## Tracking performance studies for FASERv2/FASER2

'22 11/16 T. Ariga (Kyushu U.), J. Boyd (CERN), Y.Takubo (KEK)

## Track matching with Emulsion/IFT

## IFT for FASERv2

- IFT will be used as an interface tracker between emulsion detector and FASER2 tracker.
> Detector candidates : silicon strip detector (SCT), scintillating fiber
- The studies on tracking performance and capability of track matching between emulsion and tracker were just started.
> Assuming one IFT with 3 layers just behind the emulsion detector.
> Emulsion: $40 \times 40 \times 840 \mathrm{~cm}^{3}$, IFT: $80 \times 80 \mathrm{~cm}^{2}$



## Tracking performance in IFT (1)

- Performance of the tracking with IFT only was evaluated with a linear fitting of hit positions in IFT: $x$ (or $y)=\alpha z+\beta$
- A charged particle is assumed to come from $(x, y, z)=(0,0,0)$ with $\vec{p}=\left(0,0, p_{z}\right)$.
- Fitting is done 1000 times for each $p_{z}$, fluctuating the hit position with the position resolution.
- Position resolution: 16 um (SCT), 50 and 100 um (scinti. fiber)
> Two strip sensors in a module / scintillating fiber layers are considered to be placed with 90 degrees
 of the stereo-angle.


## Tracking performance in IFT (2)

$$
x(\text { or } y)=\alpha z+\beta
$$

- $\sigma_{\alpha}$ : angular resolution
- $\sigma_{\beta}$ : offset resolution

| $\sigma_{x y}$ | Offset reso. | Angular reso. |
| :--- | :--- | :--- |
| 16 um | $\sim 10 \mathrm{um}$ | $\sim 0.4 \mathrm{mrad}$ |
| 50 um | $\sim 30 \mathrm{um}$ | $\sim 1.2 \mathrm{mrad}$ |
| 100 um | $\sim 58 \mathrm{um}$ | $\sim 2.4 \mathrm{mrad}$ |

Offset/angular reso. with 50 um of IFT position reso.

X offset resolution


X angle resolution


## Track matching capability (Introduction)

- Matching probability of signal-signal and signal-background was studied with Emulsion and IFT ( $R_{\mathrm{em} 1 / 2}=12.5 / 20 \mathrm{~cm}$ ).
- $\left[4 k \times \frac{R_{\mathrm{em} 2}^{2} L_{\mathrm{em} 2}}{R_{\mathrm{em} 1}^{2} L_{\mathrm{em} 1}}\right.$ signal $]$ v.s. $\left[40 k \times \frac{R_{\mathrm{em} 2}^{2}}{R_{\mathrm{em} 1}^{2}}\right.$ background $]\left(@ 30 \mathrm{fb}^{-1}\right)$
- The signal tracks were generated with distributions in Backup which was used for the studies on the current FASER.
> Angular distribution: $\sigma_{\theta} \sim 35\left(v_{\mu}\right), 27\left(\bar{v}_{\mu}\right)$ mrad.
- Backgrounds were injected with $\sigma_{\theta}=2 \mathrm{mrad}$. and uniformly in radius.
- The position and angular resolution of the emulsion are assumed to be 1 um and 0.5 mrad., respectively.
- 3.5 cm was used for the gap between the last layer of emulsion and the first layer of IFT.


## Track matching capability (Method)

- $\left(\mathrm{x}, \mathrm{y}, \theta_{\mathrm{x}}, \theta_{\mathrm{y}}\right)$ was fluctuated by the resolutions of Emulsion and IFT, separately.
- If $(\Delta x, \Delta y, \Delta \theta x, \Delta \theta y)$ is within $\left(\sigma_{x}, \sigma_{y}, \sigma_{\theta x}, \sigma_{\theta y}\right)$, the track is assumed as matching.
$>\Delta \mathrm{x}=\mathrm{x}($ Emulsion $)-\mathrm{x}($ IFT $)$
$>\sigma_{x / y}=\sqrt{(\alpha \cdot \sigma)_{\text {Emulsion }}^{2}+(\beta \cdot \sigma)_{I F T}^{2}+\sigma_{x / y(\text { gap })}^{\text {min }, 2}}$
$>\sigma_{\theta x / \theta y}=\sqrt{(\alpha \cdot \sigma)_{\text {Emulsion }}^{2}+(\beta \cdot \sigma)_{I F T}^{2}}$
$>$ Matching is checked by changing $\alpha / \beta(=1,2,3)$.



## Track matching capability $\left(\nu_{\mu}\right)$




## Track matching capability $\left(\bar{v}_{\mu}\right)$



## Tracking performance with FASER2 tracker

## Charge ID capability and momentum resolution

- 3 tracker stations with 3 single-layers (ST0-2) are placed before and after the magnet.
$>80$ um position resolution
$>50$ or 100 cm gap between each layer ( $\ell$ )
> Distance between ST1 and ST2 is set to 500 cm .
- Magnetic field is changed to $1 / 2 / 4 \mathrm{Tm}$ with 50 cm length $\left(w_{\text {mag }}\right)$.



