

2040

- Z pole pgme

EW scale

Higgs cutoff

ee Z pole pame, Sept. 23, 2022

"Intensity frontier" is not only about precise measurements but it could reveal light and weakly coupled structures as solution to the main open HEP questions.

This makes FCC-ee valuable on its own and not only through the synergy with FCC-hh.

Christophe Grojean

ee Z pole pame, Sept. 23, 2022

$$\mu |H|^2 \to g\Lambda \phi |H|^2$$

Why More Precision?

Why More Precision?

The values of the EFT interactions among SM fields will reveal the "selection" rules" of the SM, with intimate links to new structure/symmetries

Examples of symmetries leading to different selection rules

Operator	Naive (maximal)scaling with g_*	Symmetry/Selection Rule and corresponding suppression	i
$O_{y_{\psi}} = H ^2 \bar{\psi}_L H \psi_R$	g_*^3	Chiral: y_f/g_*	Dimensional
$O_T = (1/2) \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^2$	g_*^2	Custodial: $(g'/g_*)^2, y_t^2/16\pi^2$	$(D) \qquad (\text{coupling}) n_i - 2$
$O_{GG} = H ^2 G^a_{\mu\nu} G^{a\mu\nu}$ $O_{BB} = H ^2 B_{\mu\nu} B^{\mu\nu}$	g_*^2	Shift symmetry: $(y_t/g_*)^2$ Elementary Vectors: $(g_s/g_*)^2$ (for O_{GG}) $(g'/g_*)^2$ (for O_{BB}) Minimal Coupling: $g_*^2/16\pi^2$	Nhy EFT? Motivation for generically, (coupling)
$O_6 = H ^6$	g_{*}^{4}	Shift symmetry: λ/g_*^2	but there might exist "

Precision physics exp. (EDMs, g-2...) usually constrains one operator. Under what conditions does it faithfully describe some BSM at low-energy? Need a collider to have accessioned a sportfield to truncate the Effection at dimension-6? Exception then understand the underlying structure.

 $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \cdots$

arguments impose n_i =number of fields in operator $\mathcal{O}_i^{(D)}$ y seen by counting powers of $h \neq 1$ $\mathcal{O}_i^{(D)}$

r 'precision tests: SM test → New Physics Search 1g ~ g*) coupling of New Physics to SM 1 F/A expansion 3 hierarchy between departures f selection rules that lead to other scaling **Perturbativity** $(E/\Lambda, \operatorname{coupling} \times v/$

ee Z pole pame, Sept. 23, 2022

ee Higgs Factory Luminosity

ts to be recog-

ee Z pole pame, Sept. 23, 2022

FCC-ee Run Plan

EP data accumulated in first 3 mn. Then exciting & diverse programme with different priorities every few years. (order of the different stages still subject to discussion/optimisation)

	Phase	Run duration	Center-of-mass	Integrated
F C	C	(years)	Energies (GeV)	Luminosity (ab ⁻¹)
	гС-ее-Z	4	88-95	150
	FCC-ee-W	2	158-162	12
	FCC-ee-H	3	240	5
	FCC-ee-tt	5	345-365	1.5

— Superb statistics achieved in only 15 years —

in each detector: 10⁵ Z/sec, 10⁴ W/hour, 1500 Higgs/day, 1500 top/day

Event statistics (2IP)

Z peak	E _{cm} : 91 GeV 4yrs	5 10 ¹² e+e-→ Z
WW threshold	$E_{cm} \ge 161 \text{ GeV}$ 2yrs	>10 ⁸ e+e- → WW
ZH maximum	E _{cm} : 240 GeV 3yrs	>10 ⁶ e+e- → ZH
s-channel H	$E_{cm}: m_H$ (3yrs?)) O(5000) e+e- → H
tt	E_{cm} : \geq 350 GeV 5yrs	10 ⁶ e+e- → \overline{tt}

Christophe Grojean

LEP x 10⁵ LEP x 2.10³ **Never done** Never done Never done

E_{CM} errors: <100 keV <300 keV 1 MeV << 1 Me 2 MeV 6

ee Z pole pame, Sept. 23, 2022

FCC-ee Physics Programme

resolu Higgs sector definition imposes initial requirements on hadronic resolution, tracking and vertexing

