluon insertions).

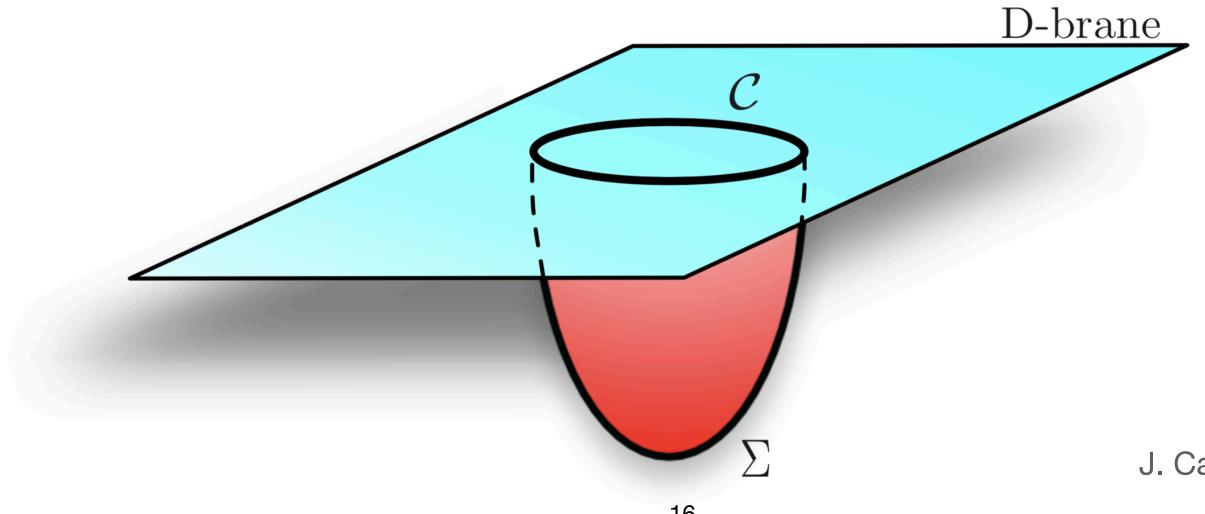


What about the difference at strong coupling?

Wilson loops in AdS/CFT setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
 - Wilson loops can be evaluated by solving classical equations of motion: 0

 $\langle W | \mathscr{C} = \delta$



$$\partial \Sigma] \rangle_T = e^{i S_{\rm NG}[\Sigma]}$$

How do Wilson loops help? setup – pure gauge theory

 Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :

$$\frac{\delta}{\delta f^{\mu}(s_2)} \frac{\delta}{\delta f^{\nu}(s_1)} W[\mathscr{C}_f] \bigg|_{f=0} = (ig)^2 \operatorname{Tr}_{\operatorname{color}} \left[U_{f=0} \right]_{f=0}$$

 $U_{[1,s_2]}F_{\mu\rho}(\gamma(s_2))\dot{\gamma}^{\rho}(s_2)U_{[s_2,s_1]}F_{\nu\sigma}(\gamma(s_1))\dot{\gamma}^{\sigma}(s_1)U_{[s_1,0]}$

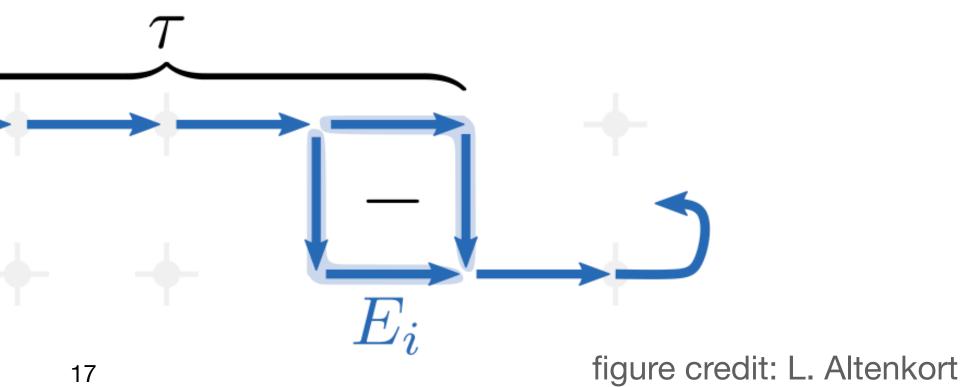
How do Wilson loops help? setup – pure gauge theory

• Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :

$$\frac{\delta}{\delta f^{\mu}(s_2)} \frac{\delta}{\delta f^{\nu}(s_1)} W[\mathscr{C}_f] \bigg|_{f=0} = (ig)^2 \operatorname{Tr}_{\operatorname{color}} \bigg[U_{[1,s_2]} F_{\mu\rho}(\gamma(s_2)) \dot{\gamma}^{\rho}(s_2) U_{[s_2,s_1]} F_{\nu\sigma}(\gamma(s_1)) \dot{\gamma}^{\sigma}(s_1) U_{[s_1,0]} \bigg]_{f=0}$$

• Same as the lattice calculation of the heavy quark diffusion coefficient:

$$\hat{i} \qquad \hat{\tau} \qquad \hat{\tau} \qquad \hat{E}_i$$



Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\text{BPS}}[\mathscr{C}; \hat{n}] = \frac{1}{N_c} \text{Tr}_{\text{color}} \left[\mathscr{P} \exp\left(\left(\frac{1}{N_c} - \frac{1}{N_c} \right) \right) \right]$$

which is *not* the standard Wilson loop.

 $ig \oint_{\mathscr{D}} ds T^a \left[A^a_\mu \dot{x}^\mu + \hat{n}(s) \cdot \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \right] \right) ,$

Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\rm BPS}[\mathscr{C};\hat{n}] = \frac{1}{N_c} \operatorname{Tr}_{\rm color} \left[\mathscr{P} \exp\left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_\mu \, \dot{x}^\mu \, + \, \hat{n}(s) \cdot \, \overrightarrow{\phi}^a \sqrt{\dot{x}^2} \, \right] \right) \right]$$

hich is *not* the standard Wilson loop.

W

• $\mathcal{N} = 4$ SYM has 6 scalar fields $\overline{\phi}^a$, which enter the above Wilson loop through a direction $\hat{n} \in S_5$. Also, its dual gravitational description is $AdS_5 \times S_5$.

Wilson loops in $\mathcal{N} = 4$ SYM a slightly different observable

A holographic dual in terms of an extremal surface exists for

$$W_{\text{BPS}}[\mathscr{C};\hat{n}] = \frac{1}{N_c} \text{Tr}_{\text{color}} \left[\mathscr{P} \exp\left(ig \oint_{\mathscr{C}} ds \, T^a \left[A^a_\mu \dot{x}^\mu + \hat{n}(s) \cdot \vec{\phi}^a \sqrt{\dot{x}^2} \right] \right) \right]$$

hich is *not* the standard Wilson loop.

W

- $\mathcal{N} = 4$ SYM has 6 scalar fields $\overline{\phi}^a$, which enter the above Wilson loop through a direction $\hat{n} \in S_5$. Also, its dual gravitational description is $AdS_5 \times S_5$.
- What to do with this extra parameter? For a single heavy quark, just set $\hat{n} = \hat{n}_0$.

Choosing \hat{n} what is the best proxy for an adjoint Wilson line?

A key property of the adjoint Wilson line is

$$\mathscr{W}_{[t_2,t_1]}^{ab} = \frac{1}{T_F} \operatorname{Tr} \left[\mathscr{T} \{ T^a U_{[t_2,t_1]} T^b U_{[t_2,t_1]}^{\dagger} \} \right],$$

- which means that we can obtain the correlator we want by studying deformations of a Wilson loop of the form $W = \frac{1}{N_c} \text{Tr}[UU^{\dagger}] = 1.$
- This leads us to consider the following loop: $\hat{n} = \hat{n}_0$

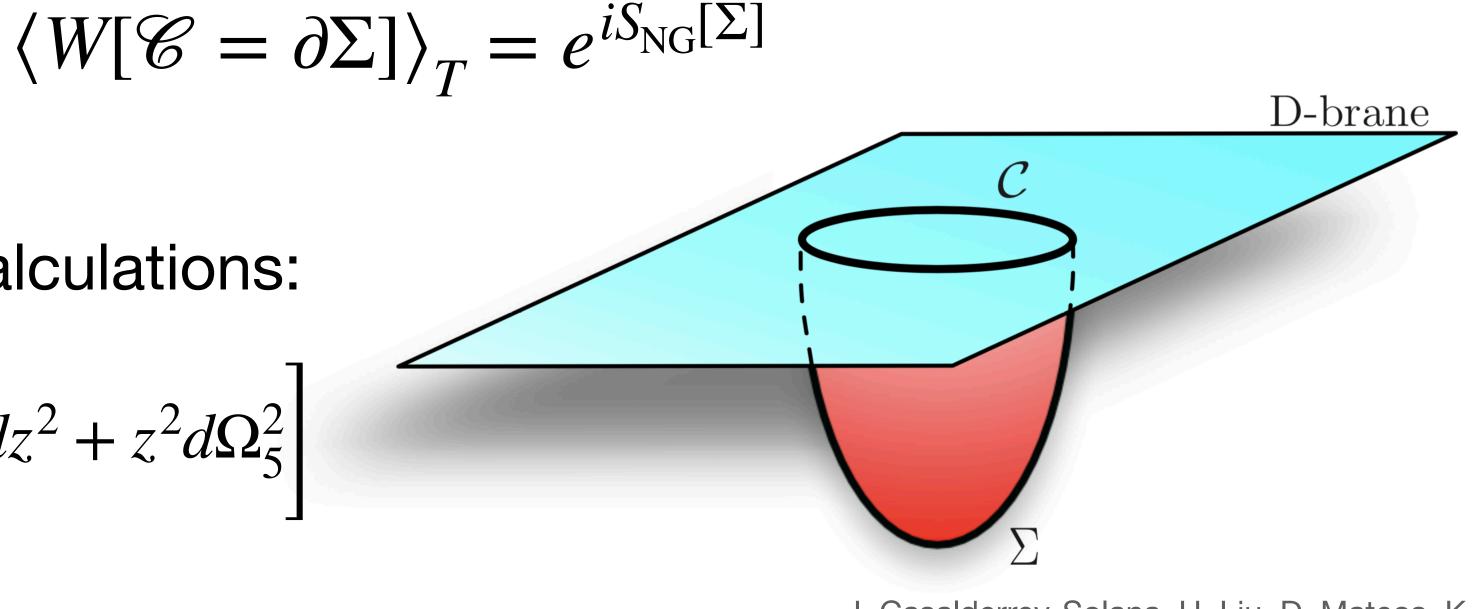
$$\langle \cdots \rangle \hat{n} = -\hat{n}_0$$

