Tracking performance studies for FASERv2/FASER2

'22 11/16 T. Ariga (Kyushu U.), J. Boyd (CERN), Y.Takubo (KEK)

Track matching with Emulsion/IFT

IFT for FASERv2

- IFT will be used as an interface tracker between emulsion detector and FASER2 tracker.
 - > Detector candidates : silicon strip detector (SCT), scintillating fiber
- The studies on tracking performance and capability of track matching between emulsion and tracker were just started.
 - > Assuming one IFT with 3 layers just behind the emulsion detector.
 - > Emulsion: 40 x 40 x 840 cm³, IFT: 80 x 80 cm²

Tracking performance in IFT (1)

- Performance of the tracking with IFT only was evaluated with a linear fitting of hit positions in IFT: $x(\text{or } y) = \alpha z + \beta$
- A charged particle is assumed to come from (x, y, z) = (0,0,0) with $\vec{p} = (0,0, p_z)$.
- Fitting is done 1000 times for each p_z , fluctuating the hit position with the position resolution.
- Position resolution: 16 um (SCT), 50 and 100 um (scinti. fiber)
 - > Two strip sensors in a module / scintillating fiber layers are considered to be placed with 90 degrees of the stereo-angle.

Tracking performance in IFT (2)

 $x(\text{or } y) = \alpha z + \beta$

- σ_{α} : angular resolution
- σ_{β} : offset resolution

σ_{xy}	Offset reso.	Angular reso.	
16 um	~10 um	~0.4 mrad	
50 um	~30 um	~1.2 mrad	
100 um	~58 um	~2.4 mrad	

Offset/angular reso. with 50 um of IFT position reso.

Track matching capability (Introduction)

• Matching probability of signal-signal and signal-background was studied with Emulsion and IFT ($R_{em1/2} = 12.5/20$ cm).

•
$$\left[4k \times \frac{R_{\text{em2}}^2 L_{\text{em2}}}{R_{\text{em1}}^2 L_{\text{em1}}} \text{ signal}\right] \text{ v.s. } \left[40k \times \frac{R_{\text{em2}}^2}{R_{\text{em1}}^2} \text{ background}\right] (@30 \text{ fb}^{-1})$$

• The signal tracks were generated with distributions in Backup which was used for the studies on the current FASER.

> Angular distribution: $\sigma_{\theta} \sim 35 (v_{\mu})$, $27(\overline{v}_{\mu})$ mrad.

- Backgrounds were injected with $\sigma_{\theta} = 2$ mrad. and uniformly in radius.
- The position and angular resolution of the emulsion are assumed to be 1 um and 0.5 mrad., respectively.
- 3.5 cm was used for the gap between the last layer of emulsion and the first layer of IFT.

Track matching capability (Method)

- (x, y, θ_x , θ_y) was fluctuated by the resolutions of Emulsion and IFT, separately.
- If $(\Delta x, \Delta y, \Delta \theta x, \Delta \theta y)$ is within $(\sigma_x, \sigma_y, \sigma_{\theta x}, \sigma_{\theta y})$, the track is assumed as matching.

$$\rightarrow \Delta x = x(\text{Emulsion}) - x(\text{IFT})$$

$$> \sigma_{x/y} = \sqrt{(\alpha \cdot \sigma)_{Emulsion}^2 + (\beta \cdot \sigma)_{IFT}^2 + \sigma_{x/y(gap)}^{min,2} }$$

> Matching is checked by changing α/β (=1, 2, 3).

Track matching capability (v_{μ})

Track matching capability $(\bar{\nu}_{\mu})$

Tracking performance with FASER2 tracker

Charge ID capability and momentum resolution

- 3 tracker stations with 3 single-layers (ST0-2) are placed before and after the magnet.
 - > 80 um position resolution
 - > 50 or 100 cm gap between each layer (ℓ)
 - > Distance between ST1 and ST2 is set to 500 cm.
- Magnetic field is changed to 1/2/4 Tm with 50 cm length (w_{mag}).

Momentum reconstruction

- The linear fitting is done with ST0 and ST1-2 separately.
- θ is calculated with a residual of slope of the linear function.
- The charge is identified with a sign of θ (+ or –).

$$r = \frac{w(\theta^2 + 1)}{2\theta} \implies p[MeV] = 3 \cdot r[cm] \cdot B[T]$$

Alignment shift

- The alignment shift (100 um and 250 um) was applied to the 3rd layers in each station.
 - "-" (down) for ST0 and "+" (up) for ST1/2

Performance (1Tm, single layer)

Performance (2Tm, single layer)

Performance (4Tm, single layer)

Performance with double layer

- The performance was also check with 3 tracker stations with 3 double-layers (ST0-2).
 - > 3 cm gap between top and bottom layers in a double-layer.