Physics Process	Measured Quantity	Critical Detector	Ree
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta($
$H \to \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Паске	$\oplus 1$
$H \to b\bar{b}, \ c\bar{c}, \ gg$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim$
$H \to q\bar{q}, \ VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	C
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 1$

m_{Higgs}, Г_{Higgs} Higgs couplings self-coupling

quired Performance $(1/p_{\rm T}) \sim 2 \times 10^{-5}$

 $\times 10^{-3}/(p_{\rm T}\sin\theta)$

 $5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$

 $\sigma_E^{
m jet}/E\sim 3-4\%$

 $16\%/\sqrt{E} \oplus 1\%$ (GeV)

Snowmass 2021 Higgs Factory Considerations

- Physics Considerations -						
P1	P2	P3	P4	P5	P6	P7
Precision Higgs	Measurements	Sensitivity to	New Physics	Direct measure	Indirect	Improved
measurements	of Higgs self-	rare and exotic	discovery	of EW/Yukawa	sensitivity to	measurements
to SM particles	coupling(s)	Higgs decays	potential	top coupling	New Physics	of α_s

Technological Considerations

— rechnological Considerations —						
T1	T2	Т3	T4	T5	Т6	Τ7
Range of operating E/ease of changing E	Annual integrated luminosity	Upgradability to higher energy/ luminosity	Extent and cost of remaining R&D	Ability to operate at the tt threshold	Ability to run at the Z pole	Ability to run at the WW threshold
Т8	Т9	T10	T11	T12-T13	T14-T15	T16
Stability and calibration of collision energy	Beam stability and luminosity calibration	Ability to control beam-related backgrounds	Ability to provide independent confirmation of new discoveries	Ability to provide polarised electrons/ positrons	Possibility to reconfigure as γγ, e-γ, e-e-, ep, pp collider	Opportunities for beam dumps experiments
			T17			

Need for, and scientific utility of, technology demonstrators

J. Bagger+ arXiv:2203.06164

			4		
7 -Ed	Vorkieg noint dumi.			ur i 217	Rur
	Z first phase		26 a	b ⁻¹ /year	UH
	second phase	200	52 a	$b^{-1}/year$	
	Working point Lumi. /	$' \text{ IP } [10^{34} \text{ cm}^{-2}.\text{s}]$	-1] Total lu	$\overline{\text{mi. (2 IPs)}}$	Run ti
	Z first phase	100		vear	2
ç	Z second phase	200	52 ab	e^{-1} /year	2
@FCC	Particle production (10 ⁵	(B^0 / \overline{B}^0)	B^+ / B^-	$\overline{B^0_s \ / \ \overline{B}^0_s}$	$\overline{ \Lambda_b \ / \ \overline{\Lambda}_b }$
Inc	Belle II	27.5	27.5	n/a	n/a
avc	FCC-ee	300	300	80	80
E					
ntei	Decay mode/Experiment	Belle II $(50/ab)$	LHCb Run I	LHCb Upg	r. $(50/fb)$
. Mo	EW/H penguins $B^0 \rightarrow K^*(892)e^+e^-$	~ 2000	~ 150	~ 50)00
S S	$\mathcal{B}(B^0 \to K^*(892)\tau^+\tau^-)$	~ 10	—	_	
Ö Ö	$\int B_s \to \mu^+ \mu^-$	n/a	~ 15	~ 5	00
	$B^{0} \to \mu^{+}\mu^{-}$ $\mathcal{B}(B_{s} \to \tau^{+}\tau^{-})$	~ 5	_	\sim 5	60
	Leptonic decays				
out of reach	$B^+ \to \mu^+ \nu_{mu}$	5%	—	_	
	$B^+ \to \tau^+ \nu_{tau}$	7%	_	_	
at LHCb/Belle	$\blacktriangleright B_c^+ \to \tau^+ \nu_{tau}$	n/a	_		
	CP / hadronic decays $B^0 \to J/\Psi K_S (\sigma_{\sin(2\phi_d)})$ $B \to D^{\pm} K^{\mp}$	$\sim 2.*10^6 (0.008)$	$41500\ (0.04)$ 6000	$\sim 0.8 \cdot 10$ ~ 200	$^{6}(0.01)$
	$B_s(B^0) \to J/\Psi\phi \ (\sigma_{\phi_s} \text{ rad})$	n/a	96000 (0.049)	$\sim 2.10^6$	(0.008)