Wilson loops in AdS/CFT setup

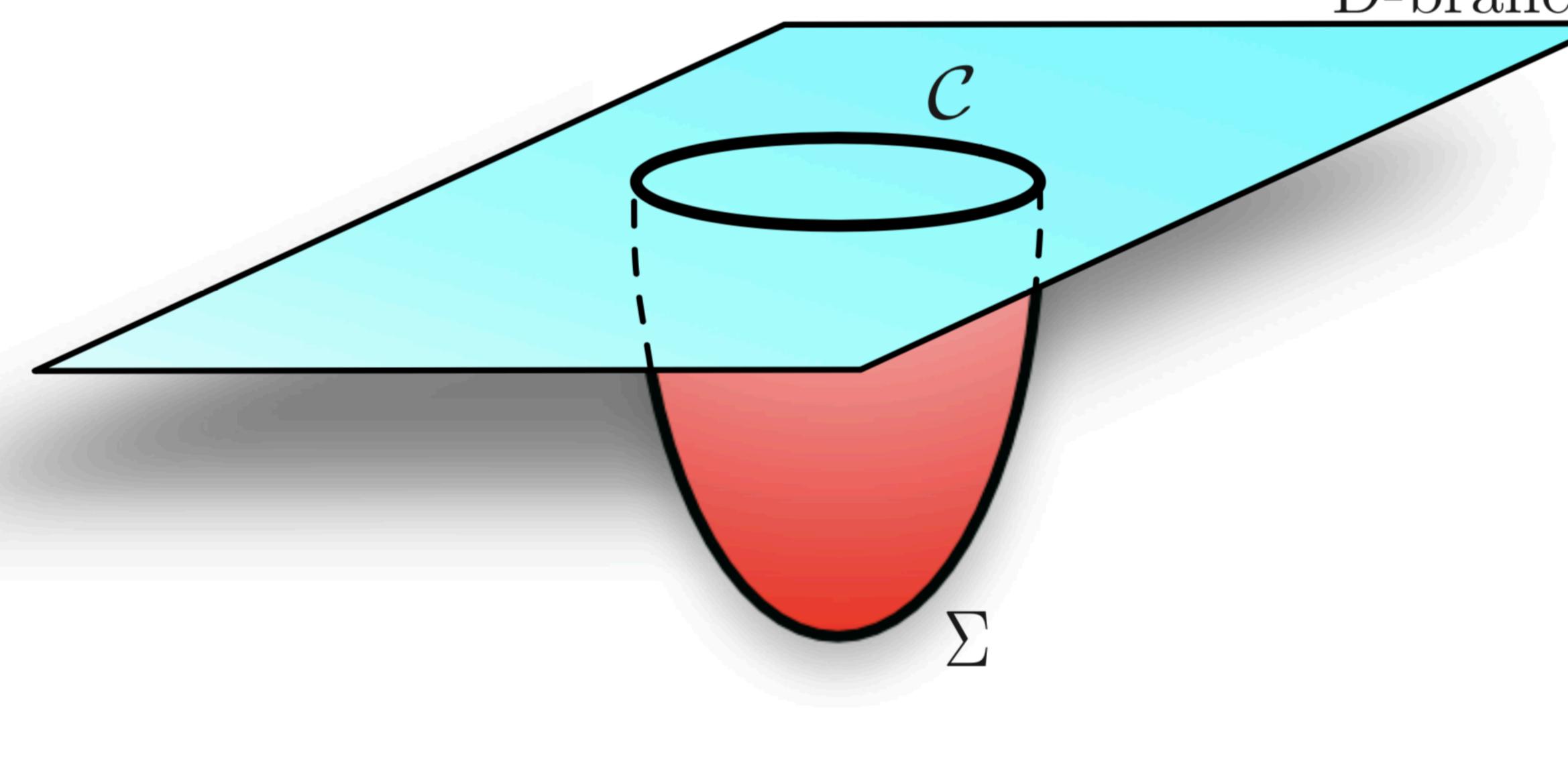
- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
 - Wilson loops can be evaluated by solving classical equations of motion: 0

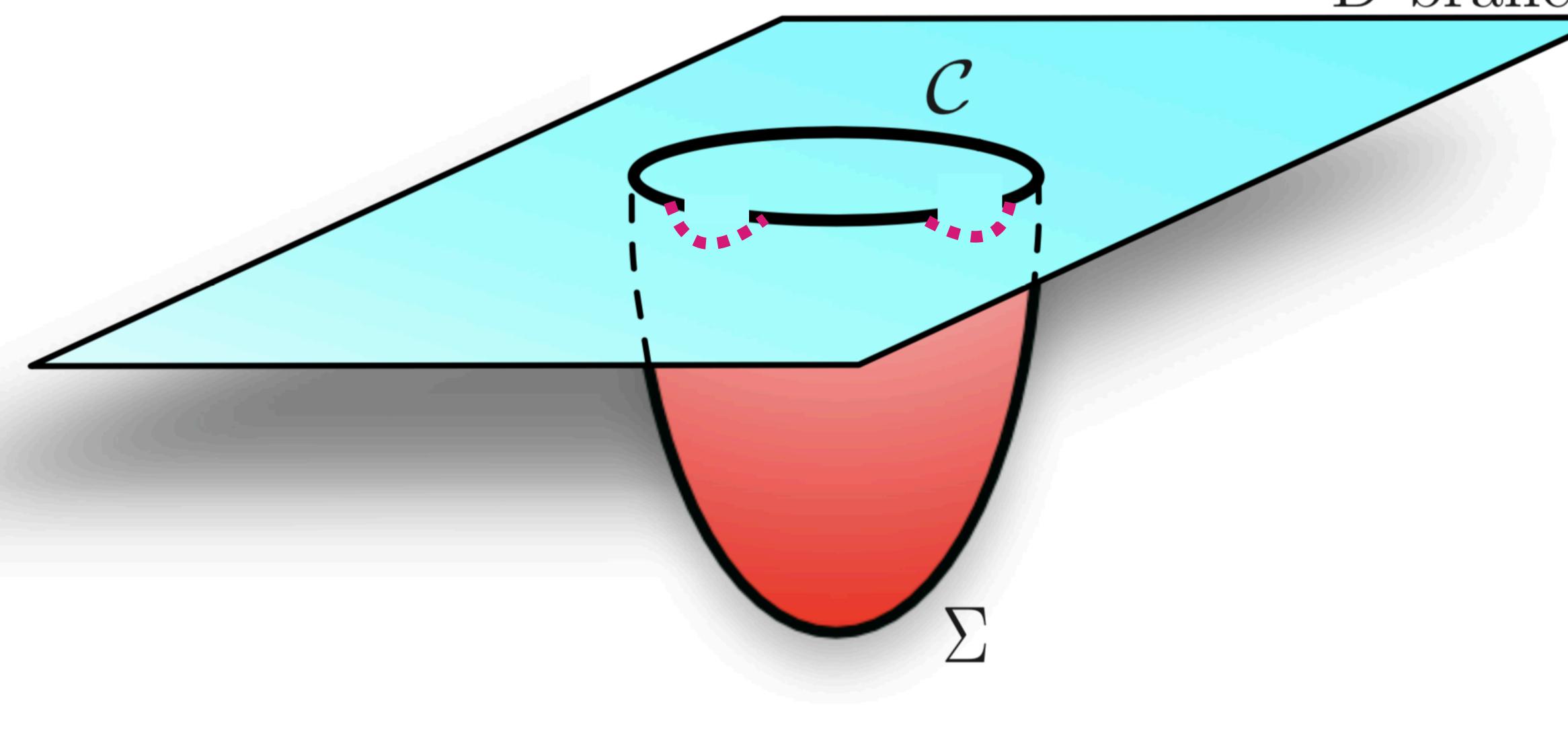
Metric of interest for finite T calculations:

