

FASER2 Update on Baseline Detector

FPF5 Workshop 15/11/2022

Astroparticle Physics

F² Introduction

- Formalising structure a little
 - Regular meetings
 - Activity areas with responsibles
 - FASER2 Twiki
- Finalising new baseline detector Driven by magnet
- Development of sub-detector designs First look at costings
- Starting work on more sophisticated analysis techniques

↓ Introduction

- Contact information and useful links
- ↓ Meetinas
- Physics Priorities and Milestones
- Activity areas
- Person power
- Open studies
- ↓ Baseline Geometry
- ↓ Tools
- Detector technologies
- Background estimate
- ↓ Links

Activity area	Sub-area	Responsible	
Magnet		Jamie/Hide	
Tracker	SciFi	Sune	
	Other R&D	Monica	
Interface Tracker	SCT	Hide/Yosuke	
Scintillator		Sune	
Calorimeter	Dual-readout	Josh, Iacopo	
Support structures			
TDAQ		Anna/Claire	
Physics Sim studies	Size/Shape	Josh/Alan/Olivier	
	Physics signatures	Anna /Monica	
	Generation	Josh/Carl	

F Benchmark geometry | Magnet

- Original plan to have most of FASER2 under a B~1T magnetic field Three (10m,5m,5m) 1T 1m radius superconducting magnets
- This seemed feasible after discussion with someone in CERN accelerator group quite some time ago
 - Proposed a Canted-Cosine-Theta (CCT) Dipole
 - Appeared affordable to create metre-scale cylindrical magnets (r~1m, B~1T).
- More recent discussions with other magnet experts much less positive
 - CCT dipole never used as a detector magnet
 - Design not suited for larger radius/stored energy
- New plan to have single magnets with ~4 Tm of bending power Implies an LHCb-like geometry

[arXiv:2109.10905]

- Comparable sensitivity to FASER2 default design

Arriving at new baseline

Investigating new options compared to original and previous FASER2 designs

Arriving at new baseline

Comparable sensitivity for 3 x 1m aperture

Investigating new options compared to original and previous FASER2 designs

Test of aperture vertical height

- Vertical height of down to ~75. cm could be acceptable

Investigating new options compared to original and previous FASER2 designs

Magnet requirements

Requirements

- measure charge of high energy muons for FASERv2.
- Largest aperture possible
 - Cost and construction difficulty increases with stored energy
- New Baseline: 3 x 1 x 4m with 1T field
- Have been in contact with a number of institutes and companies about possible magnets.
 - Currently most promising option through contact with KEK
 - Design and costings today from KEK magnet expert and Toshiba

Possible back-up Morpurgo magnet

Currently being used by the MadMax experiment at CERN

Expect to need bending power in range 2 - 4 Tm. Bending power may be driven by need to

Rectangular magnet 3 x 0.5 x 2m 2 T bending in horizontal direction

Hide Otono Josh McFayden | FPF5 | 15/11/2022

- Circular magnet 1m radius, 0.5m high
 - More bending power in centre highest energy
 - Less stored energy
- 2 T bending in horizontal direction

Hide Otono Josh McFayden | FPF5 | 15/11/2022

	-	- >	(=)	0m	m
	-	- >	(=)	50	Unn
**	-	-)	(=)	10	001
	-	- •	(=)	150	oor
		-		1	
				-+	
	 			4,000	

F² Magnet **Cost estimation from TOSHIBA**

Roughly 10 MCHF based on their experience on SAMURAI

ltem	Unit	Value	Remark
Magnet		Dipole magnet	
Magnetic field	Т	2	
Magnetic path length	T۰m	4.7	Rough estimatio SAMURA
Stored energy	MJ	15	
Magnetic pole gap distance	mm	880	same a SAMUR
Magnetic pole radius	mm	2000	circular p
Coil		Solenoid	
Total weight	ton	400	

