Quarkonium transport in strongly coupled plasmas

and a comparison with heavy quark transport

38th Winter Workshop on Nuclear Dynamics
Marriott Puerto Vallarta Resort \& Spa February 9, 2023

Bruno Scheihing-Hitschfeld (MIT)
with Xiaojun Yao (UW) and Govert Nijs (MIT) based on 2107.03945, 2205.04477, 2302.XXXXX

Quarkonium in HeavyIon Collisions

- Heavy quarks and quarkonia are amongst the most informative probes of the QGP.
- To interpret the full wealth of data, we need a precise theoretical understanding of heavy quarks in a thermal medium,
- as single open heavy flavors, and
- as pairs of heavy flavors that can bind into quarkonia.

Quarkonium in HeavyIon Collisions

- Heavy quarks and quarkonia are amongst the most informative probes of the QGP.
- To interpret the full wealth of data, we need a precise theoretical understanding of heavy quarks in a thermal medium,
- as single open heavy flavors, and
- as pairs of heavy flavors that can bind into quarkonia.

This talk

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

 M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

$Q: c$ or b quark $\bar{Q}: \bar{c}$ or \bar{b} quark

M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

Q

8

color singlet; bound state

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

At high T, quarkonium "melts" because the medium screens the interactions between heavy quarks (Matsui \& Satz 1986)

$$
Q \bar{Q} \text { melts if } r \sim \frac{1}{M v} \gg \frac{1}{T}
$$

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

$Q: c$ or b quark $\bar{Q}: \bar{c}$ or \bar{b} quark

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

$Q: c$ or b quark $\bar{Q}: \bar{c}$ or \bar{b} quark

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

Time scales of quarkonia

Transitions between quarkonium energy levels
(the system)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }} & {\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O\right.} \\
& \left.+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Time scales of quarkonia

Time scales of quarkonia

Transitions between quarkonium energy levels
(the system)

$\begin{array}{cc}\text { Interaction with the } \\ \text { environment } & \text { QGP } \\ \text { (the environment) }\end{array}$

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }} & {\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O\right.} \\
& +{ }_{4}\left(V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Time scales of quarkonia

Transitions between quarkonium energy levels
(the system)

Interaction with the environment

QGP
(the environment)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }}[& S^{\dagger}\left(i \partial_{0}-H_{S}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O \\
& \left.+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

What do we need to calculate?

QGP chromoelectric correlators

for quarkonium transport

$$
\left.\left[g_{E}^{-}-\right]_{i_{i 1} i}^{-(t, ~}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{V}_{2} E_{i_{i}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{V}_{1}\right)^{a}\right\rangle_{T}
$$

$$
\left.\left[g_{E}^{++}\right]_{\left.i_{i 1}\right\rangle_{1}}^{t_{2}}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport

bound state: color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{6}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{6}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{\sigma}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport

688
088 688 heavy quark path generates a Wilson line:
$\mathscr{W}_{\left[t_{2}, t_{1}\right]}^{a b}=\left[\operatorname{Pexp}\left(i g \int_{t_{1}}^{t_{2}} d t A_{0}^{c}(t) T_{\text {adj }}^{c}\right)\right]^{a b}$

the unbound state carries color charge and interacts with the medium
medium-induced transition
bound state: color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{6}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport

the unbound state carries color charge and interacts with the medium
unbound state: color octet
medium-induced transition
bound state: color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} F_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{\sigma}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{6}^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

unbound state: color octet
the unbound state carries color charge and interacts with the

QGP chromoelectric correlators

for quarkonium transport

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport
bound state: color singlet
medium-induced transition
unbound state: color octet
the unbound state carries color charge and interacts with the
medium

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport

bound state:
color singlet
bound state:
color singlet
medium-induced transition
unbound state: color octet
the unbound state carries color charge and interacts with the

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonium transport

$$
\left.\left[g_{E}^{-}-\right]_{i_{i 1} i}^{-(t, ~}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{V}_{2} E_{i_{i}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{V}_{1}\right)^{a}\right\rangle_{T}
$$

$$
\left.\left[g_{E}^{++}\right]_{\left.i_{i 1}\right\rangle_{1}}^{t_{2}}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

Why are these correlators interesting?