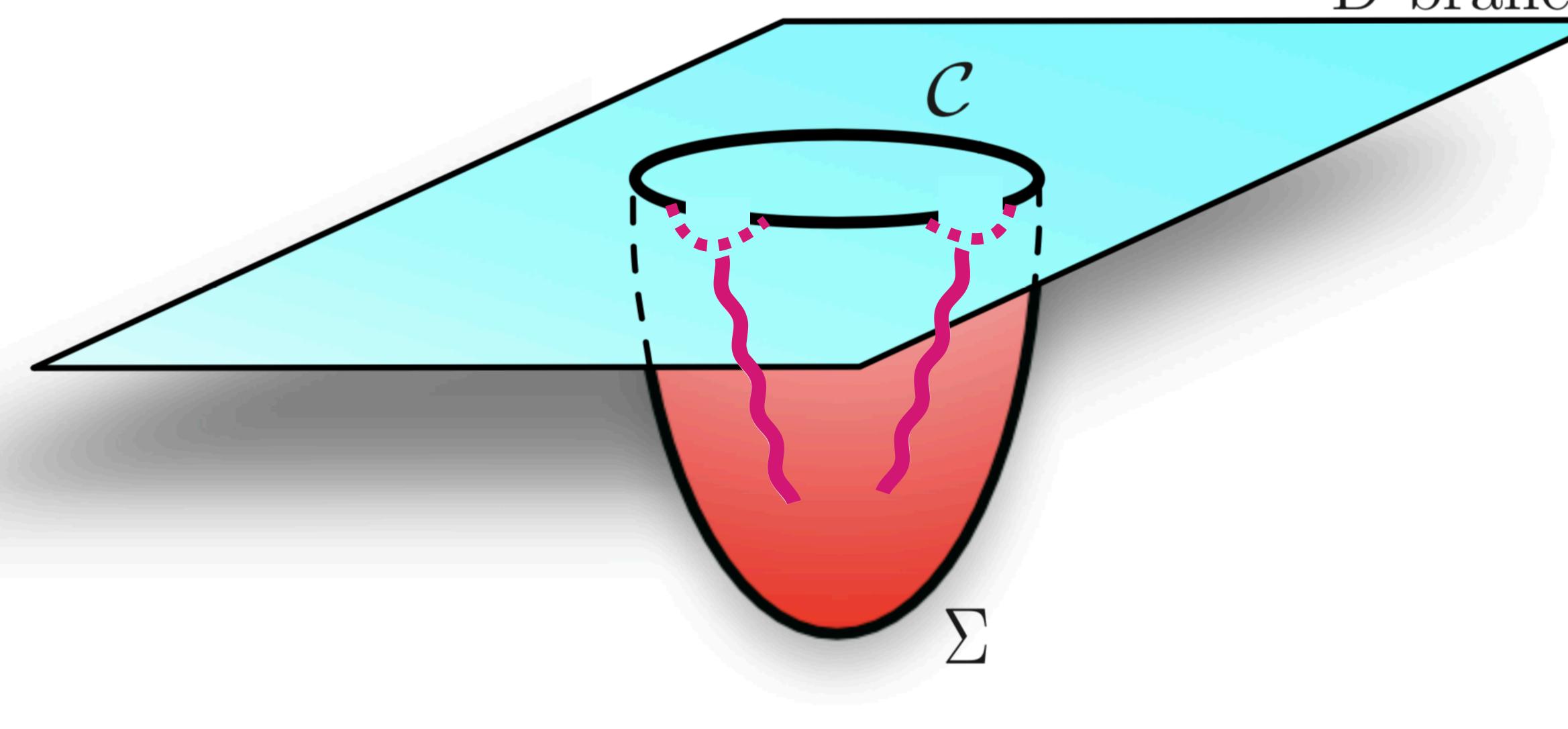
$$ds^{2} = \frac{R^{2}}{z^{2}} \left[-f(z) dt^{2} + d\mathbf{x}^{2} + \frac{1}{f(z)} dz^{2} + z^{2} d\Omega_{5}^{2} \right]$$
$$f(z) = 1 - (\pi T z)^{4}$$

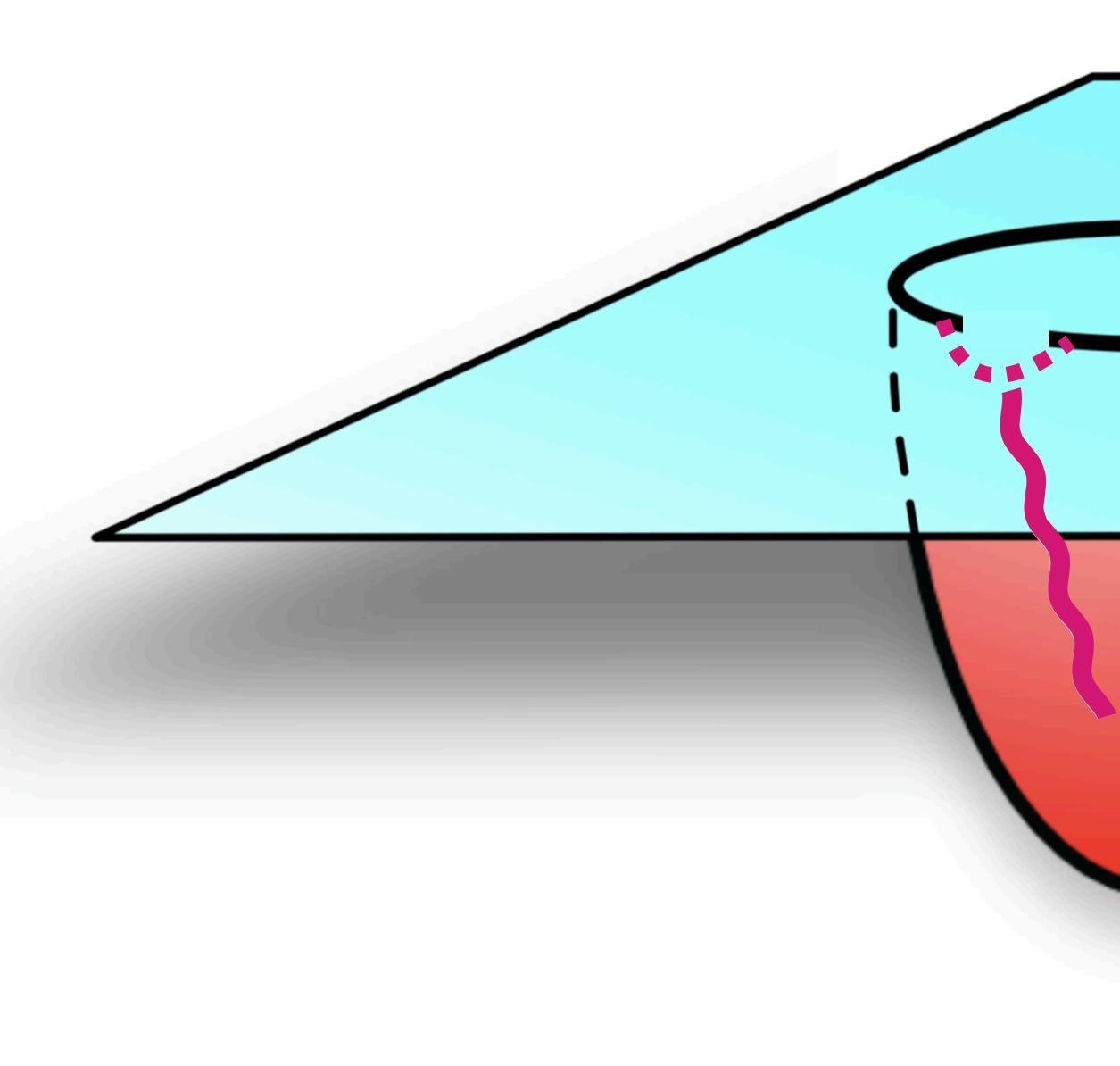


J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, hep-ph/1101.0618







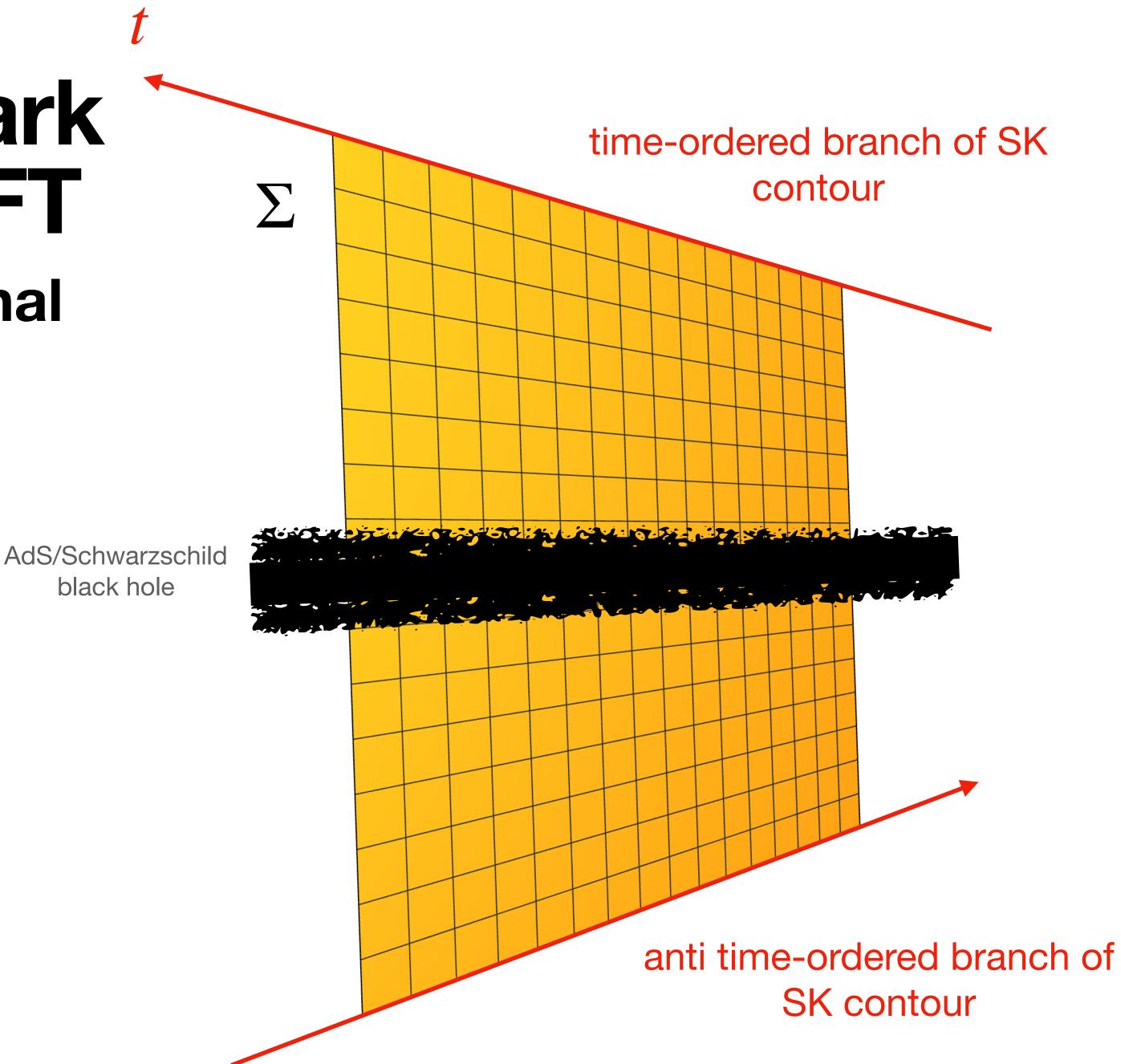


Our task is to solve for the perturbed worldsheet for arbitrary (but small) changes in the loop ${\mathscr C}$

using the same computational technique

Steps of the calculation:

1. Find the appropriate background solution

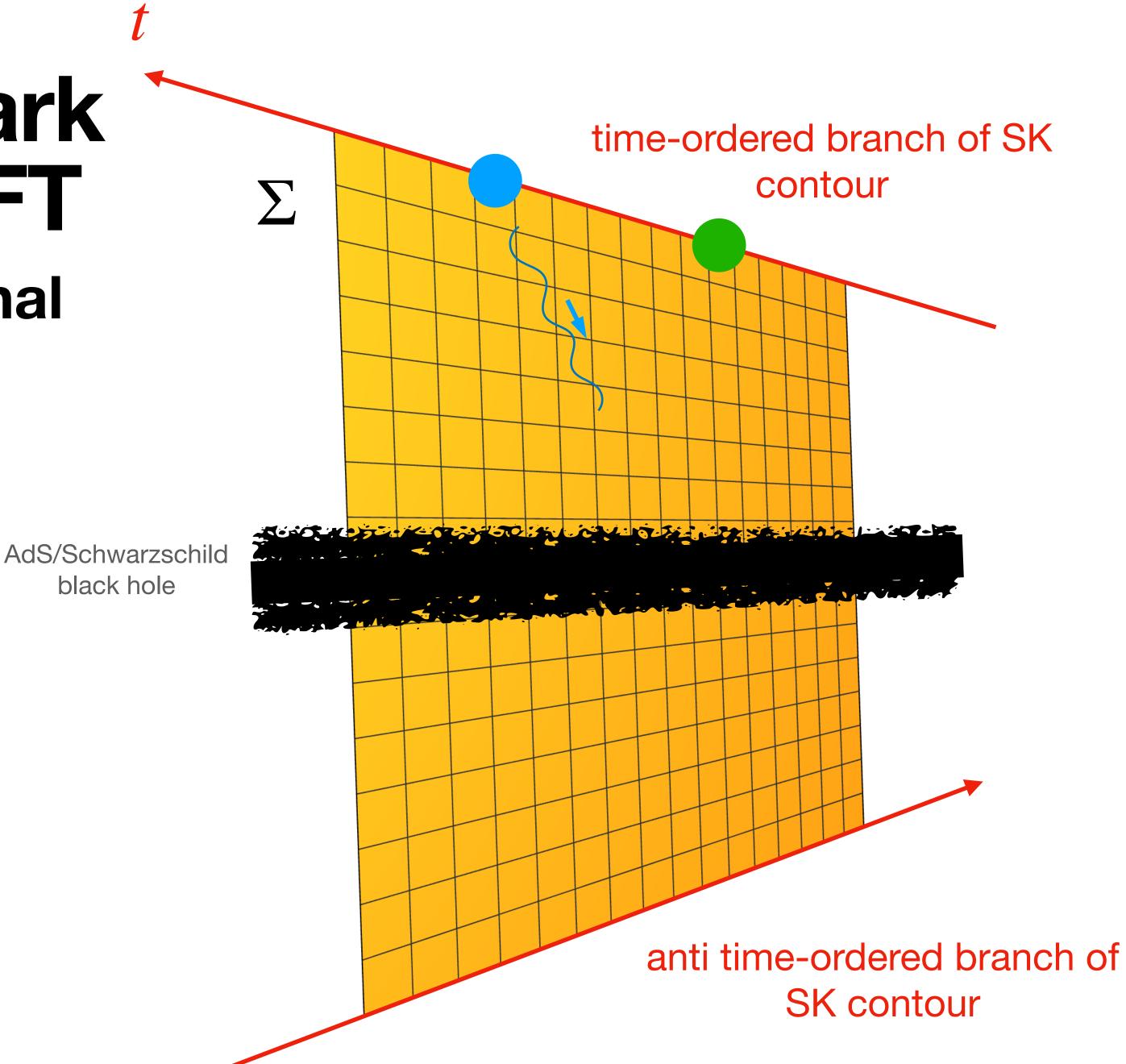


using the same computational technique

Steps of the calculation:

1. Find the appropriate background solution

2. Introduce perturbations

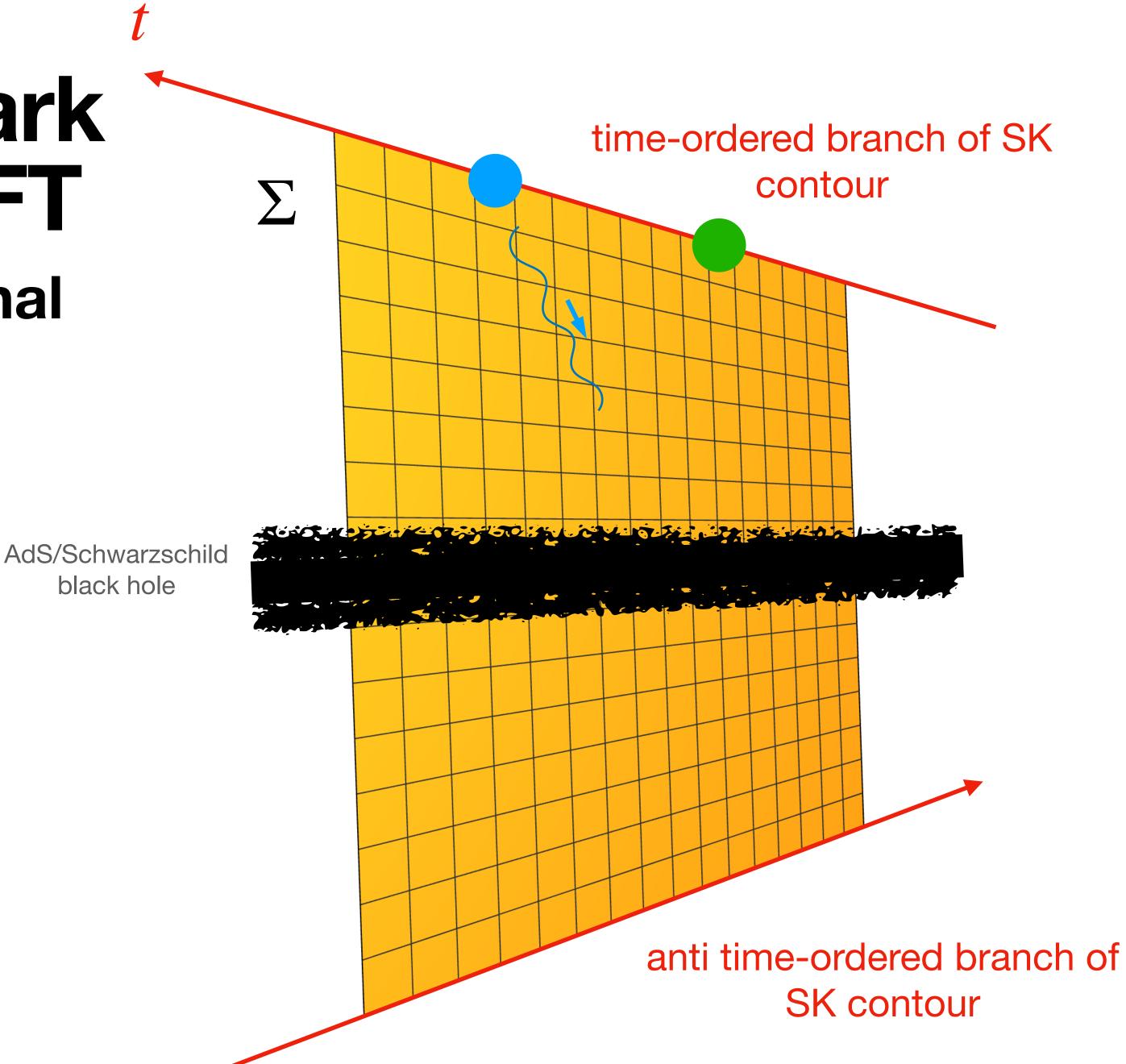


using the same computational technique

Steps of the calculation:

1. Find the appropriate background solution

- 2. Introduce perturbations
- 3. Evaluate the deformed Wilson loop and take derivatives