Five scenarios compared

Original FASER2 layout

Circular aperture, DV L=5m D=2m, 3 magnets, total 6 Tm bending vertical

- Five scenarios compared
 - Original FASER2 layout
 - Old FPF Cavern Baseline
 - Circular aperture, DV L=10m D=2m, 3 magnets, total 20 Tm bending vertical

- Five scenarios compared
 - Original FASER2 layout
 - Old FPF Cavern Baseline
 - New FPF Cavern Baseline
 - Rectangular aperture, DV L=10m X=3m Y=1m, 1 magnet, total 4 Tm bending horizontal

- Five scenarios compared
 - Original FASER2 layout
 - Old FPF Cavern Baseline
 - New FPF Cavern Baseline
 - New baseline KEK rectangular
 - Rectangular aperture, DV L=10m X=3m Y=0.5m, 1 magnet, total 4 Tm bending horizontal

- Five scenarios compared
 - Original FASER2 layout
 - Old FPF Cavern Baseline
 - New FPF Cavern Baseline
 - New baseline KEK rectangular
 - New baseline KEK circular

Rectangular aperture, DV L=10m X=3m Y=1m, 1 circular magnet, 4 Tm bending (on LoS) horiz.

Particle separations

- A quick look at particle separations for a specific example
 - Dark Photon signal with m=0.1 GeV, ε=1.27e-06, A'→ee
- Particle separations a key input to detector resolution needs
 - Shown here final station separations in bending plane
- As expected, reduced fields reduce the separation
 - But still acceptable for detector technologies being investigated.

- Comparing the reach of the five scenarios
 - Some sensitivity loss for smaller apertures, mainly in Dark Higgs model

Dark Photons

Particle envelopes

- Gives an idea of the needed instrumented detector cross section

Old FPF Cavern Baseline

m=0.1 GeV, ϵ =1e-05, A' \rightarrow ee

Started to look at envelope of charged particles (position at last tracker) Extent of the A' \rightarrow ee decay products for old a new baseline designs shown

New FPF Cavern Baseline

Particle envelopes

- Gives an idea of the needed instrumented detector cross section

m=0.1 GeV, ϵ =1e-05, A' \rightarrow ee

Started to look at envelope of charged particles (position at last tracker) Extent of the A' \rightarrow ee decay products for old a new baseline designs shown

 \mathbf{r}_2 Effect on reach of separation cuts

Separation at final tracking station/calorimeter

Original FASER2 layout

Old FPF Cavern Baseline

F₂ Effect on reach of separation cuts

Separation at final tracking station/calorimeter

Original FASER2 layout

New FPF Cavern Baseline

F₂ Effect on reach of separation cuts

Separation at final tracking station/calorimeter

Original FASER2 layout

 \mathbf{r}_2 Effect on reach of separation cuts

Separation at final tracking station/calorimeter

Original FASER2 layout

New baseline KEK circular

F Tracker design and costing

- Based on SciFi detector installed in LHCb in LS2.
 - SiPM+scintillating fibre design
 - Fibres 250um diamater => 80um resolution.
- Each module consists of a mat of 4 fibres, with >99% efficiency.
- Costing done by scaling LHCb detector to the FASER2 design, and includes readout.
- Cost could be reduced by re-using tooling from LHCb if relevant institutes were involved.

F² SciFi design and costing

The upstream tracker

- 6 vertical + 2 horizontal modules makes up a station.
- 3 stations.

- The stations should be relatively rotated e.g. 1 degree to maximize performance for multi tracks etc.
- Cost: ~3.8M CHF

The downstream tracker 7 vertical + 2 horizontal modules makes up a station. 3 stations. Sune Jakobsen

F² SciFi design and costing

The upstream tracker

6 vertical + 2 horizontal modules makes up a station.

6 stations.

The stations should be relatively rotated e.g. 1 degree to maximize performance for multi tracks etc.

Cost: ~6.7M CHF

The downstream tracker

7 vertical + 2 horizontal modules makes up a station.

6 stations.