## Momentum reconstruction

- The linear fitting is done with ST0 and ST1-2 separately.
- $\theta$ is calculated with a residual of slope of the linear function.
- The charge is identified with a sign of $\theta(+$ or -$)$.

$$
\mathrm{r}=\frac{w\left(\theta^{2}+1\right)}{2 \theta} \square \mathrm{p}[\mathrm{MeV}]=3 \cdot \mathrm{r}[\mathrm{~cm}] \cdot \mathrm{B}[\mathrm{~T}]
$$



## Alignment shift

- The alignment shift ( 100 um and 250 um ) was applied to the $3^{\text {rd }}$ layers in each station.
> "一" (down) for ST0 and "+" (up) for ST1/2

cm


## Performance (1Tm, single layer)







## Performance (2Tm, single layer)






## Performance (4Tm, single layer)







## Performance with double layer

- The performance was also check with 3 tracker stations with 3 doublelayers (ST0-2).
$>3 \mathrm{~cm}$ gap between top and bottom layers in a double-layer.

cm


## Performance (1Tm, double layer)

$\ell=50 \mathrm{~cm} \quad 1 / p$ v.s. momentum





Wrong charge rate



## Performance (2Tm, double layer)







## Performance (4Tm, double layer)






## Summary of momentum resolution

$\frac{\sigma_{1 / p_{T}}}{1 / p_{T}^{\text {true }}}$ is summarized here:

## $\ell=50 \mathrm{~cm}$

|  | Single layer |  |  | Double layer |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $1 \mathrm{~T} \cdot \mathrm{~m}$ | $2 \mathrm{~T} \cdot \mathrm{~m}$ | $4 \mathrm{~T} \cdot \mathrm{~m}$ | $1 \mathrm{~T} \cdot \mathrm{~m}$ | $2 \mathrm{~T} \cdot \mathrm{~m}$ | $4 \mathrm{~T} \cdot \mathrm{~m}$ |
| 1 TeV | 0.74 | 0.37 | 0.19 | 0.56 | 0.28 | 0.14 |
| 2 TeV | 1.53 | 0.76 | 0.38 | 1.10 | 0.55 | 0.27 |
| 3 TeV | 2.30 | 1.15 | 0.58 | 1.63 | 0.82 | 0.41 |

$\ell=100 \mathrm{~cm}$

|  | Single layer |  |  | Double layer |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $1 \mathrm{~T} \cdot \mathrm{~m}$ | $2 \mathrm{~T} \cdot \mathrm{~m}$ | $4 \mathrm{~T} \cdot \mathrm{~m}$ | $1 \mathrm{~T} \cdot \mathrm{~m}$ | $2 \mathrm{~T} \cdot \mathrm{~m}$ | $4 \mathrm{~T} \cdot \mathrm{~m}$ |
| 1 TeV | 0.38 | 0.19 | 0.09 | 0.28 | 0.14 | 0.07 |
| 2 TeV | 0.78 | 0.39 | 0.19 | 0.56 | 0.28 | 0.14 |
| 3 TeV | 1.17 | 0.59 | 0.29 | 0.83 | 0.41 | 0.21 |

## Backup

## Position resolution caused by gap

- Define $\ell$ as gap between the last layer of emulsion and the first layer of IFT ( $\ell=3.5$ or 4.5 cm was used for this study).
- Fluctuation on $x / y$ caused by extrapolating tracks with angular resolution of emulsion/IFT:

$$
\begin{aligned}
& \sigma_{x / y(\text { gap })}=\sqrt{\left\{\sigma_{\theta(\text { emulsion })} \cdot s\right\}^{2}+\left\{\sigma_{\theta(I F T)}(\ell-s)\right\}^{2}} \\
& \rightarrow \sigma_{x / y(\text { gap })}=\frac{\sigma_{\theta(\text { emulsion })} \cdot \sigma_{\theta(I F T)} \ell \ell}{\sqrt{\sigma_{\theta(\text { emulsion })^{2}+\sigma_{\theta(I F T)^{2}}}}}
\end{aligned}
$$



## Checking items

Signal-signal matching

- \# of signal tracks correctly matching ("Correct matching") and matching to another signal track ("Wrong matching")

Signal-BG matching

- \# of signal tracks matching to a single BG track ("Single matching"), matching to more than one BG tracks ("Multiple matching") and either of them ("All matching").