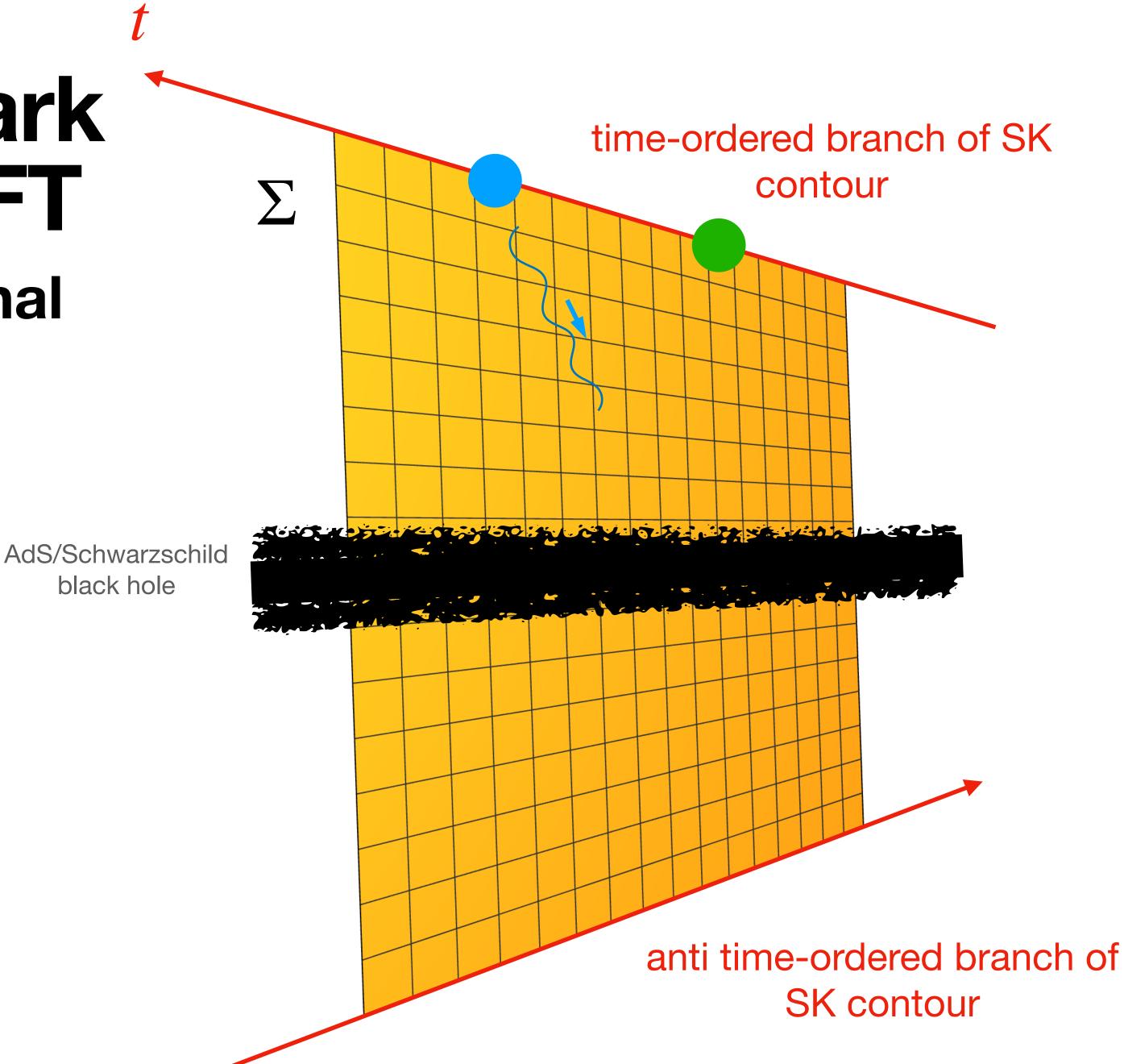
using the same computational technique

Steps of the calculation:

1. Find the appropriate background solution

- 2. Introduce perturbations
- 3. Evaluate the deformed Wilson loop and take derivatives

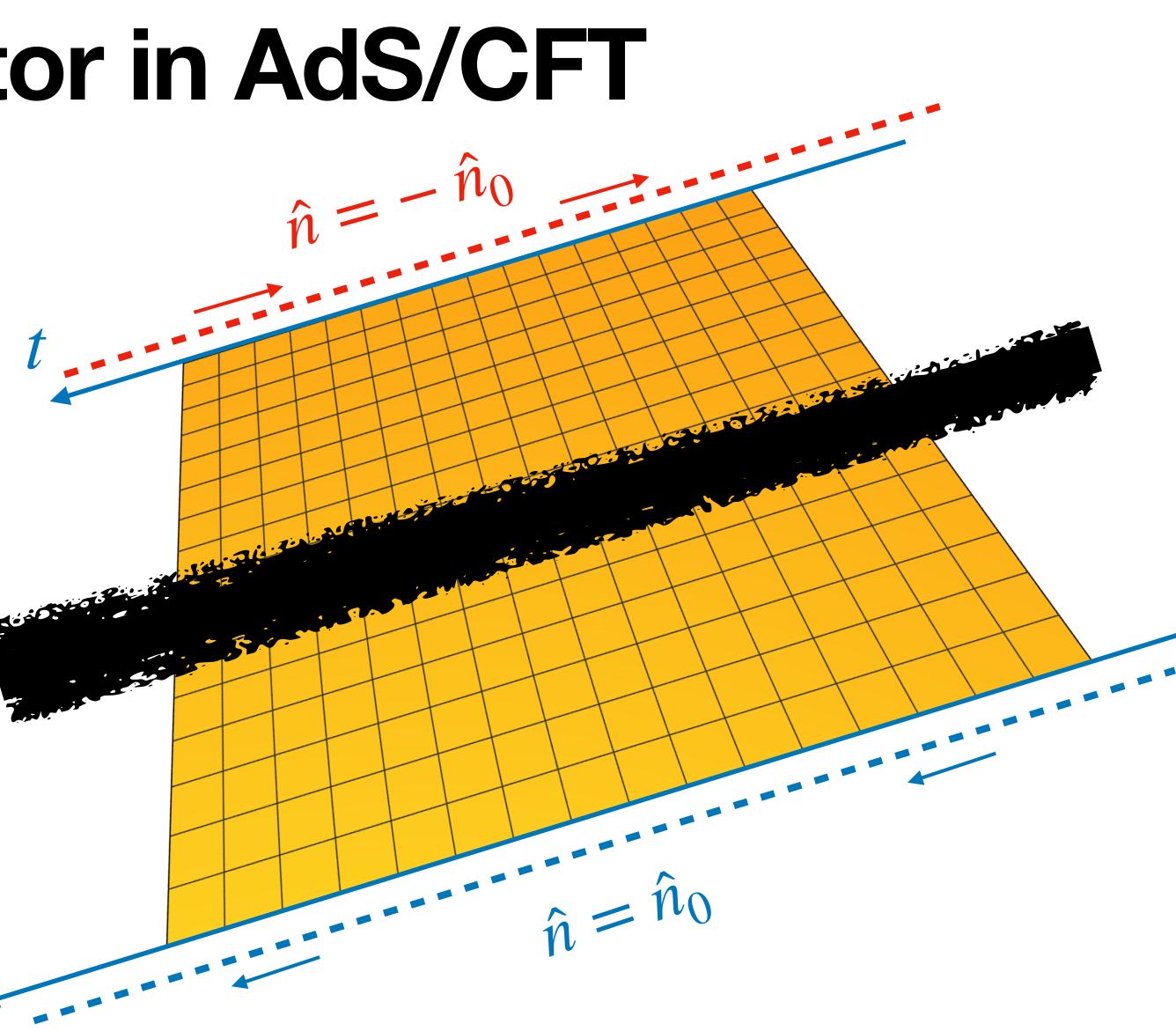
From here: $\kappa = \pi \sqrt{g^2 N_c T^3}$



Quarkonium correlator in AdS/CFT

Quarkonium correlator in AdS/CFT a very similar picture

- Same steps as before:
 - 1. Find background solution
 - 2. Introduce perturbations
 - 3. Evaluate the derivatives
- Differences:
 - Boundary conditions
 - Time-ordered correlator; not retarded