Sune Jakobsen

F² SciFi design and costing

The upstream tracker

- 6 vertical + 2 horizontal modules makes up a station.
- 3 stations.
- 2 extra station with only vertical modules.

- The stations should be relatively rotated e.g. 1 degree to maximize performance for multi tracks etc.
- Cost: ~6.3M CHF

The downstream tracker

- 7 vertical + 2 horizontal modules makes up a station.
- 3 stations, Aperture covered: 3.5 m x 1 m.
- 2 extra station with only vertical modules.

Sune Jakobsen

Example 7 Calorimeter | Dual-readout

- Design based on Dual Readout calorimeter design
 - Being studied in context of e+e- Higgs factories
- Spacial Resolution:
 - Tested with fibre diameter of 1mm. 2mm brass collar.
 - So ~5 mm resolution possible.
- EM Energy resolution: $15/\sqrt{E} + \sim 1\%$ constant term

Particle ID

EM vs Hadronic vs MIP PID possible - best performance would need longitudinal information.

F2 Calorimeter design

- Costing from existing prototypes
 - EM prototype exists, construction of hadronic-size prototype ongoing
 - Costing based on HiDRa "hadronic size" prototype INFN
 - 65x65x250 cm (presentation)
 - Aiming for 2023 construction and test beam

Iacopo Vivarelli

F² Calorimeter design and costing

Fully segmented design

- Perpendicular crossing of EM layers
- Don't need dual readout no Cherenkov fibres
- Very preliminary costing for 2m and 1.5m diameter aperture

Costing Option 1:

- EM section 2 m x 2 m x 37 cm (15 X0) (1.85e5 2 m elements)
- ► HAD section 2 m x 2 m x 2.5 m (1e6 elements)
- Total (excluding EM FE and HAD readout): ~4.8 M euros

Costing Option 2:

- EM section 1.5 m x 1.5 m x 37 cm (15 X0) (1.39e5 1.5 m elements):
- HAD section 1.5 m x 1.5 m x 2.5 m (5.6e5 elements)
- Total (excluding EM FE and HAD readout): ~3.0 M euros

Iacopo Vivarelli

•		-	*	*	•
					•
					-
5					
	ン	5	~		-
/				3	•
	/		/	2	•
/	/			ζ	•
/			/	5	•
/	/	/		ζ	•
/	/	/	/	5	•
/	/		/	3	-
	/		/	Į.	
/	/			/	•
/		/			*
/		•			•
•		-			
•	•		•		•
•	•				
	•				
	-				
		-			

T² Track momentum resolution

- Studying track momentum resolution and charge misconstruction rate
- for particle propagation in field

 - planned

Based on sampling assuming 100um resolution using analytic calculation

Track momentum resolution

2 Tm

e<

2.5

- Studying track momentum resolution and charge misconstruction rate
- for particle propagation in field
- Early studies encouraging
 - Further studies on alignment planned

Based on sampling assuming 100um resolution using analytic calculation

Track momentum resolution

- Studying track momentum resolution and charge misconstruction rate
- for particle propagation in field

 - planned

Based on sampling assuming 100um resolution using analytic calculation

+0 um
4 = +100 um
4 = +250 um

F2 ACTs implementation

- Need more study on FASER2 mass and pointing reconstruction capabilities
- Starting to implement more sophisticated reconstruction framework based on ACTS
 - Used in LHC experiments including FASER, well supported.
- Working on implement SciFi tracker geometry and interfacing with FORESEE outputs

Olivier Salin

Summary of detector costings

Very preliminary overall costing of FASER2 Cost driven by magnet

	Cost
lagnet	10 MCHF
racker (SciFi)	4-6 MCHF
alorimeter	3-5 MCHF
otal	~20 MCHF

- Available/affordable magnet technology has changed since original baseline detector studies
- Lots of progress made since to identify a new baseline Very comparable sensitivity achievable with new baseline
- Studies on detector/magnet technology ramping up
 - Simulation of possible magnet

 - Tracker design and costing advancing building on experience from SciFi Calorimeter design developing also with costing
 - More sophisticated analysis tools being developed
- All of the work moving towards preparing CDR for Q1 2023 Challenging timescale, but significant increase in effort in recent months!