These determine the dissociation and formation rates of quarkonia (in the quantum optical limit):

$$
\begin{array}{r}
\left.\Gamma^{\mathrm{diss}} \propto \int \frac{\mathrm{~d}^{3} \mathbf{p}_{\mathrm{rel}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{q}}{(2 \pi)^{3}}\left|\left\langle\psi_{\mathscr{B}}\right| \mathbf{r}\right| \Psi_{\mathbf{p}_{\mathrm{rel}}}\right\rangle\left.\right|^{2}\left[g_{E}^{++}\right]_{i i}^{>}\left(q^{0}=E_{\mathscr{B}}-\frac{\mathbf{p}_{\mathrm{rel}}^{2}}{M}, \mathbf{q}\right), \\
\left.\Gamma^{\text {form }} \propto \int \frac{\mathrm{d}^{3} \mathbf{p}_{\mathrm{cm}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{p}_{\mathrm{rel}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{q}}{(2 \pi)^{3}}\left|\left\langle\psi_{\mathscr{B}}\right| \mathbf{r}\right| \Psi_{\mathbf{p}_{\mathrm{rel}}}\right\rangle\left.\right|^{2}\left[g_{E}^{--}\right]_{i i}^{>}\left(q^{0}=\frac{\mathbf{p}_{\mathrm{rel}}^{2}}{M}-E_{\mathscr{B}}, \mathbf{q}\right) \\
\times f_{\mathcal{S}}\left(\mathbf{x}, \mathbf{p}_{\mathrm{cm}}, \mathbf{r}=0, \mathbf{p}_{\mathrm{rel}}, t\right) .
\end{array}
$$

A comparison with heavy quark diffusion

Different physics with the same building blocks

Heavy quark diffusion

an analogous picture

- The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$
\begin{aligned}
& \left\langle\operatorname { T r } \left[\left(U_{[\infty, t]} E_{i}(t) U_{[t,-\infty}\right)^{\dagger}\right.\right. \\
& \left.\left.\left.\quad \times\left(U_{[\infty, 0]} E_{i}(0) U_{[0,-\infty)}\right]\right\rangle\right\rangle\right\rangle
\end{aligned}
$$

- It reflects the typical momentum transfer $\left\langle p^{2}\right\rangle$ received from "kicks" from the medium.

Heavy quark diffusion

an analogous picture

- The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$
\begin{aligned}
& \left\langle\operatorname { T r } \left[\left(U_{[\infty, t]} E_{i}(t) U_{[t,-\infty)}\right)^{\dagger}\right.\right. \\
& \left.\left.\quad \times\left(U_{[\infty, 0]} E_{i}(0) U_{[0,-\infty)}\right)\right]\right\rangle
\end{aligned}
$$

- It reflects the typical momentum transfer $\left\langle p^{2}\right\rangle$ received from "kicks" from the medium.

Heavy quark diffusion

an analogous picture

- The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$
\begin{aligned}
\langle\operatorname{Tr} & {\left[\left(U_{[\infty, t]} E_{i}(t) U_{[t,-\infty]}\right)^{\dagger}\right.} \\
& \left.\left.\times\left(U_{[\infty, 0]} E_{i}(0) U_{[0,-\infty]}\right)\right]\right\rangle
\end{aligned}
$$

- It reflects the typical momentum transfer $\left\langle p^{2}\right\rangle$ received from "kicks" from the medium.

Heavy quark diffusion

 an analogous picture- The heavy quark diffusion coefficient is also defined from a correlation of chromoelectric fields:

$$
\begin{aligned}
\langle\operatorname{Tr} & {\left[\left(U_{[\infty, t]} E_{i}(t) U_{[t,-\infty}\right)^{\dagger}\right.} \\
& \left.\left.\quad \times\left(U_{[\infty, 0]} E_{i}(0) U_{[0,-\infty)}\right)\right]\right\rangle
\end{aligned}
$$

- It reflects the typical momentum transfer $\left\langle p^{2}\right\rangle$ received from "kicks" from the medium.