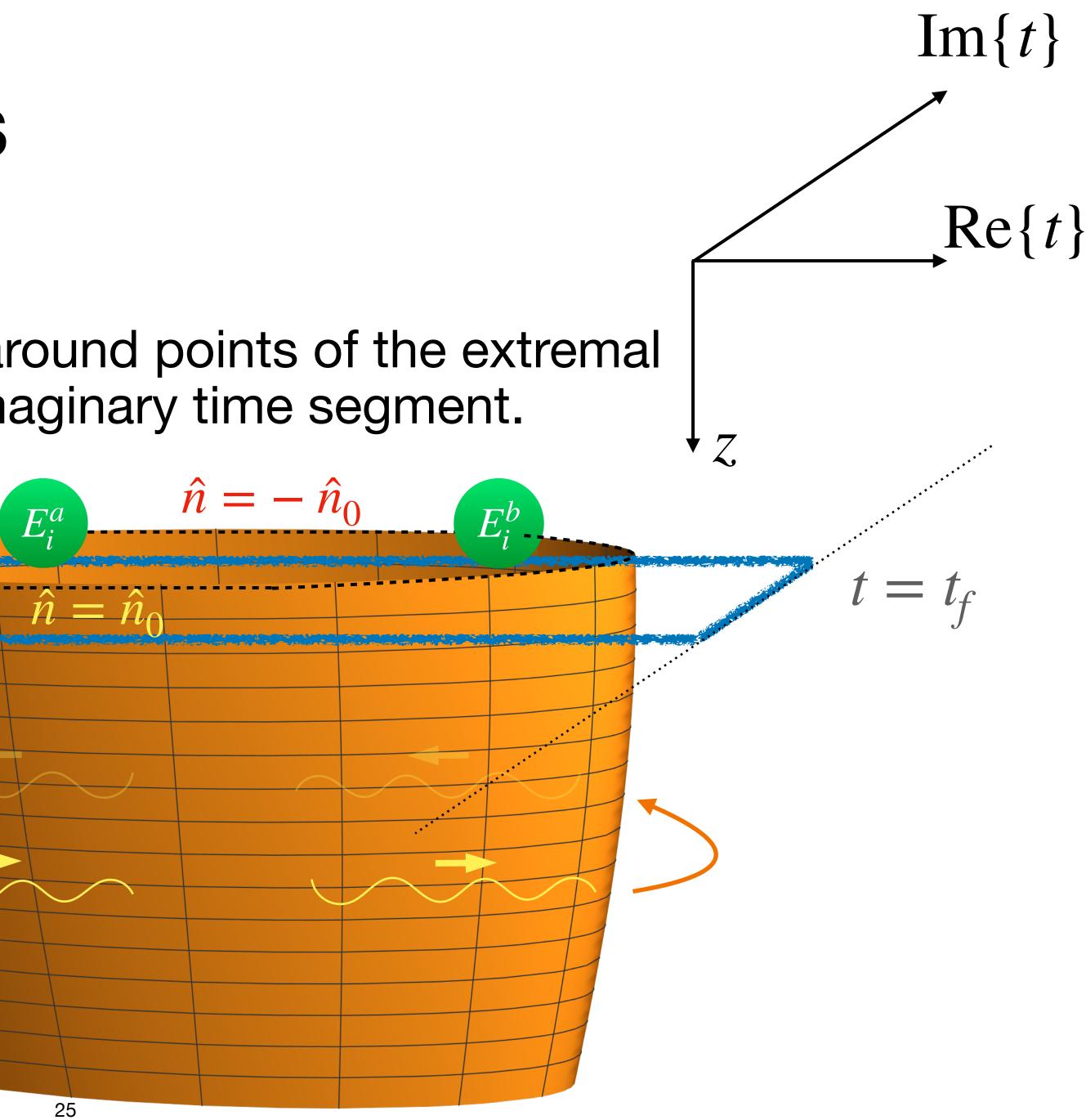


Boundary conditions Quarkonium correlator

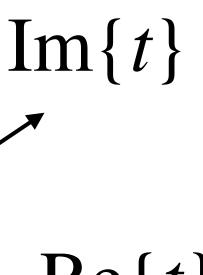
Fluctuations are matched at the turnaround points of the extremal surface. No direct sensitivity to the imaginary time segment.

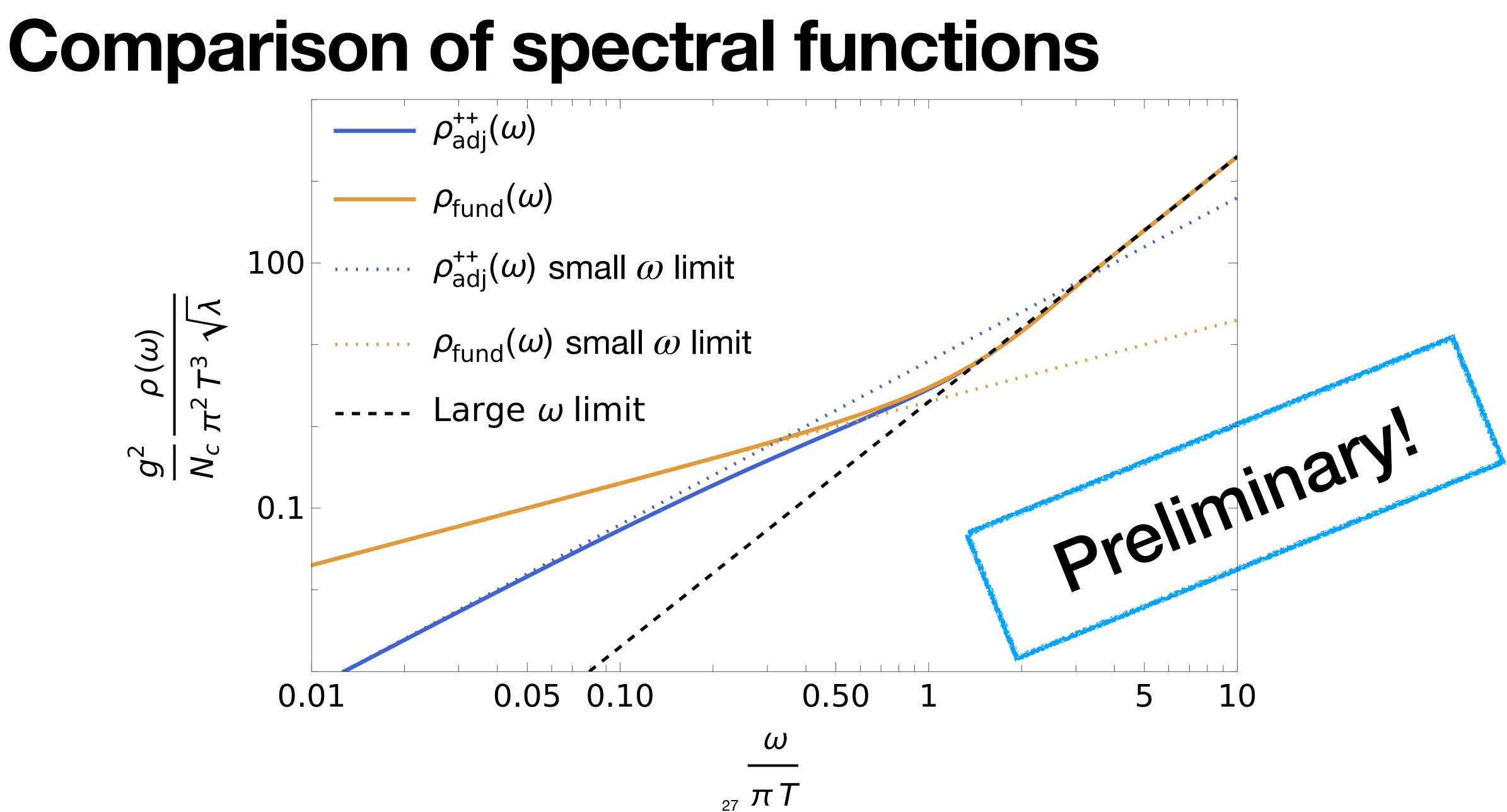
t = t

 $l \equiv l_i$



Boundary conditions Quarkonium correlator $\operatorname{Re}\{t\}$ Fluctuations are matched through the imaginary time segment solving the equations of motion \Rightarrow factors of $e^{\beta\omega}$, KMS relations \downarrow_{τ} t = E_i E_i $= t_{\mathcal{L}}$ $t = t_i - i\beta$ 26





Summary and conclusions

- QGP that govern quarkonium transport
 - A. at weak coupling in QCD
 - B. at strong coupling in $\mathcal{N} = 4$ SYM
- Next steps:
 - Generalize the calculations to include a boosted medium 0
 - Use them as input for quarkonia transport codes
- Stay tuned!

We have discussed how to calculate the chromoelectric correlators of the

Summary and conclusions

- QGP that govern quarkonium transport
 - A. at weak coupling in QCD
 - B. at strong coupling in $\mathcal{N} = 4$ SYM
- Next steps:
 - Generalize the calculations to include a boosted medium 0
 - Use them as input for quarkonia transport codes
- Stay tuned!

We have discussed how to calculate the chromoelectric correlators of the

The Station Prover Borghie & Bala Thank you!

Extra slides

Open quantum systems "tracing/integrating out" the QGP

evolves as

$$\rho_{\text{tot}}(t) = U(t)\rho_{\text{tot}}(t=0)U^{\dagger}(t).$$

final state abundances

$$\implies \rho_{S}(t) = \operatorname{Tr}_{QGP} \left[U(t)\rho_{tot}(t=0)U^{\dagger}(t) \right].$$

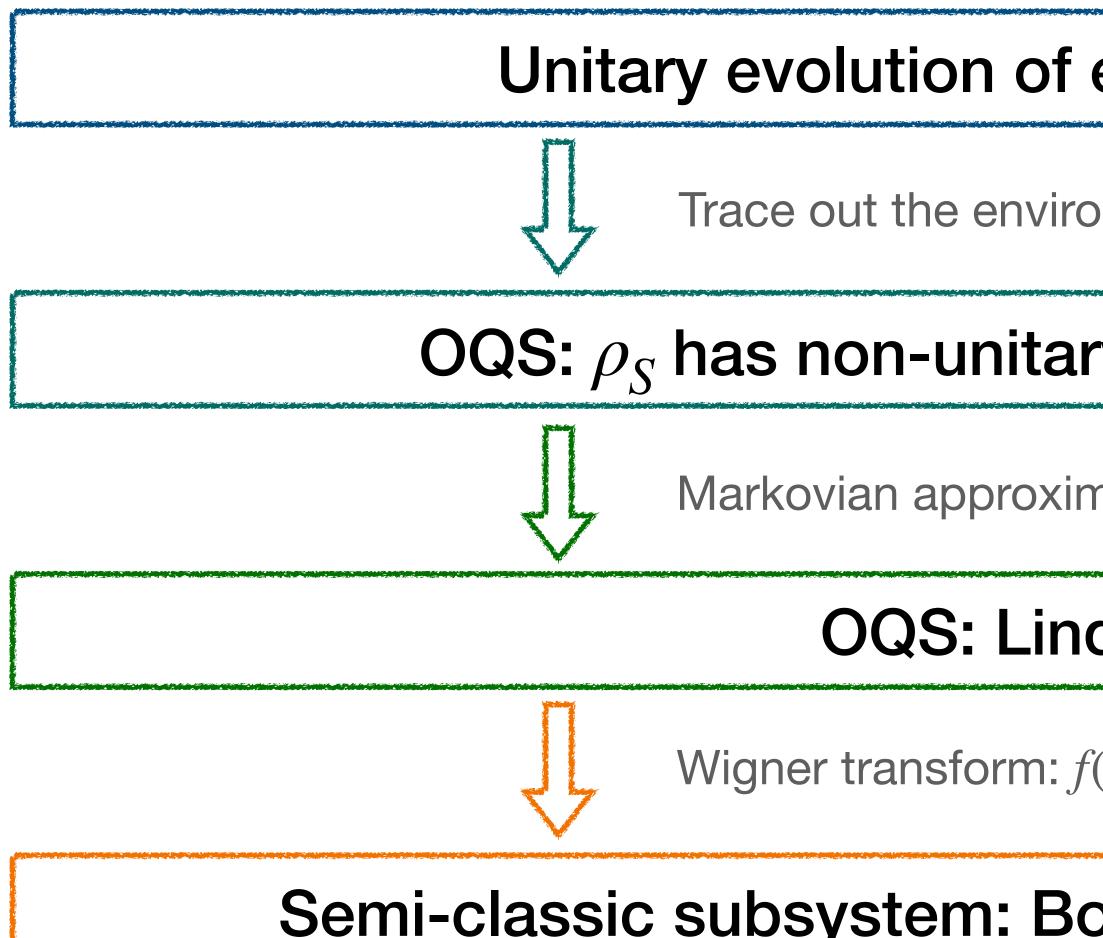
time we have $\rho_{\text{tot}}(t=0) = \rho_S(t=0) \otimes e^{-H_{\text{QGP}}/T} / \mathcal{Z}_{\text{OGP}}$.