Aside - Move to FASER FORESEE setup

- Moving to use FASER's FORESEE setup
 - generate_foresee_events.py
 - Thanks to Carl!
- Good to be consistent
- Can cross-check agains their HepMC files
- Validation looks good
- Need to add Dark Higgs model

Josh McFayden | FPF5 | 15/11/2022

*F*² Calorimeter design and costing

Material	brass	• Calorimeter parameters:		
External diameter	2 mm	 Effective radiation length (brass + fiber + air cm. 		
Internal diameter	1 mm	• Effective Moliere radius: 1.97 cm.		
		 EM section readout: 1 channel per fiber 		
Cost of fibre per meter	1 euros	 Spacial resolution o(1x1x1 mm³) 		
		•Had section: aranularity less important		
Cost of brass per	0.30 euros	bundle many fibres in one traditional PMT.		
meter		•At this point, cost extrapolated base		
Cost of SiPM (relevant only for EM section)	7 euros	assumed length width/height/depth of HAD sections		
		 Assuming same width/height for EM and 		
FERS cost	5000 euro/unit	section.		
FERS readout	512 SiPM			

F² Calorimeter design and costing

Costing Option 1

- EM section 2 m x 2 m x 37 cm (15 X0) (1.85e5 2 m elements)
 - Cost of brass + fibers: 380 k euros
 - Cost of SiPM (1 per element): 1.3 M euros
 - (Cost of FERS: 12.7 M will need optimisation)
- ► HAD section 2 m x 2 m x 2.5 m (1e6 elements)
 - Cost of brass + fibers: 3.2 M euros
 - (Readout cost small w.r.t. EM section)
- Total (excluding EM FE and HAD readout): ~4.8 M euros

F² Calorimeter design and costing Option 2

- EM section 1.5 m x 1.5 m x 37 cm (15 X0) (1.39e5 1.5 m elements):
 - Cost of brass + fibers: 260 k euros
 - Cost of SiPM (1 per element): 970 k euros
 - (Cost of FERS: 9 M will need optimisation)
- HAD section 1.5 m x 1.5 m x 2.5 m (5.6e5 elements)
 - Cost of brass + fibers: 1.8 M euros
 - (Readout cost small w.r.t. EM section)
- Total (excluding EM FE and HAD readout): ~3.0 M euros

Envelope efficiency Env=DV

Dark Photons

Envelope efficiency Env=DV-100mm (x-axis)

Dark Photons

Envelope efficiency Env=DV-250mm (x-axis)

Dark Photons

Envelope efficiency Env=DV-500mm (x-axis)

Dark Photons

Envelope efficiency Env=DV-1000mm (x-axis)

Dark Photons

Envelope efficiency Env=DV-1000mm (x-axis)

Magnets | Split solenoid dipole

Split solenoid

- Simplest design for superconducting dipole
- Design for CMB experiment at FAIR
- Use single strand superconductor
- Easier thermal properties and available on market
- ITM bending power, aperture ~1x1x1m (TBC), stored energy 5MJ
- Cost from industry (Bilfinger):
 - ▶ 3MCHF bare magnet, 4-4.5MCHF with PS/controls (not cryo)
- Much more expensive for much less performance than we had been planning for

type	H-type, S
Number of turns per coil	1749
Windings of coil	Impregna
	close coil
Maximum current	686 A
Magnetomotive force	1.2 <i>MA</i> tu
Current density,	58 A/mm
Maximum field at coil	3.25 T
Central field	1.08 T
Field integral	1 <i>T m</i>
Inductance	33-19 <i>H</i>
Stored energy	5.15 <i>MJ</i>
Coil cross section (at 4K)	158.8x13
Yoke (widh/depth/height)	4.4/2.0/3.
Pole type	Tapered
Pole sizes (Rout/Rin/H)	1200/800

Can imagine other comprises like reducing decay volume length for longer lever-arm for tracking

Main take-away is that design studies essential start from scratch...