The difference, qualitatively

The difference, qualitatively

winding around the Schwinger-Keldysh contour

$Q \bar{Q}$

Path integral representations

How to do calculations

the Schwinger-Keldysh contour

- Imaginary time calculations:

$$
\text { equilibrium \#: }\langle\mathcal{O}\rangle=Z^{-1} \operatorname{Tr}\left[O e^{-\beta H}\right] \text {, }
$$

and also two-point functions:

$$
\langle\mathcal{O}(\tau) \mathcal{O}(0)\rangle=Z^{-1} \operatorname{Tr}\left[\mathcal{O}(0) e^{-\tau H} \mathcal{O}(0) e^{-(\beta-\tau) H}\right]
$$

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=Z^{-1} \operatorname{Tr}\left[e^{i H t} \mathcal{O}(0) e^{-i H t} \mathcal{O}(0) e^{-\beta H}\right]
$$

How to do calculations

the Schwinger-Keldysh contour

- Imaginary time calculations:
equilibrium \#: $\langle\mathcal{O}\rangle=Z^{-1} \operatorname{Tr}\left[\mathcal{O} e^{-\beta H}\right]$,
and also two-point functions:
$\langle\mathcal{O}(\tau) \mathcal{O}(0)\rangle=Z^{-1} \operatorname{Tr}\left[\mathcal{O}(0) e^{-\tau H} \mathcal{O}(0) e^{-(\beta-\tau) H}\right]$
- Real time calculations:
$\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=Z^{-1} \operatorname{Tr}\left[e^{i H t} \mathcal{O}(0) e^{-i H t} \mathcal{O}(0) e^{-\beta H}\right]$

$$
t=-i \beta
$$

How to do calculations

the Schwinger-Keldysh contour

- Imaginary time calculations:

equilibrium \#: $\langle\mathcal{O}\rangle=\mathbb{Z}^{-1} \operatorname{Tr}\left[\mathcal{O} e^{-\beta H}\right]$
and also two-point functions:

$$
\langle\mathcal{O}(\tau) \mathcal{O}(0)\rangle=Z^{-1} \operatorname{Tr}\left[\mathcal{O}(0) e^{-\tau H} \mathcal{O}(0) e^{-(\beta-\tau) H}\right]
$$

- Real time calculations:
$\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=Z^{-1} \operatorname{Tr}\left[e^{i H t} \mathcal{O}(0) e^{-i H t} \mathcal{O}(0) e^{-\beta H}\right]$

$$
t=0
$$

$\operatorname{Im}\{t\}$

Path integral representations

How to do calculations

the Schwinger-Keldysh contour

- Imaginary time calculations:

equilibrium \#: $\langle O\rangle=Z^{-1} \operatorname{Tr}\left[O e^{-\beta H}\right]$
and also two-point functions:
$\langle O(\tau) O(0)\rangle=Z^{-1} \operatorname{Tr}\left[O(0) e^{-\tau H} O(0) e^{-(\beta-\tau) H}\right]$
- Real time calculations:

$$
t=-i \beta
$$

$\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=Z^{-1} \operatorname{Tr}\left[e^{i H t} \mathcal{O}(0) e^{-i H t} \mathcal{O}(0) e^{-\beta H}\right]$

The difference, qualitatively

The difference, qualitatively winding around the Schwinger-Keldysh contour

- The heavy quark is present at all times:
- It is part of the construction of the thermal state of the QGP.
- The Wilson line, which enforces the Gauss' law constraint due to the point charge, is also present on the Euclidean segment.

The difference, qualitatively

$Q \bar{Q}$

$t=t_{f}$

- In this correlator, the heavy quark pair is present at all times, but it is only color-charged for a finite time:
- It is not part of the construction of the thermal state of the QGP.
- The adjoint Wilson line, representing the propagation of unbound quarkonium (in the adjoint representation), is only present on the real-time segment.

The difference, qualitatively

The difference in pQCD

 operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$
\Delta \rho(\omega)=\frac{g^{4} N_{c}^{2} C_{F} T_{F}}{4 \pi} \omega^{3}
$$

The difference in pQCD

 operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$
\Delta \rho(\omega)=\frac{g^{4} N_{c}^{2} C_{F} T_{F}}{4 \pi} \omega^{3}
$$

The difference is due to different operator orderings (different possible gluon insertions).

The difference in pQCD

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$
\Delta \rho(\omega)=\frac{g^{4} N_{c}^{2} C_{F} T_{F}}{4 \pi} \omega^{3}
$$

The difference is due to different operator orderings (different possible gluon insertions).

The difference in pQCD

Gauge invariant!

 operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

$$
\Delta \rho(\omega)=\frac{g^{4} N_{c}^{2} C_{F} T_{F}}{4 \pi} \omega^{3}
$$

The difference is due to different operator orderings (different possible gluon insertions).

What about the difference at strong coupling?

