Dielectrons at the LHC chances and challenges

Harald Appelshäuser Goethe Universität Frankfurt

38th Winter Workshop on Nuclear Physics February 5-11, 2023, Puerto Vallarta, Mexico

Outline

- EM probes are unique
- Photons versus dielectrons
- Experimental status at the LHC: pp, p-Pb, Pb-Pb from ALICE
- Outlook: ALICE 2 and ALICE 3

Photons and dileptons

- leave the system without strong FSI
- are produced at all stages of the collison

→ messengers of QGP bulk properties and in-medium properties of hadrons

hard scattering, pre-equilibrium thermal QGP $(T > T_c)$

thermal hadronic $(T < T_c)$ hadronic decays $\pi, \eta, \eta', \omega, \varrho, \phi, J/\psi c \bar{c}, b \bar{b}$

Harald Appelshäuser, WWND 2023

Photons or dileptons

Technical:

- Photon measurements are limited by systematics: large background from π^0 and η decays
- Dielectrons suffer from statistics (additional factor α_{EM}), systematics dominated by physical background from hadron decays

Physics:

- Photons integrate over space-time evolution, different collision stages cannot be distinguished (aka direct photon puzzle)
- Dielectrons do as well but carry mass which can serve as a clock

Dileptons

• Dilepton yield: space-time integral over thermal emission rate:

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$
mass dependence allows separation of collision stages
$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM} (m_{ee}, q, \mu_B, T)$$

٠

Dileptons

• Dilepton yield: space-time integral over thermal emission rate:

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM}(m_{ee}, q, \mu_B, T) \xrightarrow{\nabla}_{ee}^{1} \frac{1}{\sqrt{2}}$$

- mass dependence allows separation of collision stages
- QGP radiation dominates at $m_{ee} \gtrsim 1 \text{ GeV}$
- structureless spectral function allows most direct temperature determination from exponential in m_{ee}, no blue shift

Dileptons

• Dilepton yield: space-time integral over thermal emission rate:

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} \int_{ee}^{BE} (q_0, T) \operatorname{Im}_{EM}(m_{ee}, q, \mu_B, T)$$

- mass dependence allows separation of collision stages
- QGP radiation dominates at $m_{ee} \gtrsim 1 \text{ GeV}$
- NA60: Exponential fit yields T=205±12 MeV, i.e.
 >T_c (no blue shift!)
 - Thermal radiation dominated by QGP
 - Consistent with initial temperature T_i=235 MeV

Dielectrons at the LHC

• Pb-Pb at the LHC produces the largest, hottest and longest-lived QGP

Dielectrons at the LHC

- Pb-Pb at the LHC produces the largest, hottest and longest-lived QGP
- Large combinatorial and physical backgrounds
- In the Intermediate Mass Region (1-2.5 GeV/c²) S/B ≤ 10%
 - → heavy-flavor contribution must be known within $\leq 1\%$

- Charm and beauty contribution can be determined from a template fit to the IMR
- Extraction of cross sections possible but additional uncertainties introduced

additional uncertainties introduced

Λ

ALI-PUB-500013

3.5

3

 $m_{\rm ee}~({\rm GeV}/c^2)$

2

Heavy-flavour cross sections in pp and p-Pb

Heavy-flavour cross sections in pp and p-Pb

Dielectrons in Pb-Pb

Pb-Pb results from Run 2:

- Cocktail: *N_{coll}* scaled HF measurement in pp
- At the edge of systematic uncertainty in the IMR

Dielectrons in Pb-Pb

Dielectrons in Pb-Pb

Pb-Pb results from Run 2:

- Cocktail: N_{coll} scaled HF measurement in pp
- At the edge of systematic uncertainty in the IMR
- HF is known to be modified in Pb-Pb
- \rightarrow Construct modified HF cocktail based on HFE R_{AA}

17

Dielectrons in Pb-Pb – modified HF cocktail

Pb-Pb results from Run 2:

- Cocktail: N_{coll} scaled HF measurement in pp
- At the edge of systematic uncertainty in the IMR
- HF is known to be modified in Pb-Pb
- \rightarrow Construct modified HF cocktail based on HFE R_{AA}
- Description improved, but additional uncertainties introduced
- Possible QGP contribution not resolvable within systematic (and statistical) unertainties