 $\sim 35 \cdot 10^6 \ (0.006)$ $\sim 30 \cdot 10^6$ $16 \cdot 10^6 \ (0.003)$

boosted b's/ τ 's

at FCC-ee

Makes possible a topological rec. of the decays w/ miss. energy

			$\langle \mu'_{\mathbf{v}} \rangle =$: 75% × H	/hoom.	-
Z-Fa	CCOFICS ^{int}		eat ^{tal}	ab /year	OU	
\overline{Z}	second phase	200	52	ab^{-1} /year		
	Working point Lumi.	$/ \text{ IP } [10^{34} \text{ cm}^{-2}.\text{s}]$	s^{-1}] Total l	umi. (2 IPs)	Run	ti
=	Z first phase	100	26 a	b^{-1} /year	2	2
çç	Z second phase	200	52 a	b^{-1} /year	<u> </u>	2
=		0		0		
②	Particle production (1	$(0^9) B^0 \ / \ \overline{B}^0$	B^+ / B^-	$B_s^0 \ / \ \overline{B}_s^0$	$\Lambda_b / \overline{\Lambda}$	$\overline{\Lambda_b}$
	Belle II	27.5	27.5	n/a	n/a	
li, Flav		Flavour @	FCC vs	Belle/pp		
ntei	Decay Attribute			$\Upsilon(4S)$	pp	2
Mol	$\overline{\mathrm{EW}/H}$ All hadro	n species			1	_
N. L.	$B^0 \rightarrow I$ High boo	st			1	1
66	$B_s \rightarrow \mu$ Enormou	s production c	ross-sectio	n	1	
Ω /	$B^0 \rightarrow \mu$ Negligible	e trigger losses			•	
	$\frac{\mathcal{B}(B_s - 1)}{\text{Leptoni}}$ Low back	grounds		1		
out of reach	$B^+ \rightarrow$ Initial en	ergy constraint	t			6
at I HCh/Bollo	$B^+ \rightarrow B^+ \rightarrow 1$	ergy constrain	0	•		
at LI ICD/DEILE 7	CP / hadronic decays $B^0 \to J/\Psi K_S (\sigma_{\sin(2\phi_d)})$ $B_s \to D_s^{\pm} K^{\mp}$	$\sim 2. * 10^6 (0.008)$ n/a	$41500 \ (0.04) \\ 6000$	$\sim 0.8 \cdot 10^6 \ \sim 200$	3 (0.01) 000	

 $16 \cdot 10^6 \ (0.003)$

sensitivity good enough to probe BSM models "explaining" current flavour R_K anomalies $(b \rightarrow c \tau v)$

- NP expectation from current anomalies in the range $(0.2 4.0) \times 10^{-3}$
- SM theory precision $\sim 10^{-5}$
- Belle-II can (at most) reach an error $\sim 0.3 \times 10^{-3}$
- FCC-ee could go below 10⁻⁴ !

Allwicher, Isidori, Semilovic '21

	A. Pich '13
$\Gamma_{K\to\pi\mu}/\Gamma_{K\to\pi e}$	$\Gamma_{W \to \mu} / \Gamma_{W \to e}$
1.0010(25)	0.996 (10)
$\Gamma_{W\to\tau}/\Gamma_{W\to\mu}$	
1.034(13)	

"Model-independent" effect linked to present anomalies

Unique opportunity !

ee Z pole pame, Sept. 23, 2022

Example of EW measurements @ Tera Z

34 / 161 **h** 🖑 🔾 🕂 300% + 🔄 🐨

(?)

are chosen to optimise the sensitivity to $\alpha_{\text{QED}}(m_Z)$, which as shown by [34] can be extracted frc⁺ If the leptonic forward–backward asymmetry. In the vicinity of the Z pole, $A_{FB}^{\mu\mu}$ exhibits a strong \sqrt{s} d

$$\frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{\mu} \times \left[1 + \frac{8\pi\sqrt{2}\alpha_{\text{QED}}(s)}{m_{Z}^{2}G_{\text{F}}\left(1 - 4\sin^{2}\theta_{\text{W}}^{\text{eff}}\right)^{2}} \xrightarrow{s - m_{Z}^{2}}{2s}\right], \xrightarrow{\rightarrow}$$

off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d atistice and interference of the monometer of $\alpha_{1} = (\alpha_{2})$ is antised with the second s $\frac{|V_{\text{rescale}}|}{|V_{\text{rescale}}|} = 99.5) \text{ and } \sqrt{s} = \frac{|V_{\text{rescale}}|}{|V_{\text{rescale}}|} = 99.5) \text{ and } \sqrt{s} = \frac{|V_{\text{rescale}}|}{|V_{\text{rescale}}|} = 99.5) \text{ and } \sqrt{s} = \frac{|V_{\text{rescale}}|}{|V_{\text{rescale}}|} = \frac{|V_{\text{rescale}}|$ $= 99.5) and \sqrt{s} = 99.5$ $b \bar{s} \sqrt{s}$ gnorts a stidiction of the same tin at the same tin $\sqrt{s} \sqrt{s}$ by $\sqrt{s} \sqrt{s}$ an will at the same tin