Wilson loops in AdS/CFT

setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [$\left.{ }^{* *}\right]$
- Wilson loops can be evaluated by solving classical equations of motion:

$$
\langle W[\mathscr{C}=\partial \Sigma]\rangle_{T}=e^{i S_{\mathrm{NG}}[\Sigma]}
$$

How do Wilson loops help?

setup - pure gauge theory

- Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :
$\left.\frac{\delta}{\delta f^{\mu}\left(s_{2}\right)} \frac{\delta}{\delta f^{\nu}\left(s_{1}\right)} W\left[\mathscr{C}_{f}\right]\right|_{f=0}=(i g)^{2} \operatorname{Tr}_{\text {color }}\left[U_{\left[1, s_{2}\right]} F_{\mu \rho}\left(\gamma\left(s_{2}\right)\right) \dot{\gamma}^{\rho}\left(s_{2}\right) U_{\left[s_{2}, s_{1}\right]} F_{\nu \sigma}\left(\gamma\left(s_{1}\right)\right) \dot{\gamma}^{\sigma}\left(s_{1}\right) U_{\left[s_{1}, 0\right]}\right]$

How do Wilson loops help?

setup - pure gauge theory

- Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :
$\left.\frac{\delta}{\delta f^{\mu}\left(s_{2}\right)} \frac{\delta}{\delta f^{\nu}\left(s_{1}\right)} W\left[\mathscr{C}_{f}\right]\right|_{f=0}=(i g)^{2} \operatorname{Tr}_{\text {color }}\left[U_{\left[1, s_{2}\right]} F_{\mu \rho}\left(\gamma\left(s_{2}\right)\right) \dot{\gamma}^{\rho}\left(s_{2}\right) U_{\left[s_{2}, s_{1}\right]} F_{\nu \sigma}\left(\gamma\left(s_{1}\right)\right) \dot{\gamma}^{\sigma}\left(s_{1}\right) U_{\left[s_{1}, 0\right]}\right]$
- Same as the lattice calculation of the heavy quark diffusion coefficient:

Wilson loops in $\mathcal{N}=4$ SYM

a slightly different observable

- A holographic dual in terms of an extremal surface exists for

$$
W_{\mathrm{BPS}}[\mathscr{C} ; \hat{n}]=\frac{1}{N_{c}} \operatorname{Tr}_{\text {color }}\left[\mathscr{P} \exp \left(i g \oint_{\mathscr{C}} d s T^{a}\left[A_{\mu}^{a} \dot{x}^{\mu}+\hat{n}(s) \cdot \vec{\phi}^{a} \sqrt{\dot{x}^{2}}\right]\right)\right],
$$

which is not the standard Wilson loop.

Wilson loops in $\mathcal{N}=4$ SYM

a slightly different observable

- A holographic dual in terms of an extremal surface exists for

$$
W_{\mathrm{BPS}}[\mathscr{C} ; \hat{n}]=\frac{1}{N_{c}} \operatorname{Tr}_{\text {color }}\left[\mathscr{P} \exp \left(i g \oint_{\mathscr{C}} d s T^{a}\left[A_{\mu}^{a} \dot{x}^{\mu}+\hat{n}(s) \cdot \overrightarrow{\phi^{a}} \sqrt{\dot{x}^{2}}\right]\right)\right]
$$

which is not the standard Wilson loop.

- $\mathcal{N}=4$ SYM has 6 scalar fields $\vec{\phi}^{a}$, which enter the above Wilson loop through a direction $\hat{n} \in S_{5}$. Also, its dual gravitational description is $\mathrm{AdS}_{5} \times \mathrm{S}_{5}$.

Wilson loops in $\mathcal{N}=4$ SYM

a slightly different observable

- A holographic dual in terms of an extremal surface exists for

$$
W_{\mathrm{BPS}}[\mathscr{C} ; \hat{n}]=\frac{1}{N_{c}} \operatorname{Tr}_{\text {color }}\left[\mathscr{P} \exp \left(i g \oint_{\mathscr{C}} d s T^{a}\left[A_{\mu}^{a} \dot{x}^{\mu}+\hat{n}(s) \cdot \overrightarrow{\phi^{a}} \sqrt{\dot{x}^{2}}\right]\right)\right]
$$

which is not the standard Wilson loop.

- $\mathcal{N}=4$ SYM has 6 scalar fields $\overrightarrow{\phi^{a}}$, which enter the above Wilson loop through a direction $\hat{n} \in S_{5}$. Also, its dual gravitational description is $\mathrm{AdS}_{5} \times \mathrm{S}_{5}$.
- What to do with this extra parameter? For a single heavy quark, just set $\hat{n}=\hat{n}_{0}$.