FASER2 Reach

[arXiv:1811.12522]

FASER2 Reach

[arXiv:1811.12522]

FASER2 Reach

[arXiv:1811.12522]

FASER2 Design

- Design considerations for FASER2
 - Larger radius
 - More decay channels \rightarrow Need for particle ID
 - Larger detector
 - Link to FASERv2

- → Being on-axis less important

- Planned to be similar in philosophy to FASER...
 - Still much to be studied in terms of possible detector configurations and technologies.

Example 1 FORESEE

- Starting to use FORESEE and GEANT to perform simple simulations and investigate reach
 - Production modes rather different than for FASER
 - Pion decay at low mass
 - Then eta decay
 - Then Dark Bremsstrahlung

Example 1 Simulation | **FORESEE**

- Starting to use FORESEE and GEANT to perform simple simulations and investigate reach
 - Decay modes also very different to FASER
 - Electron decay at low mass
 - Muon decay
 - Hadrons

EXAMPLE SET Simulation | FORESEE

FASER2-default

Scenario 1:

Significantly degraded sensitivity due to reduced decay volume length

Scenario 2:

- Comparable sensitivity to FASER2-default, but somewhat improved due to larger decay volume length.
- Very small degradation in diagonal due to increased distance from IP.

Example 1 FORESEE FASER2-default 10^{-2}

Scenario 1:

Significantly degraded sensitivity due to reduced decay volume length

Scenario 2:

Diameter of detector much more important here. Due to larger angle emission from B-hadrons of LLP.

Dark Higgs

Example 1 Simulation Geant4

- Geant4 simulations of possible FASER2 designs
 - Focussing on magnets and particle separations
 - Impacts tracker and calorimeter design considerations
- Using events generated with FORESEE as input to G4
 - LLP spectra and decays handled by FORESEE

F Simulation | Particle separations

positions at various "tracker" locations.

Use Geant for propagation of particles through magnetic field and measure

F Tracking studies

Simple tracking study with helix fit

Distance between the FORESEE and the reconstructed Vertex : 3783 mm Distance between the FORESEE and the reconstructed Vertex : 550 mm Radius e^+ : r_{fit} =929.60 m $r_{FORESEE}$ = 898.61 m Radius e^+ : r_{fit} =472.87 m $r_{FORESEE}$ = 467.32 m Relative error on momentum e+ : 3,44 % Relative error on momentum e+ : 1,18 % Radius e^- : r_{fit} =375.67 m $r_{FORESEE}$ = 232.98 m Radius e^- : r_{fit} =345.36 m $r_{FORESEE}$ = 340.52 m Relative error on momentum e- : 61,24 % Relative error on momentum e- : 1,42 %

Olivier Salin & Alan Barr (Oxford)

Example 1 Tracking studies

Momentum reco studies with detector resolution smearing & misalignment

Next steps:

Extend studies to mass and vertex position resolution

Olivier Salin & Alan Barr (Oxford)

Magnets | New detector configurations Given latest magnet situation need to consider other configurations • e.g. a la LHCb:

Main take-away is that design studies essential start again from scratch...

New configurations

New configurations

Nominal (no B-field in decay volume) vs LHC-b like

Olivier Salin & Alan Barr (Oxford)

New configurations

Olivier Salin & Alan Barr (Oxford)

Figurations

Olivier Salin & Alan Barr (Oxford)

Questions to ask

To see a signal	Translates to requirements in detector	Translates to detector technologies	
Generic S/B	Magnet strength and length ??		
Pointing / z measurements	Tracker resolution ?? Alignment requirements?? Timing?	Pixels vs SciFi or a combination	
 Mass reconstruction for "bump hunt"? Out of time signal? 	Track / Calorimeter resolution ?? Timing?	High granularity calo vs Dual Calo read-out	
 Track separation from what station? 			
Photon ID and separation?	Calorimeter / preshower resolution?		
 Can we do anything with MET? 			
To characterise signal if you see it	To characterise signal if you see it	To characterise signal if you see it.	
• PID ?	Timing ??	CMOS with timing	
Mass measurements	Tracker resolution ??		
Backgrounds			
Trigger rates?	# Scintillator layers??		