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \times \left[1 + \frac{8\pi \sqrt{2}\alpha_{\rm QED}(s)}{m_Z^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff} \right)^2} \frac{s - 2\pi m_Z^2}{2\pi m_Z^2} \right]$$

ise most systematic ur off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d erimental uncertainty atistical uncertainty of this measurement of $\alpha_{\text{QED}}(m_{\mathbf{I}})$ is optimised just below ($\sqrt{s} = 87.9 \text{ GeV}$) and (currently 1.1x10⁻⁴) noisize noise to a relative accu (dilas s√ vd betanimob) ⁵. ³ d to understand if the solution of the solut Z-pole run plan; about half the data will be taken at the peak point. This scan will at the same tir \rightarrow Theoretical uncertainties ~ 10⁻⁴, higher order calcs needed \rightarrow of the Z mass and width with very adequate precision.

in Ref. [34] that the experimental precision on α_{QED} can be improved by a factor 4 with 40 ab⁻¹ at ea points, leaving an integrated luminosity of 80 ab^{-1} at the Z pole itself. Because most systematic ur

Example of EW measurements @ Tera Z

$Z \rightarrow \mu\mu$ forward/backward asymmetry also used to measure ewk mixing angle sin² θ_w at Z-pole = 91.2 GeV:

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \longrightarrow \mathcal{A}_{e} = \frac{g_{\rm L,e}^{2} - g_{\rm R,e}^{2}}{g_{\rm L,e}^{2} + g_{\rm R,e}^{2}} = \frac{2v_{\rm e}/a_{\rm e}}{1 + (v_{\rm e}/a_{\rm e})^{2}}, \text{ with}$$

$$\bigwedge A_{\rm FB}^{\mu\mu}(s) \sim 3\times10^{-6} \text{ (stat)} + 4\times10^{-6} \text{ (syst)} \longrightarrow \text{Measure } \sin^{2}\theta_{\rm W} \text{ to } 3\times10^{-6} \text{ abs.}$$

$$\rightarrow Assumes \ \text{lepton universality: } A_{\rm with}$$

$$\rightarrow Mainly \ \text{dominated by energy of } a_{\rm H}^{\mu\mu}(s) = 0$$

Tau polarization used to constrain the mixing angle to a similar precision

- No assumption on lepton universality (direct separation A_e and A_r)
- A_{T} from P_{T} : benefit from high statistics and very robust measurement

EPS2021

Eysermans

Ь.

 $v_{\rm e}/a_{\rm e} \equiv 1 - 4\sin^2\theta_{\rm W}^{\rm eff}$

. precision (currently 1.6x10⁻⁴)

 $A_e = A_\mu$

calibration (point-to-point)

Example of EW measurements @ Tera

 \rightarrow Mass ± 4 keV (stat) ± 100 keV (syst)

Systematics limited due to beam calibration uncertainties (RDP ~ 100 keV)

 \rightarrow Width ± 4 keV (stat) ± 25 keV (syst)

- Systematics dominated by:
 - Relative (point-to-point) uncertainty on the \sqrt{s} ~ 22 keV
 - Impact on beam-energy spread uncertainty ~ 10 keV
 - Absolute uncertainty on BES ~ 84 MeV
 - Constrained using $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ events:
 - \rightarrow Constrain BES uncertainty to per-mille level
 - \rightarrow Taking into account asymmetric beam optics (x-angle α 30 mrad) and $\gamma\text{-ISR}$
 - \rightarrow Muon angular resolution ~ 0.1 mrad required

→ Hadronic cross-section σ^0_{had} : ± 4 pb [LEP 37 pb] → Number of neutrino families: 1x10⁻³ (abs) [LEP 7x10⁻³] - Dominated by luminosity uncertainty

Eysermans @ EPS2021

Ч.