• Given an initial density matrix $\rho_{tot}(t=0)$, quarkonium coupled with the QGP

• We will only be interested in describing the evolution of quarkonium and its

• Then, one derives an evolution equation for $\rho_{S}(t)$, assuming that at the initial

Open quantum systems "tracing/integrating out" the QGP: semi-classic description



Unitary evolution of environment + subsystem

Trace out the environment degrees of freedom

OQS: ρ_S has non-unitary, time-irreversible evolution

Markovian approximation \iff weak coupling in H_I

OQS: Lindblad equation

$$(\mathbf{x}, \mathbf{k}, t) \equiv \int_{k'} e^{i\mathbf{k}'\cdot\mathbf{x}} \left\langle \mathbf{k} + \frac{\mathbf{k}'}{2} \right| \rho_S(t) \left| \mathbf{k} - \frac{\mathbf{k}'}{2} \right\rangle$$

Semi-classic subsystem: Boltzmann/Fokker-Planck equation

Lindblad equations for quarkonia at low Tquantum Brownian motion limit & quantum optical limit in pNRQCD

 After tracing out the QGP degrees of freedom, one gets a Lindblad-type equation:

$$\frac{\partial \rho}{\partial t} = -i[H_{\text{eff}}, \rho] + \sum_{j} \gamma_{j} \left(L_{j} \rho L_{j}^{\dagger} - \frac{1}{2} \left\{ L_{j}^{\dagger} L_{j}, \rho \right\} \right)$$

 This can be done in two different limits within pNRQCD: Quantum Brownian Motion:

$$\tau_I \gg \tau_E$$
$$\tau_S \gg \tau_E$$

relevant for $Mv \gg T \gg Mv^2$

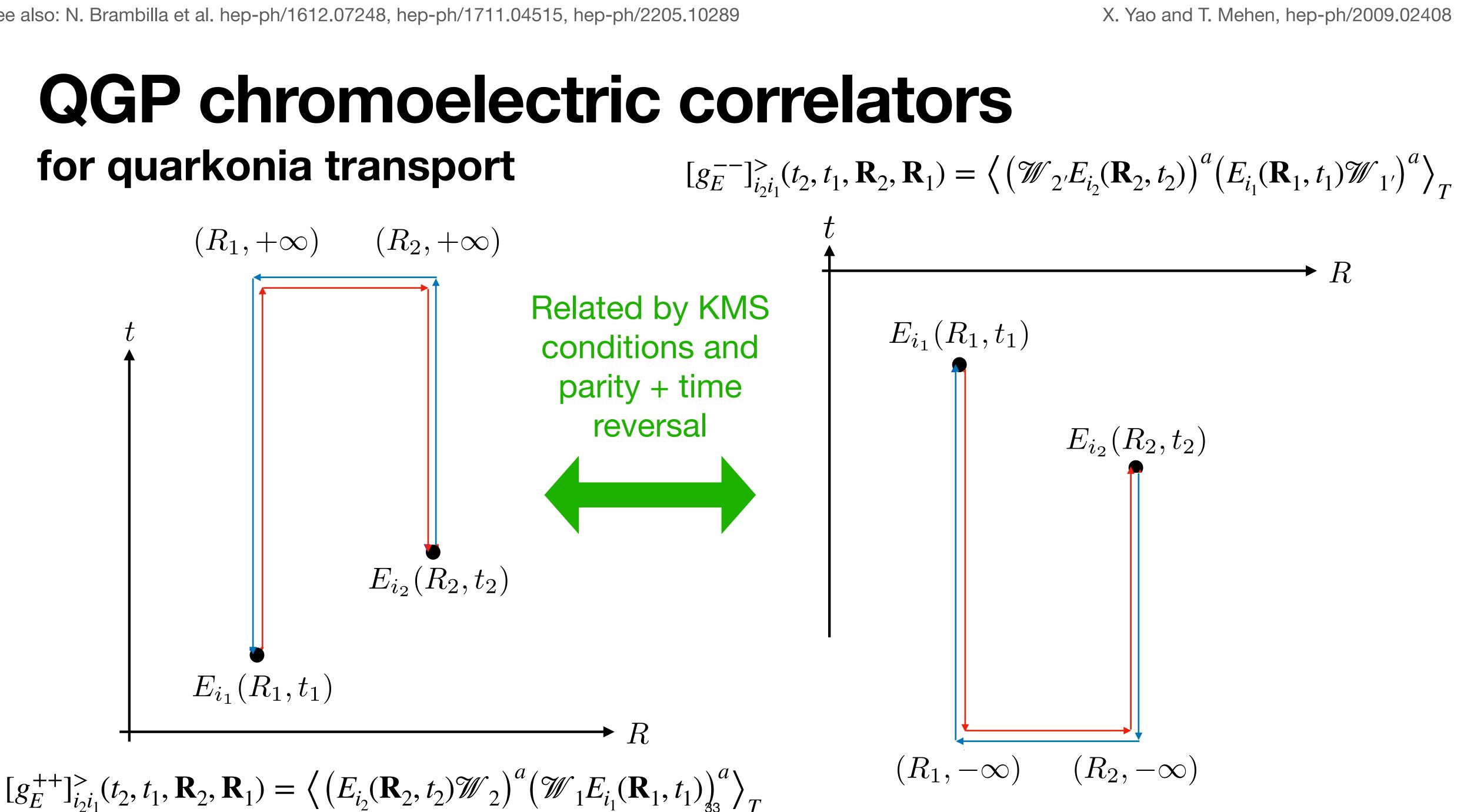
Quantum Optical:

 $\tau_I \gg \tau_F$

relevant for $Mv \gg Mv^2$, $T \gtrsim m_D$

See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289

for quarkonia transport



transport coefficients in the quantum brownian motion limit:

$$\gamma \equiv \frac{g^2}{6N_c} \operatorname{Im} \int_{-\infty}^{\infty} ds \,\langle \mathcal{T} E^a \rangle$$
$$\kappa \equiv \frac{g^2}{6N_c} \operatorname{Re} \int_{-\infty}^{\infty} ds \,\langle \mathcal{T} E^a \rangle$$

- The correlators we discussed are also directly related to the correlators that define the
 - $^{a,i}(s,\mathbf{0})$ ^{*ab*}[(s, 0), (0,0)] $E^{b,i}(0,0)$,
 - $^{a,i}(s,0)$ $\mathcal{W}^{ab}[(s,0),(0,0)] E^{b,i}(0,0) \rangle$.

The spectral function of quarkonia symmetries and KMS relations

The KMS conjugates of the previous correlators are such that $[g_E^{++}]_{ii}^{>}(q) = e^{q^0/T}[g_E^{++}]_{ii}^{<}(q)$

and one can show that they are related by

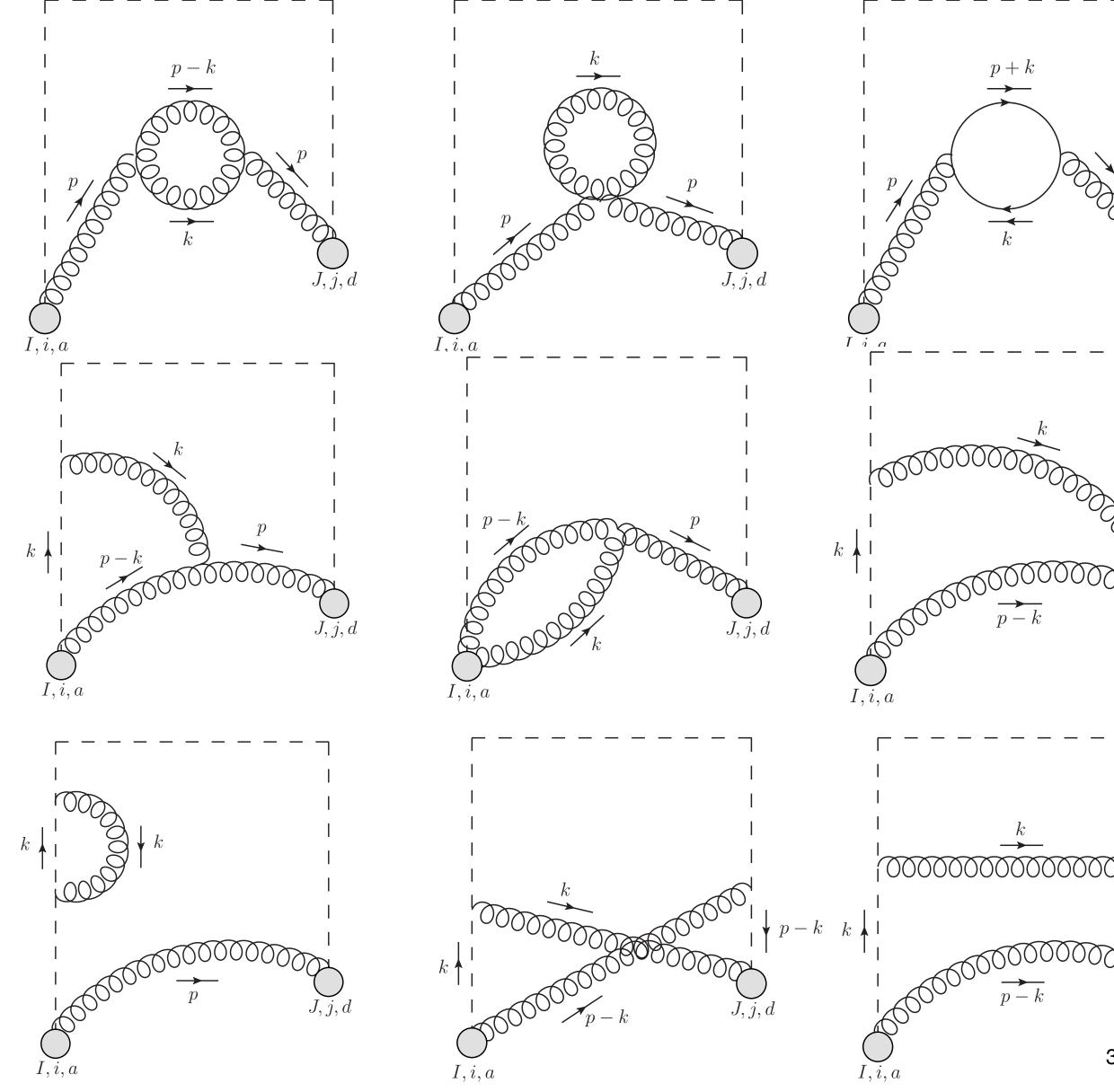
$$[g_E^{++}]_{ji}^{>}(q) = [g_E^{--}]_{ji}^{<}(-q), \quad [g_E^{--}]_{ji}^{>}(q) = [g_E^{++}]_{ji}^{<}(-q).$$