Performance (1Tm, double layer)

Performance (2Tm, double layer)

Performance (4Tm, double layer)

Summary of momentum resolution

 $\frac{\sigma_{1/p_T}}{1/p_T^{true}}$ is summarized here:

$\ell = 50 \text{ cm}$

	Single layer			Double layer		
	1 T•m	2 T•m	4 T•m	1 T•m	2 T•m	4 T•m
1 TeV	0.74	0.37	0.19	0.56	0.28	0.14
2 TeV	1.53	0.76	0.38	1.10	0.55	0.27
3 TeV	2.30	1.15	0.58	1.63	0.82	0.41

$\ell = 100 \text{ cm}$

	Single layer			Double layer		
	1 T•m	2 T•m	4 T•m	1 T•m	2 T•m	4 T•m
1 TeV	0.38	0.19	0.09	0.28	0.14	0.07
2 TeV	0.78	0.39	0.19	0.56	0.28	0.14
3 TeV	1.17	0.59	0.29	0.83	0.41	0.21

Backup

Position resolution caused by gap

- Define ℓ as gap between the last layer of emulsion and the first layer of IFT (ℓ = 3.5 or 4.5 cm was used for this study).
- Fluctuation on x/y caused by extrapolating tracks with angular resolution of emulsion/IFT:

$$\sigma_{x/y(gap)} = \sqrt{\left\{\sigma_{\theta(emulsion)} \cdot s\right\}^{2} + \left\{\sigma_{\theta(IFT)}(\ell - s)\right\}^{2}}$$

$$\Rightarrow \sigma_{x/y(gap)}^{min} = \frac{\sigma_{\theta(emulsion)} \cdot \sigma_{\theta(IFT)} \cdot \ell}{\sqrt{\sigma_{\theta(emulsion)}^{2} + \sigma_{\theta(IFT)}^{2}}}$$

$$\ell = 3.5 \text{ cm}$$

$$f = 3.5 \text{ cm}$$

Checking items

Signal-signal matching

• # of signal tracks correctly matching ("Correct matching") and matching to another signal track ("Wrong matching")

Signal-BG matching

• # of signal tracks matching to a single BG track ("Single matching"), matching to more than one BG tracks ("Multiple matching") and either of them ("All matching").

Muon distribution from neutrino

Muon distribution from anti-neutrino

Calculation method

$$dx = r - \sqrt{r^2 - w_{mag}^2}$$
$$(dx - r)^2 = r^2 - w_{mag}^2$$
$$dx^2 - 2dx \cdot r = -w_{mag}^2$$
$$2dx \cdot r = dx^2 + w_{mag}^2$$
$$r = \frac{dx^2 + w_{mag}^2}{2dx}$$
$$\theta = \frac{dx}{w_{mag}} \int$$
$$r = \frac{w_{mag}(\theta^2 + 1)}{2\theta}$$

Confirmation by hand calculation (1)

- Let's try rough estimation of momentum resolution for 1 TeV/c.
- The largest uncertainty on θ comes from that of linear fitting of track1 $(x = \alpha z + \beta)$.
- $\sigma_{\alpha}^2 = \sigma^2 \frac{n}{\Delta}$
- $\sigma_{\beta}^2 = \sigma^2 \frac{\sum z_i}{\Delta}$
- $\Delta = n \sum z_i^2 (\sum z_i)^2$

- $\sigma = 100/\sqrt{3}$ [um] (i.e., position resolution of each station)
- z_i : center position of each station

•
$$\sigma_{\alpha} = 0.00041$$

• $\sigma_{\beta} = 5.3 \times 10^{-5} [m]$ $\sigma_{x(ST4)} = 8.2 \text{ mm}$

Confirmation by hand calculation (2)

1 TeV)

$$\sigma_{x(ST4)} = 8.2 \text{ mm}$$

$$\int \int \sigma_{\theta} = \frac{\sigma_{x(ST4)}}{\ell} = 4.2 \times 10^{-3}$$

The resolution of track2 is ignored since it is much smaller than $\sigma_{x(ST4)}$.

$$r = \frac{w_{mag}(\theta^2 + 1)}{2\theta}$$

$$\sigma_r = \frac{w_{mag}}{2} \left(\frac{1}{\theta^2} - 1\right) \sigma_{\theta} \sim 1500 \text{ [m]}$$

$$\frac{\sigma_{1/p}}{1/p} = \frac{\sigma_{1/r}}{1/r} = \frac{\sigma_r}{r} = 1.7 \text{ (}r = 833 \text{ m at)}$$

Hit position resolution

If a particle penetrates a strip with the width d uniformly, the probability to pass position x is 1/d.

Comparison with AdvSND (1)

Comparison with AdvSND (2)

$$\alpha (1) \alpha + 2(\theta + \beta) = \pi$$

$$\alpha (1) \alpha + 2(\theta + \beta) = \pi$$

$$\alpha (2) 4\theta + 2\beta = \pi$$
With (1)+(2), $2\alpha = \theta$

$$\theta + \beta$$

$$\theta + \beta$$

$$\theta + \beta$$

Comparison with AdvSND (3)

Comparison with AdvSND (4)

Anyway, let's compare with my calculation.

Condition of my calculation:

r

Comparison with AdvSND (5)

 $p[MeV] = 3 \cdot r[cm] \cdot B[T]$

("3" is missing in calculation of Sec. 3.3.2 in [FPF White Paper])

$$\rightarrow r = \frac{p}{3B}$$

$$2\theta = \frac{\ell}{r} = \frac{3B\ell}{p}$$

$$\theta = \frac{3B\ell}{2p} (\theta = \frac{B\ell}{p} \text{ in Sec. 3.3.2 in [FPF White Paper]})$$