[LEP 2.1 MeV]

[LEP 2.3 MeV]

0.2

-0.1

-0.2

-0.3

-0.4

Example of EW measurements @ Tera

Couplings measured from ratio of hadronic and leptonic partial widths

 \rightarrow need control on detector acceptances: detector precision ~ 10 μ m

	Statistical uncertainty	Systematic uncertainty	-	fermion type	g_a	
$R_{\mu}(R_{\ell})$	10^{-6}	5×10^{-5}	-	e	1.5×10^{-4}	2.5
$R_{ au}$	$1.5 imes 10^{-6}$	10^{-4}		μ	$2.5 imes 10^{-5}$	2.
$R_{ m e}$	$1.5 imes 10^{-6}$	$3 imes 10^{-4}$		au	$0.5 imes 10^{-4}$	3.5
$R_{ m b}$	5×10^{-5}	3×10^{-4}		b	$1.5 imes 10^{-3}$	1 >
$R_{ m c}$	$1.5 imes 10^{-4}$	$15 imes 10^{-4}$		с	$2 imes 10^{-3}$	1 >
Del	lative stat and ave	t une (similar)	-	Deletive		

Relative stat. and syst. unc. (similar)

Relative unc. on couplings

Extract strong coupling constant $\alpha_s (m_z^2)$ using leptonic/hadronic width ratio: $R_l = \Gamma_{had} / \Gamma_{lep}$

 $\rightarrow \Delta \alpha_{\rm S}({\rm m_Z}) \sim 1 \times 10^{-5} \text{ (stat)} + 1.5 \times 10^{-4} \text{ (syst)} \text{ abs. (current value } \Delta \alpha_{\rm S} 30 \times 10^{-4}\text{)}$ $\rightarrow \text{Systematically dominated (acceptance)}$

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

ee Z pole pame, Sept. 23, 2022

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

- At linear colliders, at high energy: EW measurements via Z-radiative return has a large impact on Zqq couplings
- Improvements depend a lot on hypothesis on systematic uncertainties

Yellow: LEP/SLD systematics / 2 Blue: small EXP and TH systematics

ee Z pole pame, Sept. 23, 2022

The Global EW fit at FCC-ee Materials for the talk presented at the FCC-ee physics work

	Cur	rent	FCCee			
	Exp.	\mathbf{SM}	Exp.	SM (par.)	SM (t	
$\delta M_W ~[{ m MeV}]$	± 15	± 8	± 1	$\pm 0.6/\pm 1$	± 1	
$\delta\Gamma_Z~[{ m MeV}]$	± 2.3	± 0.73	± 0.1	± 0.1	$\pm 0.$	
$\delta \mathcal{A}_\ell \left[imes 10^{-5} ight]$	± 210	± 93	± 2.1	$\pm 8/214$	Cotili	
$\delta R_b^0 \left[imes 10^{-5} ight]$	± 66	± 3	± 6	± 0.3	± 5	

Christophe Grojean

J. de Blas, FCC CDR overview '19

$$\hat{C}_{\phi l}^{(1)} = C_{\phi l}^{(1)} + \frac{1}{4}C_{\phi D}$$

$$\hat{C}_{\phi l}^{(3)} = C_{\phi l}^{(3)} + \frac{c_w^2}{4s_w^2}C_{\phi D} + \frac{c_w}{s_w}C_{\phi}$$

$$\hat{C}_{\phi q}^{(1)} = C_{\phi q}^{(1)} - \frac{1}{12}C_{\phi D}$$

$$\hat{C}_{\phi q}^{(3)} = C_{\phi q}^{(3)} + \frac{c_w^2}{4s_w^2}C_{\phi D} + \frac{c_w}{s_w}C_{\phi}$$

$$\hat{C}_{\phi e} = C_{\phi e} + \frac{1}{2}C_{\phi D}$$

$$\hat{C}_{\phi u} = C_{\phi u} - \frac{1}{3}C_{\phi D}$$

$$\hat{C}_{\phi d} = C_{\phi d} + \frac{1}{6}C_{\phi D}$$

$$\hat{C}_{ll} = C_{ll}$$

 $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{Z'} + \mathcal{L}_{\mathrm{SM}-Z'}$

th.)

 $\mathcal{L}_{\mathrm{Eff}}$

.2 hings in EFT

 $\delta g_{hhh}/g_{hhh}^{
m SM}pprox 40\%$

Jorge de Blas

Improvements of EW measurements

Exquisite measurements of mZ (100 keV), ΓZ (25 keV), mW (<500 keV), $\alpha QED(mZ)$ (3.10-5) (all unique to FCC-ee)

ee Z pole pame, Sept. 23, 2022

Improvements of EW measurements

Exquisite measurements of mZ (100 keV), ΓZ (25 keV), mW (<500 keV), $\alpha QED(mZ)$ (3.10-5) (all unique to FCC-ee)

ee Z pole pame, Sept. 23, 2022

Impact of Z-pole Measurements J. De Blas et al. 1907.04311

Christophe Grojean

Contamination EW/TGC/Higgs can be understood by looking at correlations

Without Z-pole runs, there are large correlations between EW and Higgs

Impact of Z-pole Measurements J. De Blas et al. 1907.04311

Christophe Grojean

Contamination EW/TGC/Higgs can be understood by looking at correlations

With Z-pole runs, only correlations between EW and TGC remain

Impact of Z-pole Measurements J. De Blas et al. 1907.04311

Christophe Grojean

240 GeV (CEPC)

Contamination EW/TGC/Higgs can be understood by looking at correlations

Direct Searches for Light New Physics

LLP searches with displaced vertices

e.g. in twin Higgs models glueballs that mix with the Higgs and decay back to b-quarks

