

UNIVERSIDAD DE GRANADA

Rare decays in the NSMEFT

Mikael Chala (Universidad de Granada)

1905.11375, 1909.04665, 2006.14596 and 2007.00673

In collaboration with S. Banerjee, A. Biekotter, J. Butterworth, C. Englert, M. Spannowsky and A. Titov

ECFA HTE meeting on Z pole physics; September 23, 2022

See-saw type I is one of the most appealing explanations for neutrino masses

Variants (more realistic?) incarnations of this setup involve: (i) N at electroweak scale and/or (ii) further heavier particles

If both (i) and (ii), then NSMEFT: $L = L_{SM+N} + \sum \frac{\mathcal{O}}{\Lambda} + \cdots$

Other aspects: Weinberg operator, Dirac limit, ...

See-saw type I is one of the most appealing explanations for neutrino masses

Other aspects: Weinberg operator, **Dirac limit**, ...

SF	$ \begin{array}{c} (\overline{N}\gamma^{\mu}N)(H^{\dagger}i\overleftrightarrow{D_{\mu}}H) \\ (\overline{L}\sigma_{\mu\nu}N)\widetilde{H}B^{\mu\nu} \end{array} \end{array} $	$(\overline{L}N)\tilde{H}(H^{\dagger}H)$ \mathcal{O}_{HN} \mathcal{O}_{NB} (+h.c.)	$\mathcal{O}_{LNH} (+\text{h.c.}) \\ (\overline{N}\gamma^{\mu}e)(\tilde{H}^{\dagger}iD_{\mu}H) \\ (\overline{L}\sigma_{\mu\nu}N)\sigma_{I}\tilde{H}W^{I\mu\nu}$	$egin{aligned} \mathcal{O}_{HNe} & (+\mathrm{h.c.}) \ \mathcal{O}_{NW} & (+\mathrm{h.c.}) \end{aligned}$
RRRR	$ \begin{array}{l} (\overline{N}\gamma_{\mu}N)(\overline{N}\gamma^{\mu}N) \\ (\overline{e}\gamma_{\mu}e)(\overline{N}\gamma^{\mu}N) \\ (\overline{d}\gamma_{\mu}d)(\overline{N}\gamma^{\mu}N) \end{array} \end{array} $	$egin{aligned} \mathcal{O}_{NN} \ \mathcal{O}_{eN} \ \mathcal{O}_{dN} \end{aligned}$	$\begin{array}{c} (\overline{u}\gamma_{\mu}u)(\overline{N}\gamma^{\mu}N)\\ (\overline{d}\gamma_{\mu}u)(\overline{N}\gamma^{\mu}e) \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
LLRR	$(\overline{L}\gamma_{\mu}L)(\overline{N}\gamma^{\mu}N)$	\mathcal{O}_{LN}	$(\overline{Q}\gamma_{\mu}Q)(\overline{N}\gamma^{\mu}N)$	\mathcal{O}_{QN}
LRRL	$(\overline{L}N)\epsilon(\overline{L}e) (\overline{L}d)\epsilon(\overline{Q}N)$	$\mathcal{O}_{LNLe} \ (+\mathrm{h.c.}) \ \mathcal{O}_{LdQN} \ (+\mathrm{h.c.})$	$\begin{array}{c} (\overline{L}N)\epsilon(\overline{Q}d)\\ (\overline{Q}u)(\overline{N}L) \end{array}$	$ egin{array}{llllllllllllllllllllllllllllllllllll$
				[1612.04527]