E Benchmark models?

Model	Unique in FASER2	Decay mode in FASER	Decay mode in FASER 2	Unique coverage
Dark Photons		ee	ee, <mark>hadrons</mark> , μμ	++
B-L Gauge bosons	X	ee	ee, hadrons, μμ, MET (dom low mass)	++
Dark Higgs Bosons	X		ee, pions, μμ, kaons, j <mark>ets</mark>	+++
HNLs with e	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with μ	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with τ	X		MET + ee, MET (dom low mass), hadrons	+++
ALPs in photons		ΥΥ	ΥΥ	++
ALPs in fermions	X		ee, μμ, <mark>jets</mark>	+++
ALPs in gluons	X		γγ, hadrons	+
Dark pseudoscalars	X		γγ, ee, μμ, hadrons, jets	++
OTHER???				

Anna Sfyrla (UniGe)

E Benchmark models?

Model	Unique in FASER2	Decay mode in FASER	Decay mode in FASER 2	Unique coverage
Dark Photons		ee	ee, <mark>hadrons</mark> , μμ	++
B-L Gauge bosons	X	ee	ee, hadrons, μμ, MET (dom low mass)	++
Dark Higgs Bosons	X		ee, pions, μμ, kaons, jets	+++
HNLs with e	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with μ	X		MET + ee, MET (dom low mass), hadrons	+
HNLs with T	X		MET + ee, MET (dom low mass), hadrons	+++
ALPs in photons		γγ	ΥΥ	++
ALPs in fermions	X		ee, μμ, <mark>jets</mark>	+++
ALPs in gluons	X		γγ, hadrons	+
Dark pseudoscalars	X		γγ, ee, μμ, hadrons, jets	++
OTHER???				

Anna Sfyrla (UniGe)

E Benchmark models?

Model	Unique in FASER2	Decay mode in FASER	Decay mode in FASER 2	Unique coverage					
Dark Photons		ee	ee, <mark>hadrons</mark> , μμ	++					
B-L Gauge bosons	X	ee	ee, hadrons, μμ, MET (dom low mass)	++					
Dark Hi Agree on objects we need to reconstruct: e, μ, jets, γ, MET?									
Also agree on higher level quantities (e.g. mass) and other figures of merit (e.g. angular separation, hadron ID?).									
ALPs in fermions	X		ee, μμ, <mark>jets</mark>	+++					
ALPs in gluons	X		γγ, hadrons	+					
Dark pseudoscalars	X		γγ, ee, μμ, hadrons, jets	++					
OTHER???									

Anna Sfyrla (UniGe)

F² Benchmark models?

- physics cases we want to study.
- That cover various final states of interest
 - Cover different decay modes
- That have "large enough" cross sections that are not hopeless
 - Scan mass range accessible in current reach estimates
 - But also look at phase-space outside top of existing excluded region
- Also consider different kinematic regions Higher and lower LLP energies

Select benchmark model points that can be used as "representative" of the

Example 72 Benchmark models?

Example 72 Benchmark models?

Example 7 Benchmark models?

Example 72 Benchmark models?

Check different configurations (from one extreme)

Revisit DV radius - smaller radius may mean more options for technologies

Record particle positions at:

Tracker, preshower, calo and muon ID stations

Energy at calorimeter

gnet	Magnet	Preshow	Calo	Iron	Muon
	Magnet	Preshow	Calo	Iron	Muon
		Preshow	Calo	Iron	Muon
eme to the	other)				