CLIC₃₈₀ $L = 0.5 \, \text{ab}^{-1} \, \cdot 1$

Astro/Cosmo \rightarrow long-lived ALPs ciated production Colliders \rightarrow short-lived ALPs MeV+

Search for VRH

Direct observation in Z decays from LH-RH mixing

Important to understand 1. how neutrinos acquired mass 2. if lepton number is conserved 3. if leptogenesis is realised

ee Z pole pame, Sept. 23, 2022

Christophe Grojean

Short-term Goals

- 1. Documentation of the specificities of the FCC-ee and FCC-hh physics cases and their complementarity for the characterisation of the Standard Model Higgs boson and beyond;
 - identify key topics and observables
 - propose new benchmark measurements
- 2. Strategic plans for improved **theoretical calculations** needed to reduce the theoretical uncertainties towards matching the FCC-ee expected statistical precision for the most important measurements: QCD and EW sectors

3. A first list of coherent sets of **detector requirements** to fully exploit the FCC-ee physics opportunities, in particular to reduce the experimental systematic uncertainties towards matching the FCC-ee expected statistical precision for the most important measurements.

Conclusions

- A circular "Higgs factory" like FCC-ee has a rich potential:
 - Direct and indirect sensitivity to New Physics.
- * Establish new organising principles of Nature (LEP \rightarrow gauge symmetries, FCC \rightarrow ??).
- * Probe the **HEP-Cosmo connections** thanks to the high statistics of the Z-pole run
 - (omitting this exploration would be ignoring the outcome of LHC.
 - 10+ years of LHC have changed the HEP landscape).
- FCC-ee is an essential part of an **integrated** programme to probe New Physics.

We have profound questions and we need create opportunities to answer them. — FCC-ee will for sure contribute —

ee Z pole pame, Sept. 23, 2022

BONUS

ee Z pole pame, Sept. 23, 2022

A circular ee Higgs factory starts as a Z/EW factory (TeraZ)

A linear ee Higgs factory operating above Z-pole can also preform EW measurements via **Z-radiative** return

A linear ee Higgs factory could also operate on the Z-pole though at lower lumi (GigaZ) Not included in the analyses yet

	Higgs	aTGC	EWPO	Top EW
FCC-ee	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom.) ^{Warning}	Yes	Yes (365 GeV, Ztt)
ILC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (HE limit) <mark>Warning</mark>	LEP/SLD (Z-pole) + HL-LHC + W (ILC)	Yes (500 GeV, Ztt)
CEPC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom) ^{Warning}	Yes	No
CLIC	Yes (μ, σ _{ZH})	Yes (Full EFT parameterization)	LEP/SLD (Z-pole) + HL-LHC + W (CLIC)	Yes
HE-LHC	Extrapolated from HL-LHC	N/A → LEP2	LEP/SLD + HL-LHC (M _w , sin²θ _w)	_
FCC-hh	Yes (µ, BRi/BRj) Used in combination with FCCee/eh	From FCC-ee	From FCC-ee	_
LHeC	Yes (µ)	N/A → LEP2	LEP/SLD + HL-LHC (M _w , sin ² θ _w)	_
FCC-eh	Yes (µ) Used in combination with FCCee/hh	From FCC-ee	From FCC-ee + Zuu, Zdd	-