Choosing \hat{n}

what is the best proxy for an adjoint Wilson line?

- A key property of the adjoint Wilson line is

$$
\mathscr{W}_{\left[t_{2}, t_{1}\right]}^{a b}=\frac{1}{T_{F}} \operatorname{Tr}\left[\mathscr{T}\left\{T^{a} U_{\left[t_{2}, t_{1}\right]} T^{b} U_{\left[t_{2}, t_{1}\right]}^{\dagger}\right\}\right],
$$

which means that we can obtain the correlator we want by studying deformations of a Wilson loop of the form $W=\frac{1}{N_{c}} \operatorname{Tr}\left[U U^{\dagger}\right]=1$.

- This leads us to consider the following loop:

$$
\hat{n}=\hat{n}_{0}
$$

$$
\hat{n}=-\hat{n}_{0}
$$

Wilson loops in AdS/CFT

setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [**]
- Wilson loops can be evaluated by solving classical equations of motion:

$$
\langle W[\mathscr{C}=\partial \Sigma]\rangle_{T}=e^{i S_{\mathrm{NG}}[\Sigma]}
$$

Metric of interest for finite T calculations:

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left[-f(z) d t^{2}+d \mathbf{x}^{2}+\frac{1}{f(z)} d z^{2}+z^{2} d \Omega_{5}^{2}\right]
$$

$$
f(z)=1-(\pi T z)^{4}
$$

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution

AdS/Schwarzschild black hole
time-ordered branch of SK
Σ
 SK contour

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbations

AdS/Schwarzschild black hole
time-ordered branch of SK
Σ
 SK contour

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbations
3. Evaluate the deformed Wilson loop and take derivatives

Σ contour
 SK contour

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbations
3. Evaluate the deformed Wilson loop and take derivatives
From here: $\kappa=\pi \sqrt{g^{2} N_{c}} T^{3}$

Quarkonium correlator in AdS/CFT

Quarkonium correlator in AdS/CFT

a very similar picture

- Same steps as before:

1. Find background solution
2. Introduce perturbations
3. Evaluate the derivatives

- Differences:
- Boundary conditions
- Time-ordered correlator; not retarded

Boundary conditions

Quarkonium correlator

Fluctuations are matched at the turnaround points of the extremal surface. No direct sensitivity to the imaginary time segment.

Boundary conditions

Quarkonium correlator

$$
\begin{aligned}
& \operatorname{Im}\{t\} \\
& \rightarrow \operatorname{Re}\{t\}
\end{aligned}
$$

Fluctuations are matched through the imaginary time segment solving the equations of motion \Longrightarrow factors of $e^{\beta \omega}$, KMS relations \downarrow_{z}
 E_{i} .-.........................

$$
t=t_{f}
$$

$$
t=t_{i}-i \beta
$$

Comparison of spectral functions

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport
A. at weak coupling in QCD
B. at strong coupling in $\mathcal{N}=4$ SYM
- Next steps:
- Generalize the calculations to include a boosted medium
- Use them as input for quarkonia transport codes
- Stay tuned!

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport
A. at weak coupling in QCD
B. at strong coupling in $\mathcal{N}=4$ SYM
- Next steps:
- Generalize the calculations to include a boosted medium
- Use them as input for quarkonia transport codes
- Stay tuned!

Extra slides

Open quantum systems "tracing/integrating out" the QGP

- Given an initial density matrix $\rho_{\text {tot }}(t=0)$, quarkonium coupled with the QGP evolves as

$$
\rho_{\mathrm{tot}}(t)=U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)
$$

- We will only be interested in describing the evolution of quarkonium and its final state abundances

$$
\Longrightarrow \rho_{S}(t)=\operatorname{Tr}_{\mathrm{QGP}}\left[U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)\right]
$$

- Then, one derives an evolution equation for $\rho_{S}(t)$, assuming that at the initial time we have $\rho_{\mathrm{tot}}(t=0)=\rho_{S}(t=0) \otimes e^{-H_{\mathrm{QGP}} / T} / \mathscr{L}_{\mathrm{QGP}}$.