The theory has been fully renormalised at one loop in 2006.14596 and 2010.12109

Basis for the NLEFT

MC, Titov '20

Dipole	$\mathcal{O}_{N\gamma} = \overline{\nu_L} \sigma^{\mu\nu} N A_{\mu\nu}$					
RRRR	$\mathcal{O}_{NN}^{V,RR} = (\overline{N}\gamma_{\mu}N)(\overline{N}\gamma^{\mu}N)$					
	$\mathcal{O}_{eN}^{V,RR} = (\overline{e_R}\gamma_\mu e_R)(\overline{N}\gamma^\mu N)$	$\mathcal{O}_{uN}^{V,RR} = (\overline{u_R}\gamma_\mu u_R)(\overline{N}\gamma^\mu N)$				
	$\mathcal{O}_{dN}^{V,RR} = (\overline{d_R}\gamma_\mu d_R)(\overline{N}\gamma^\mu N)$	$\mathcal{O}_{udeN}^{V,RR} = (\overline{u_R}\gamma_\mu d_R)(\overline{e_R}\gamma^\mu N)$				
8	$\mathcal{O}_{\nu N}^{V,LR} = (\overline{\nu_L}\gamma_\mu\nu_L)(\overline{N}\gamma^\mu N)$	$\mathcal{O}_{eN}^{V,LR} = (\overline{e_L}\gamma_\mu e_L)(\overline{N}\gamma^\mu N)$				
LLR	$\mathcal{O}_{uN}^{V,LR} = (\overline{u_L}\gamma_\mu u_L)(\overline{N}\gamma^\mu N)$	$\mathcal{O}_{dN}^{V,LR} = (\overline{d_L}\gamma_\mu d_L)(\overline{N}\gamma^\mu N)$				
	${\cal O}^{V,LR}_{udeN} = (\overline{u_L}\gamma_\mu d_L)(\overline{e_R}\gamma^\mu N)$					
	$\mathcal{O}_{NN}^{S,RR} = (\overline{ u_L}N)(\overline{ u_L}N)$					
R	$\mathcal{O}_{eN}^{S,RR} = (\overline{e_L}e_R)(\overline{\nu_L}N)$	$\mathcal{O}_{eN}^{T,RR} = (\overline{e_L}\sigma_{\mu\nu}e_R)(\overline{\nu_L}\sigma^{\mu\nu}N)$				
LRL	$\mathcal{O}_{uN}^{S,RR} = (\overline{u_L}u_R)(\overline{\nu_L}N)$	$\mathcal{O}_{uN}^{T,RR} = (\overline{u_L}\sigma_{\mu\nu}u_R)(\overline{\nu_L}\sigma^{\mu\nu}N)$				
	$\mathcal{O}_{dN}^{S,RR} = (\overline{d_L} d_R) (\overline{ u_L} N)$	$\mathcal{O}_{dN}^{T,RR} = (\overline{d_L}\sigma_{\mu\nu}d_R)(\overline{\nu_L}\sigma^{\mu\nu}N)$				
	$\mathcal{O}_{udeN}^{S,RR} = (\overline{u_L}d_R)(\overline{e_L}N)$	$\mathcal{O}_{udeN}^{T,RR} = (\overline{u_L}\sigma_{\mu\nu}d_R)(\overline{e_L}\sigma^{\mu\nu}N)$				
LR	$\mathcal{O}_{eN}^{S,LR} = (\overline{e_R}e_L)(\overline{\nu_L}N)$	$\mathcal{O}_{uN}^{S,LR} = (\overline{u_R}u_L)(\overline{\nu_L}N)$				
RI	$\mathcal{O}_{dN}^{S,LR} = (\overline{d_R}d_L)(\overline{\nu_L}N)$	$\mathcal{O}_{udeN}^{S,LR} = (\overline{u_R}d_L)(\overline{e_L}N)$				

Tree level ma	atch	ing of	vSME	FT
onto vLEFT	d	N a	1 2 M	d N
2001.07732	1	× +	me	$\rightarrow_{\alpha} X_{\alpha}$
/		v.	MEFT	VLEFT
$\frac{\alpha_{N\gamma}}{v} = \frac{v}{\sqrt{2}\Lambda^2} \left(\alpha_{NB} c_W + \alpha_{NW} s_W \right),$	(C.1)	$\frac{\alpha_{NN}^{V,RR}}{v^2} = \frac{\alpha_{NN}}{\Lambda^2} ,$		(C.2)
$\frac{\alpha_{eN}^{V,RR}}{v^2} = \frac{\alpha_{eN}}{\Lambda^2} - \frac{g_Z^2 Z_{e_R} Z_N}{m_Z^2} ,$	(C.3)	$\frac{\alpha_{uN}^{V,RR}}{v^2} = \frac{\alpha_{uN}}{\Lambda^2} - $	$-\frac{g_Z^2 Z_{u_R} Z_N}{m_Z^2},$	(C.4)
$\frac{\alpha_{dN}^{V,RR}}{v^2} = \frac{\alpha_{dN}}{\Lambda^2} - \frac{g_Z^2 Z_{d_R} Z_N}{m_Z^2},$	(C.5)	$\frac{\alpha_{duNe}^{V,RR}}{v^2} = \frac{\alpha_{duNe}}{\Lambda^2}$,	(C.6)
$\frac{\alpha_{\nu N}^{V,LR}}{v^2} = \frac{\alpha_{LN}}{\Lambda^2} - \frac{g_Z^2 Z_{\nu_L} Z_N}{m_Z^2} ,$	(C.7)	$\frac{\alpha_{eN}^{V,LR}}{v^2} = \frac{\alpha_{LN}}{\Lambda^2} - $	$-\frac{g_Z^2 Z_{e_L} Z_N}{m_Z^2},$	(C.8)
$\frac{\alpha_{uN}^{V,LR}}{v^2} = \frac{\alpha_{QN}}{\Lambda^2} - \frac{g_Z^2 Z_{u_L} Z_N}{m_Z^2} ,$	(C.9)	$\frac{\alpha_{dN}^{V,LR}}{v^2} = \frac{\alpha_{QN}}{\Lambda^2} - \frac{\alpha_{QN}}{\Lambda^2}$	$-\frac{g_Z^2 Z_{d_L} Z_N}{m_Z^2},$	(C.10)