Christophe Grojean

Open Symposium - Update of the European Strategy for Particle Physics

EW Precision Measurements at FCC-ee

Blondel, Janot arXiv: 2106.13885

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	leading exp. error
$m_{\rm Z} \ ({\rm keV})$	91186700 ± 2200	4	100	From Z line shape scan
				Beam energy calibration
$\Gamma_{\rm Z} \ ({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan
				Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(imes 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak
				Beam energy calibration
$1/\alpha_{\rm QED}({ m m}_{ m Z}^2)(imes 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak
				QED&EW errors dominate
$\mathbf{R}^{\mathbf{Z}}_{\ell} \; (\times 10^3)$	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
				acceptance for leptons
$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above
$\sigma_{\rm had}^0 (\times 10^3) ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section
				luminosity measurement
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$R_b (\times 10^6)$	216290 ± 660	0.3	< 60	ratio of $b\overline{b}$ to hadrons
				stat. extrapol. from SLD
$[\rm A_{FB}^b, 0 ~(\times 10^4)$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$\mathrm{A_{FB}^{pol, au}}\left(imes 10^{4} ight)$	1498 ± 49	0.15	<2	au polarization asymmetry
				au decay physics
τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	radial alignment
$\tau \text{ mass (MeV)}$	1776.86 ± 0.12	0.004	0.04	momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron separation
$m_W (MeV)$	80350 ± 15	0.25	0.3	From WW threshold scan
				Beam energy calibration
$\Gamma_{\rm W} \ ({\rm MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan
				Beam energy calibration
$\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)$	1170 ± 420	3	small	from R_{ℓ}^{W}
$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to leptonic
				in radiative Z returns
$m_{top} (MeV/c^2)$	172740 ± 500	17	small	From $t\overline{t}$ threshold scan
				QCD errors dominate
$\Gamma_{\rm top} \ ({\rm MeV/c}^2)$	1410 ± 190	45	small	From $t\overline{t}$ threshold scan
				QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2 ± 0.3	0.10	small	From $t\overline{t}$ threshold scan
				QCD errors dominate
ttZ couplings	$\pm 30\%$	0.5 - 1.5%	small	From $\sqrt{s} = 365 \mathrm{GeV} \mathrm{run}$

Christophe Grojean

ee Z pole pame, Sept. 23, 2022

Example of measurements @ WW threshold

W mass and width extracted from line-scans using WW xsec

2 energy points determined from Δm_w and $\Delta \Gamma_w$ sensitivities on WW xsec:

 \rightarrow 157.1 GeV width measurement: maximum sensitivity on width

 \rightarrow 162.5 GeV mass measurement: minimal impact on width, max. on mass

Luminosity (<10⁻⁴) and center-of-mass (< 0.5 MeV) uncertainties to be controlled, but weaker constraints than on Z pole

Combined fit with optimized lumi fraction (f=0.4: <u>5 /ab at 157.1</u>, <u>7 /ab at 162.5</u>) \rightarrow precision m_W to 0.25 (stat) + 0.3 (syst) MeV (present 15 MeV) \rightarrow precision Γ_W to 1.2 (stat) + 0.3 (syst) MeV (present 42 MeV)

12

10

8

6

2

155

۵(WW) (pb)

EPS2021

0

Eysermans

Example of measurements @ WW thresheld

Independent analysis on W mass and width using kinematic reconstruction techniques in WW \rightarrow qqlv events

- Profit from precise angle and velocity (β) measurements
- Run at all kinematically accessible energy points (WW, ZH and tt)
- Put conditions on detector requirements

Christophe Grojean

 Δm_{W} (stat) ~ 250 keV \rightarrow similar as xsec measurement $\Delta \Gamma_{W}$ (stat) ~ 350 keV \rightarrow reduction factor 2-3

Limited by systematics (beam energy, resolution, fragmentation) \rightarrow constrain

27

	$\Delta m_{ m W}~({ m MeV}/c^2)$			$\Delta\Gamma_{ m W}~(m MeV)$				
Source	evqą	$\mu\nu q \bar{q}$	au u q ar q	$\ell \nu q \bar{q}$	eνqq	μu q \bar{q}	$ au u q \bar{q}$	$\ell \nu q \bar{q}$
$e+\mu$ momentum	3	8	-	4	5	4	-	4
$e+\mu$ momentum resoln	7	4		4	65	55	-	50
Jet energy scale/linearity	5	5	9	6	4	4	16	6
Jet energy resoln	4	2	8	4	20	18	36	22
Jet angle	5	5	4	5	2	2	3	2
Jet angle resoln	3	2	3	3	6	7	8	7
Jet boost	17	17	20	17	3	3	3	3
Fragmentation	10	10	15	11	22	23	37	25
Radiative corrections	3	2	3	3	3	2	2	2
LEP energy	9	9	10	9	7	7	10	8
Calibration ($e\nu q\bar{q}$ only)	10	-	-	4	20	-	-	9
Ref MC Statistics	3	3	5	2	7	7	10	5
Bkgnd contamination	3	1	6	2	5	4	19	7

Example of measurements @ WW threshold

Precise measurement of W decays

Precise control of lepton ID to avoid cross contamination in signal channels

(e.g. $\tau \rightarrow e, \mu$ vs. e, μ channels)

- Precision of 10⁻⁴ achievable (rel.)
- Simultaneously probe lepton and q/l universality to high precision (~ 10^{-4})