Open quantum systems

"tracing/integrating out" the QGP: semi-classic description

Lindblad equations for quarkonia at low T

 quantum Brownian motion limit \& quantum optical limit in pNRQCD- After tracing out the QGP degrees of freedom, one gets a Lindblad-type equation:

$$
\frac{\partial \rho}{\partial t}=-i\left[H_{\mathrm{eff}}, \rho\right]+\sum_{j} \gamma_{j}\left(L_{j} \rho L_{j}^{\dagger}-\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}\right)
$$

- This can be done in two different limits within pNRQCD:

Quantum Brownian Motion:

$$
\begin{gathered}
\tau_{I} \gg \tau_{E} \\
\tau_{S} \gg \tau_{E}
\end{gathered}
$$

relevant for $M v \gg T \gg M v^{2}$

Quantum Optical:

$$
\begin{aligned}
& \tau_{I} \gg \tau_{E} \\
& \tau_{I} \gg \tau_{S}
\end{aligned}
$$

relevant for $M v \gg M v^{2}, T \gtrsim m_{D}$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)_{33}^{a}\right\rangle_{T}
$$

The correlators we discussed are also directly related to the correlators that define the transport coefficients in the quantum brownian motion limit:

$$
\begin{aligned}
\gamma & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Im} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle, \\
\kappa & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Re} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle .
\end{aligned}
$$

The spectral function of quarkonia

symmetries and KMS relations

The KMS conjugates of the previous correlators are such that

$$
\left[g_{E}^{++}\right]_{j i}^{>}(q)=e^{q^{0} / T}\left[g_{E}^{++}\right]_{j i}^{<}(q), \quad\left[g_{E}^{--}\right]_{j i}^{>}(q)=e^{q^{0} / T}\left[g_{E}^{--}\right]_{j i}^{<}(q),
$$

and one can show that they are related by

$$
\left[g_{E}^{++}\right]_{j i}^{>}(q)=\left[g_{E}^{--}\right]_{j i}^{<}(-q), \quad\left[g_{E}^{--}\right]_{j i}^{>}(q)=\left[g_{E}^{++}\right]_{j i}^{<}(-q) .
$$

The spectral functions $\left[\rho_{E}^{++/--}\right]_{j i}(q)=\left[g_{E}^{++/--}\right]_{j i}^{>}(q)-\left[g_{E}^{++/--}\right]_{j i}^{<}(q)$ are not necessarily odd under $q \leftrightarrow-q$. However, they do satisfy:

$$
\left[\rho_{E}^{++}\right]_{j i}(q)=-\left[\rho_{E}^{--}\right]_{j i}(-q) .
$$

Weakly coupled calculation in QCD

The real-time calculation proceeds by evaluating these diagrams (+ some permutations of them) on the Schwinger-Keldysh contour

The spectral function at NLO
 and a comparison with its heavy quark counterpart

It is simplest to write the integrated spectral function:

$$
\varrho_{E}^{++}\left(p_{0}\right)=\frac{1}{2} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}} \delta^{a d} \delta_{i j}\left[\rho_{E}^{++}\right]_{j i}^{d a}\left(p_{0}, \mathbf{p}\right) .
$$

We found

$$
g^{2} Q_{E}^{++}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{144}{36}+\frac{\pi^{2}}{3}\right){ }^{2}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

and the heavy quark counterpart is, with the same T-dependent function $F\left(p_{0} / T\right)$,
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$
g^{2} \rho_{E}^{\mathrm{HQ}}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right)_{37} \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{149}{36}-\frac{2 \pi^{2}}{3}\right){ }_{c}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

How the calculation proceeds

what equations do we need to solve?

- The classical, unperturbed equations of motion from the Nambu-Goto action to determine Σ :

$$
S_{\mathrm{NG}}=-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{-\operatorname{det}\left(g_{\mu \nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}\right)} .
$$

- The classical, linearized equation of motion with perturbations in order to be able to calculate derivatives of $\left\langle W\left[\mathscr{C}_{f}\right]\right\rangle_{T}=e^{i S_{\mathrm{NG}}\left[\Sigma_{f}\right]}$:

$$
S_{\mathrm{NG}}\left[\Sigma_{f}\right]=S_{\mathrm{NG}}[\Sigma]+\left.\int d t_{1} d t_{2} \frac{\delta^{2} S_{\mathrm{NG}}\left[\Sigma_{f}\right]}{\delta f\left(t_{1}\right) \delta f\left(t_{2}\right)}\right|_{f=0} f\left(t_{1}\right) f\left(t_{2}\right)+O\left(f^{3}\right) .
$$