Dielectron excess in Pb-Pb

Pb-Pb results from Run 2:

- Cocktail: N_{coll} scaled HF measurement in pp
- At the edge of systematic uncertainty in the IMR
- HF is known to be modified in Pb-Pb
- \rightarrow Construct modified HF cocktail based on HFE R_{AA}
- Description improved, but additional uncertainties introduced
- Possible QGP contribution not resolvable within systematic (and statistical) unertainties
- Measurement of dielectron excess requires a cocktail-independent approach!

Topological separation of dielectron sources

Topological separation of dielectron sources

Topological separation of dielectron sources

Topological separation of dielectron sources

Topological separation of dielectron sources – pp

Topological separation of dielectron sources – Pb-Pb

Topological separation of dielectron sources – Pb-Pb

Reduction of HF and inclusion of a prompt source improves description of the data

Topological separation of dielectron sources - Pb-Pb

Extraction of prompt thermal signal via template fits:

- Beauty contribution fixed via separate fit at high DCA_{ee} $b\overline{b}$: 0.74 ± 0.24(stat.) ± 0.12(syst.) × N_{coll} scaling
- Simultaneous fit of charm and prompt contribution $c\overline{c}$: 0.43 ± 0.40(stat.) ± 0.22(syst.) × N_{coll} scaling prompt: 2.64 ± 3.18(stat.) ± 0.29(syst.) × Rapp

Results in agreement with:

- HF suppression
- Thermal contribution in the order of Rapp

The future

Future dielectron measurements require:

- much more statistics
- significant improvement of vertex resolution

ALICE 2 in Run 3 and 4 ALICE 3 in Run 5 and 6

New TPC readout system

- GEM-based readout chambers
- new electronics, continuous readout

ALI-PERF-529718

ALI-PUB-103021

10 p_T (GeV/c)

New TPC readout system

- GEM-based readout chambers
- new electronics, continuous readout

New Inner Tracking System (ITS2)

- CMOS MAPS technology
- better resolution, less material, faster readout

Integrated online-offline system O²

- online reconstruction Pb-Pb at 50 kHz
- highly selective data reduction

700·10⁹ pp events at 13.6 TeV recorded in 2022 \rightarrow factor ~400 more pp data than in Run 1 and 2

New TPC readout system

- GEM-based readout chambers
- new electronics, continuous readout

New Inner Tracking System (ITS2)

- CMOS MAPS technology
- better resolution, less material, faster readout

Integrated online-offline system O²

- online reconstruction Pb-Pb at 50 kHz
- highly selective data reduction

→ ALICE 2 will be a game changer in the field

Dielectron mass spectrum in Run 3

Z. Citron et al., CERN Yellow Rep. Monogr. (2019) 1159

ALI-SIMUL-306839

Dielectron mass spectrum in Run 3

Z. Citron et al., CERN Yellow Rep. Monogr. (2019) 1159

ALI-SIMUL-306839

Dielectrons with ALICE 3

arXiv:2211.02491

- Multiply heavy-flavored hadrons: Ξ_{cc} , Ω_{ccc} , Ω_{ccc}
- X,Y,Z charmonium-like states (e.g. X(3872))
- Light exotic nuclei with charm baryons and multiple hyperons up to A=6
- Thermal EM radiation, chiral symmetry restoration
- Soft theorems

Dielectrons with ALICE 3

Dielectrons with ALICE 3

Summary

- EM probes provide unique access to the hot and dense phase of the system
- Dielectrons are challenging but have a large potential with future experiments
- ALICE 2 and ALICE 3 will be **ideally suited** for detailed precision studies:
 - Pre-equilibrium dynamics
 - QGP temperature
 - Early (initial) flow
 - Chiral mixing
 - Electric conductivity

Tom Cormier 1947-2022

LHC22s period 18th November 2022 16:52:47_{.893}

Backup

Low mass: chiral symmetry restoration

LQCD: chiral transition region (*T* = 130-170 MeV) in confined phase

 \rightarrow observable via in-medium properties of hadrons, i.e. the p-meson:

 $J^{P} = 1^{-}, c\tau = 1.3 \text{ fm}$

 \rightarrow thermal radiation in the low mass region ($m_{\rm ee} < 1 \, {\rm GeV}/c^2$)

Excess mass spectrum and QGP temperature

Fit to the IMR makes precise determination of $T_{\rm eff}$ possible

Flow of QGP radiation

Statistical precision of v_2 measurement: 0.01-0.02

Space-time evolution

- Transverse momentum spectra contain information on collective radial and elliptic flow (T_{eff} and v_2)
- Mass dependence gives access to EoS of QGP

EM spectral function

• Dilepton yield: space-time integral over thermal emission rate:

$$\frac{dN_{ee}}{d^4xd^4q} = -\frac{\alpha^2}{\pi^3 m_{ee}^2} f^{BE}(q_0, T) \operatorname{Im}_{EM}(m_{ee}, q, \mu_B, T)$$

- V and A spectral function in vacuum: chiral symmetry breaking
- Spectral functions change in medium: key to chiral symmetry restoration
- The messenger: ρ -meson modification $c\tau_{0} = 1.3 \text{ fm}$

Chiral symmetry restoration

CSR $\leftarrow \rightarrow$ vector-axialvector degeneracy (ρ -a₁) Axial-vector experimentally inaccessible ($a_1 \rightarrow \pi \gamma$)

Vector spectral function in medium exhibits ρ – melting

Towards CSR: connection to axial vector requires constraints from theory (LQCD, sum rules) \rightarrow Possible at $\mu_B=0$

SPS – ρ -melting

• Dielectron yield in A-A shows significant low-mass excess over hadronic decays

SPS – ρ -melting

• Dielectron yield in A-A shows significant low-mass excess over hadronic decays

 Excess is compatible with strong in-medium modifications of the ρ-meson, well described by hadronic many-body theory

$SPS - \rho$ -melting

• Dielectron yield in A-A shows significant low-mass excess over hadronic decays

- Excess is compatible with strong in-medium modifications of the ρ-meson, well described by hadronic many-body theory
- Confirmed by high-precision dimuon data ρ-melting established

RHIC Beam Energy Scan (BES)

Mapping the QCD phase diagram with dileptons

Detailed mapping of the QCD phase diagram with dileptons expected in this decade

Mapping the QCD phase diagram with dileptons

Detailed mapping of the QCD phase diagram with dileptons expected in this decade

What happens at the energy frontier?

S. Scheid (ALICE) QM2019

- PYTHIA and POWHEG give systematically different results
 - \rightarrow access to different production mechanisms
- Compatible with FONLL calculations

Photons puzzle

Direct photons (at RHIC) show:

- large yields (indicative of early emission)
- large collectivity (i.e. v₂, indicative of late emission)
- Hard to reconcile in models
- "Direct-photon puzzle"
- Early and late emission times of photons are not separable
- Worst case: Early QGP radiation could be outshined by late hadronic processes

Hadronic radiation - HADES

- Large enhancement in Au-Au at $Vs_{NN} = 2.42 \text{ GeV}$
- Excess compatible with hadronic thermal radiation and a strong medium modification of the p
- Exponential fit yields T = 71.8 ± 2 MeV

HADES Nature Phys. 15 (2019) 1040

Excitation function

- Large enhancement in Au-Au at $Vs_{NN} = 2.42 \text{ GeV}$
- Excess compatible with hadronic thermal radiation and a strong medium modification of the p
- Exponential fit yields T = 71.8 ± 2 MeV

- Energy dependence of temperature measurement may reveal a plateau in the caloric curve, suggesting 1st order phase transition
- Systematic beam energy scan is important

Rapp, v.Hees PLB 753 (2016) 586

Photons or dileptons

- Photon measurements are limited by systematics: large background from π^0 and η decays
- Dielectrons suffer from statistics (additional factor α_{EM}), systematics dominated by combinatorial background and hadron decays

- Photons integrate over space-time evolution, different collision stages cannot be distinguished (aka direct photon puzzle)
- Dielectrons do as well but carry mass which can serve as a clock