Decay mode relative precision	$B(W\toev)$	$B(W\to \muv)$	$B(W\toTv)$	$B(W\toqq)$	$W \rightarrow \mu v_{\mu}$
LEP2	1.5 %	1.4 %	1.8 %	0.4 %	
CMS	0.9 %	0.7 %	2 %	0.4 %	
FCCee	0.03 %	0.03 %	0.04 %	0.01 %	

$W \rightarrow TV_{-}$

Flavor tagging

- Allows precise measurement CKM matrix elements V_{cs}, V_{ub}, V_{cb}
- Extract strong coupling constant at WW-threshold

$$R_W = \frac{B_q}{1 - B_q} = \left(1 + \frac{\alpha_S(m_W^2)}{\pi}\right) \sum_{i=u,c;j=d,s,b} |V_{ij}|^2$$

$$ightarrow \Delta lpha_{
m S}({
m m}_{
m W}) \sim 3 ext{x} 10^{-4} \ (a$$

 \rightarrow Statistically dominated

EPS2021

0

J. Eysermans

0.100

0.105

0.110

0.115

 $Br(W \rightarrow \ell v)$

ee Z pole pame, Sept. 23, 2022

0.120

0.125

0.130

Higgs @ FCC-ee

Central goal of FCC-ee: model-independent measurement of Higgs width and couplings with (<)% precision. Achieved through operation at two energy points.

Sensitivity to both processes very helpful in improving precision on couplings.

Table 8: Operation costs of low-energy Higgs factories, expressed in Euros per Higgs boson.

Collider	ILC_{250}	$\operatorname{CLIC}_{380}$	$FCC-ee_{240}$	
$\operatorname{Cost}\ (\operatorname{Euros}/\operatorname{Higgs})$	7,000 to 12,000	$2,\!000$	255	

29

G. Wilkinson, FCC Physics WS '22

FCC-ee, 1906.02693

ee Z pole pame, Sept. 23, 2022

Higgs @ FCC-ee: Complementarity of 240/365 GeV

Christophe Grojean

ECFA Higgs study group '19

ee Z pole pame, Sept. 23, 2022

Higgs @ FCC-ee: Complementarity with HL-LHC

Christophe Grojean

ECFA Higgs study group '19

Higgs @ FCC-ee: Complementarity with HL-LHC

ECFA Higgs study group '19

Example of measurements @ tt threshold

Top mass and width measurements similar as WW line-shape

Though more energy points needed:

- Relative large uncertainty on top mass (+/- 0.5 GeV)
- Need to constrain shape in optimal way
- Possible to constrain backgrounds (below) and ttH (above) -

 \rightarrow Multipoint scan in 5 GeV window [340, 345], each ~ 25 /fb

 $\rightarrow \Delta m_{t}$ (stat) ~ 17 MeV

 $\rightarrow \Delta \Gamma_{t}$ (stat) ~ 45 MeV

To date: theoretical QCD errors order of 40 MeV for mass and width

Impact of Diboson Systematics

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

ee Z pole pame, Sept. 23, 2022

Impact of Beam Polarisation (@250GeV)

increased sensitivities Polarised vs. Unpolarised scenarios @ 250GeV

Christophe Grojean

J. De Blas et al. 1907.04311

Statistical gain from increased rates

$$-P_{e^+}P_{e^-})\left[1-A_{LR}\frac{P_{e^-}-P_{e^+}}{1-P_{e^+}P_{e^-}}\right]$$

From ee→Zh, A_{LR}~0.15 so $\sigma_{-80,+30} \sim 1.4 \sigma_0$

overall, one could expect O(6%) increased coupling sensitivity

Gain is much higher in global EFT fit since polarisation removes degeneracies among operators

Polarisation benefit diminishes when other runs at higher energies are added and basically left only with statistical gain

Impact of Beam Polarisation

• Positron polarisation doesn't play a big role (for Higgs couplings determination)

J. De Blas et al. 1907.04311

Impact of Beam Polarisation

- Positron polarisation doesn't play a big role (for Higgs couplings determination)
- If 250GeV run only: electron polarisation improves significantly (>50%) hVV determination

J. De Blas et al. 1907.04311

Impact of Beam Polarisation

- Positron polarisation doesn't play a big role (for Higgs couplings determination)
- If 250GeV run only: electron polarisation improves significantly (>50%) hVV determination
- Polarisation-benefit diminishes (in relative and absolute terms) when other runs at higher energies are added Christophe Grojean 36

J. De Blas et al. 1907.04311