Decay modes for N

Under some mild assumptions (LNV, flavour, power counting...), we get that for m_N of about 1-100 GeV:

$$\Gamma_{\rm mix} < \Gamma_{\rm tree} < \Gamma_{\rm loop} \qquad \qquad {\rm For \ cuttoff} \\ {\rm of \ 10 \ TeV} \end{cases}$$

For too small m_N , N stable at colliders (equivalent to Dirac limit)

Reasonable UV completions of the NSMEFT can be built for very different IR scenarios, e.g. without four-fermions and with mostly $N\to\nu\gamma$

9

Signal very similar to background. Use neural network based on m(l,b), momenta and angular separation

Signal very similar to background. Use neural network based on m(l,b), momenta and angular separation

In this case, N is assumed to decay into a neutrino (which can be reconstructed fully in the collinear aprox.) and a photon

Rare Higgs decays h $\mathcal{O}_{LNH}^{i} = \overline{L_{i}}N\tilde{H}H^{\dagger}H$

As for the top interactions, this channel is very poorly constrained (mostly by monophoton searches [1810.00196])

Sensitivity to BR of about 10^{-3} at HL-LHC, which amounts to cutoff of about 20 TeV

A variety of Z boson decays

Some decays explicitly ignored, e.g. mixed channels or $Z \rightarrow \nu \nu qq$ or pure invisible (see final slides)

 $Z \rightarrow \nu \nu \gamma$

Theoretical estimates hold for $\Lambda = 1$ TeV and O(1) couplings; I assume Z width is dominated by Standard Model

Naive estimate, based on 5×10^{12} Z bosons, requiring about 10 observed events and efficiency or order 0.2: (0.85 exp. ref.)

$$\mathcal{B}^{\mathrm{exp}} \sim 10^{-11} \ (\Lambda \sim 100 \,\mathrm{TeV})$$

 $Z \rightarrow \nu \nu \gamma$

Theoretical estimates hold for $\Lambda = 1$ TeV and O(1) couplings; I assume Z width is dominated by Standard Model

Naive estimate, based on 5×10^{12} Z bosons, requiring about 10 observed events and efficiency or order 0.2: (0.56 exp. ref.)

$$\mathcal{B}^{\mathrm{exp}} \sim 10^{-11} \ (\Lambda \sim 100 \,\mathrm{TeV})$$

$Z \rightarrow \nu \nu l l l l$

[PDG; 2103.01918, 1902.05892, 1709.08601, 1607.08834, 1403.5657]

I estimate the bound from the error on the current measurement of $B(Z \rightarrow llll)!$

$$\begin{array}{c} (4.41 \pm 0.30) \times 10^{-6} \\ \text{[exp]} \end{array} \qquad (4.50 \pm 0.01) \times 10^{-6} \\ \text{[SM pred]} \end{array}$$

Hard to extrapolate results from LHC, but I would expect negligible background and therefore similar to previous bounds 19

Indirect sensitivity to other interactions (toy/out-of-fashioned example)

If neutrinos are Dirac particles, and they have a non-vanishing magnetic moment (like the one that explained the Xenon1T anomaly), then:

 $\alpha_{NA} \sim 9 \times 10^{-6} (9 \times 10^{-2}) \text{ for } \Lambda = 1 \text{ TeV} (100 \text{ TeV})$

$$\mathcal{B}(h \to \text{inv}) \sim 2 \times 10^{-14} \quad (4 \times 10^{-13})$$
$$\mathcal{B}(Z \to \text{inv}) \sim 5 \times 10^{-19} \quad (8 \times 10^{-18})$$

Conclusions

The NSMEFT is a not-so-unreasonable description of the IR, with lot of different directions in parameter space still to be explored

Huge experimental program in Z decays, driven by the interplay between N production and decay modes

It might be worth exploring the topic first from simulation (with special attention to reconstruction of N). I might start this program myself :)

Although sensitivity to branching ratios is spectacular, it does not translate well to cutoff, because width scales with $1/\Lambda^4$ (no interference with SM)

Thank you!