The spectral functions $[\rho_E^{++/--}]_{ii}(q) = [g_E^{++/--}]_{ii}^>(q) - [g_E^{++/--}]_{ii}^<(q)$ are not necessarily odd under $q \leftrightarrow -q$. However, they do satisfy:

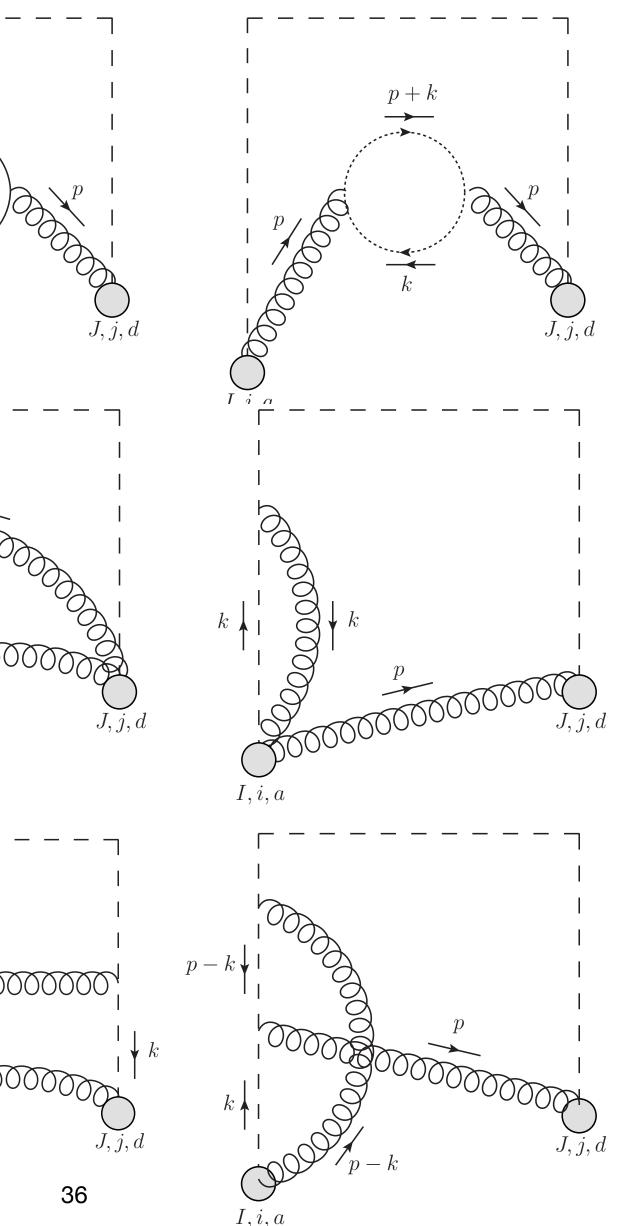
$$[\rho_E^{++}]_{ji}(q) = - [\rho_E^{--}]_{ji}(-q).$$

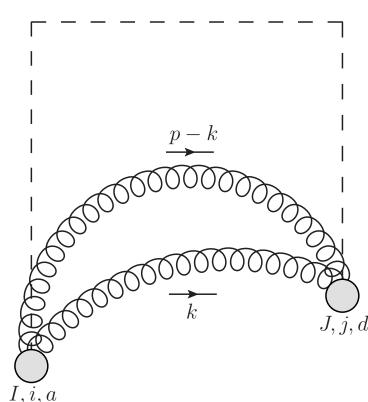
),
$$[g_E^{--}]_{ji}^{>}(q) = e^{q^0/T}[g_E^{--}]_{ji}^{<}(q)$$
,

Weakly coupled calculation in QCD



T. Binder, K. Mukaida, BS and X. Yao, hep-ph/2107.03945





The real-time calculation proceeds by evaluating these diagrams (+ some permutations of them) on the Schwinger-Keldysh contour

The spectral function at NLO and a comparison with its heavy quark counterpart

It is simplest to write the integrated spectral function:

$$\varrho_E^{++}(p_0) = \frac{1}{2} \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} \delta^{ad} \delta_{ij} [\rho_E^{++}]_{ji}^{da}(p_0, \mathbf{p}) \,.$$

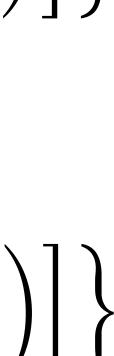
We found

$$g^{2}\varrho_{E}^{++}(p_{0}) = \frac{g^{2}(N_{c}^{2}-1)p_{0}^{3}}{(2\pi)^{3}} \left\{ 4\pi^{2} + g^{2} \left[\left(\frac{11}{12}N_{c} - \frac{1}{3}N_{f} \right) \ln \left(\frac{\mu^{2}}{4p_{0}^{2}} \right) + \left(\frac{149}{36} + \frac{\pi^{2}}{3} \right) N_{c} - \frac{10}{9}N_{f} + F \left(\frac{p_{0}}{T} \right) \right] \right\}$$
and the heavy quark counterpart is, with the same *T*-dependent function $F(p_{0}/T)$,
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$g^{2}\rho_{E}^{\mathrm{HQ}}(p_{0}) = \frac{g^{2}(N_{c}^{2}-1)p_{0}^{3}}{(2\pi)^{3}} \left\{ 4\pi^{2} + g^{2} \left[\left(\frac{11}{12}N_{c} - \frac{1}{3}N_{f} \right) \ln \left(\frac{\mu^{2}}{4n^{2}} \right) + \left(\frac{149}{36} - \frac{2\pi^{2}}{3} \right) H_{c} - \frac{10}{9}N_{f} + F \left(\frac{p_{0}}{T} \right) \right] \right\}$$

$$g^{2}\varrho_{E}^{++}(p_{0}) = \frac{g^{2}(N_{c}^{2}-1)p_{0}^{3}}{(2\pi)^{3}} \left\{ 4\pi^{2} + g^{2} \left[\left(\frac{11}{12}N_{c} - \frac{1}{3}N_{f} \right) \ln \left(\frac{\mu^{2}}{4p_{0}^{2}} \right) + \left(\frac{149}{36} + \frac{\pi^{2}}{3} \right) N - \frac{10}{9}N_{f} + F \left(\frac{p_{0}}{T} + F \left(\frac{p_{0}}{T} + \frac{\mu^{2}}{3} \right) N \right) \right]$$
and the heavy quark counterpart is, with the same *T*-dependent function $F(p_{0}/T)$,
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$g^{2}\rho_{E}^{\mathrm{HQ}}(p_{0}) = \frac{g^{2}(N_{c}^{2}-1)p_{0}^{3}}{(2\pi)^{3}} \left\{ 4\pi^{2} + g^{2} \left[\left(\frac{11}{12}N_{c} - \frac{1}{3}N_{f} \right)_{37} \ln \left(\frac{\mu^{2}}{4p_{0}^{2}} \right) + \left(\frac{149}{36} - \frac{2\pi^{2}}{3} \right) \right] f_{c} - \frac{10}{9}N_{f} + F \left(\frac{p_{0}}{T} + F \left(\frac{p_{0}}{36} + \frac{p_{0}}{3} + F \right) \right) \right] \right]$$



How the calculation proceeds what equations do we need to solve?

to determine Σ :

$$S_{\rm NG} = -\frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{-\det\left(g_{\mu\nu}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}\right)}$$

able to calculate derivatives of $\langle W[\mathscr{C}_f] \rangle_T = e^{iS_{NG}[\Sigma_f]}$:

$$S_{\rm NG}[\Sigma_f] = S_{\rm NG}[\Sigma] + \int dt_1 dt_2$$

The classical, unperturbed equations of motion from the Nambu-Goto action

 The classical, linearized equation of motion with perturbations in order to be $\frac{\delta^2 S_{\text{NG}}[\Sigma_f]}{\delta f(t_1) \delta f(t_2)} \left| \begin{array}{c} f(t_1) f(t_2) + O(f^3) \\ f=0 \end{array} \right|_{f=0}$