## Muon distribution from neutrino







## Muon distribution from anti-neutrino

$$
\frac{d \sigma_{v q}}{d \Omega}=\frac{G_{F}^{2}}{16 \pi^{2}}(1+\cos \theta)^{2} \hat{S}
$$



Angle $X$



Angle Y




## Calculation method

$$
\begin{gathered}
d x=r-\sqrt{r^{2}-w_{\operatorname{mag}}{ }^{2}} \\
(d x-r)^{2}=r^{2}-w_{\operatorname{mag}}{ }^{2} \\
d x^{2}-2 d x \cdot r=-w_{\operatorname{mag}}{ }^{2} \\
2 d x \cdot r=d x^{2}+w_{\operatorname{mag}^{2}}{ }^{2} \\
\mathrm{r}=\frac{d x^{2}+w_{\operatorname{mag}}{ }^{2}}{2 d x} \\
\theta=\frac{d x}{w_{\operatorname{mag}}} \\
\mathrm{r}=\frac{w_{\operatorname{mag}}\left(\theta^{2}+1\right)}{2 \theta}
\end{gathered}
$$



## Confirmation by hand calculation (1)

Let's try rough estimation of momentum resolution for $1 \mathrm{TeV} / \mathrm{c}$.
The largest uncertainty on $\theta$ comes from that of linear fitting of track 1 $(x=\alpha z+\beta)$.

- $\sigma_{\alpha}^{2}=\sigma^{2} \frac{n}{\Delta}$
- $\sigma_{\beta}^{2}=\sigma^{2} \frac{\sum z_{i}}{\Delta}$
- $\Delta=n \sum z_{i}^{2}-\left(\sum z_{i}\right)^{2}$

- $\sigma=100 / \sqrt{3}$ [um] (i.e., position resolution of each station)
- $z_{i}$ : center position of each station

- $\sigma_{\alpha}=0.00041$
- $\sigma_{\beta}=5.3 \times 10^{-5}[\mathrm{~m}]$

$\sigma_{x(S T 4)}=8.2 \mathrm{~mm}$


## Confirmation by hand calculation (2)

$$
\begin{aligned}
& \underbrace{\sigma_{\theta}}_{\sigma_{x(S T 4)}}=\frac{\sigma_{x(S T 4)}}{\ell}=4.2 \mathrm{~mm} \\
& \sigma_{\theta}
\end{aligned}
$$

The resolution of track2 is ignored
 since it is much smaller than $\sigma_{x(S T 4)}$.

$$
\begin{aligned}
& \mathrm{r}=\frac{w_{m a g}\left(\theta^{2}+1\right)}{2 \theta} \\
& \sigma_{r}=\frac{w_{m a g}}{2}\left(\frac{1}{\theta^{2}}-1\right) \sigma_{\theta} \sim 1500[\mathrm{~m}] \\
& \frac{\sigma_{1 / p}}{1 / p}=\frac{\sigma_{1 / r}}{1 / r}=\frac{\sigma_{r}}{r}=1.7(r=833 \mathrm{~m} \text { at } 1 \mathrm{TeV})
\end{aligned}
$$

## Hit position resolution

If a particle penetrates a strip with the width $d$ uniformly, the probability to pass position $x$ is $1 / \mathrm{d}$.


$$
\begin{aligned}
\sigma_{x}^{2} & =\int_{-d / 2}^{+d / 2} x^{2} p(x) d x \\
& =\int_{-d / 2}^{+d / 2} \frac{x^{2}}{d} d x \\
& =\frac{d^{2}}{12} \\
\sigma_{x} & =\frac{d}{\sqrt{12}}
\end{aligned}
$$

## Comparison with AdvSND (1)





## Comparison with AdvSND (2)



## Comparison with AdvSND (3)



## Comparison with AdvSND (4)

Anyway, let's compare with my calculation.
Condition of my calculation:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\cdot \\
\cdot \\
\cdot \\
d x=r-\frac{d x}{\ell}
\end{array}\right. \\
& \quad d x=r-\sqrt{r^{2}-\ell^{2}} \\
& \rightarrow(1) d x \sim r-r\left(1-\frac{\ell^{2}}{2 r^{2}}\right)=\frac{\ell^{2}}{2 r} \\
& \theta=\frac{d x}{\ell} \\
& \rightarrow(2) d x=\theta \ell
\end{aligned}
$$

$$
\text { With (1) and (2), } \theta \ell=\frac{\ell^{2}}{2 r} \rightarrow 2 \theta=\frac{\ell}{r}
$$

$d x$ The result is the same as the method of AdvSND (except for factor of 2).

## Comparison with AdvSND (5)

$\mathrm{p}[\mathrm{MeV}]=3 \cdot \mathrm{r}[\mathrm{cm}] \cdot \mathrm{B}[\mathrm{T}]$
(" 3 " is missing in calculation of Sec. 3.3.2 in [FPF White Paper])
$\rightarrow r=\frac{p}{3 B}$
$\Rightarrow 2 \theta=\frac{l}{r}=\frac{3 B \ell}{p}$
$\neg \theta=\frac{3 B \ell}{2 p}\left(\theta=\frac{B \ell}{p}\right.$ in Sec. 3.3.2 in [FPF White Paper] $)$

