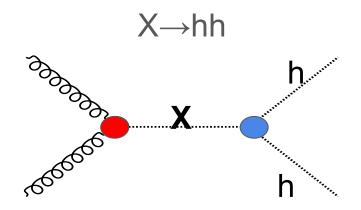
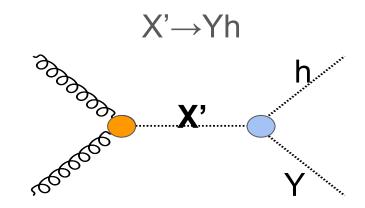
Overview of searches for X→hh or X→Yh at CMS

LHC HH subgroup meeting


28 September 2022

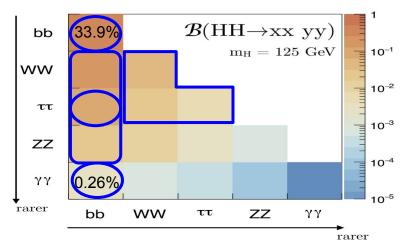
Fabio Monti¹, Alexandra Carvalho²


on behalf of the CMS HH team

- ¹ IHEP CAS
- ² Vilnius university

Considered interpretations

- Spin 0 resonances
 - Randall-Sundrum radion
 - 2 H doublets models (2HDM)
- Spin 2 resonances
 - Randall-Sundrum KK graviton

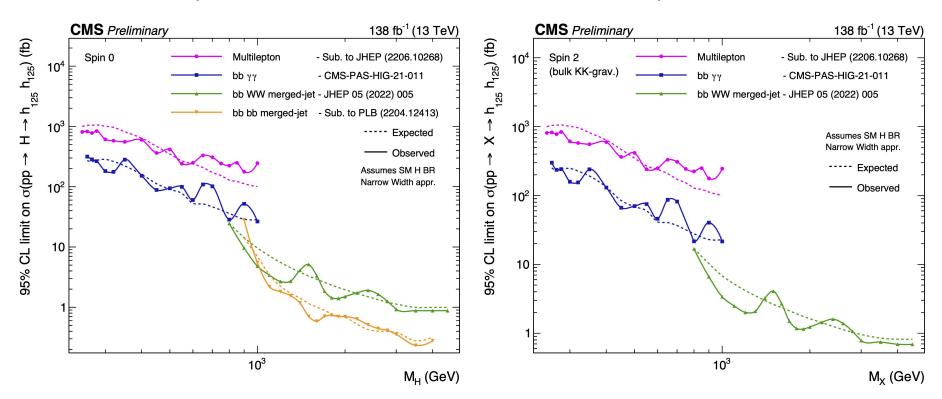


- Spin 0 resonances
 - Next-to-minimal supersimmetry models (NMSSM) <u>JHEP07(2008)</u>
 - Two-real-scalar-singlet extension of the SM
 (TRSM) <u>E.P.J.C80,151(2020)</u>
- Assuming resonances with narrow decay widths
 - No interference effects

Explored final states

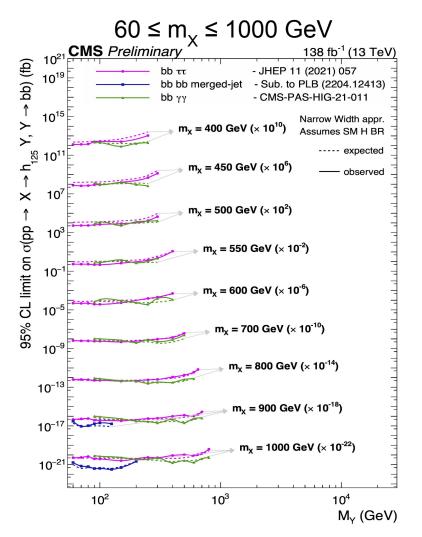
- h→bb: large SM BR & bkg
 rejection from heavy-flavour jet ID
- h final states with leptons, γ,
 or T_h: efficient bkg rejection

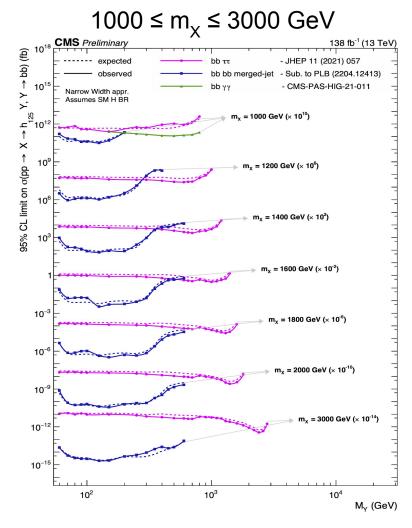
Available X→hh (or Yh) searches with full Run 2 data from CMS


Decay channel	Interpretations		
	spin 0 X→hh	spin 0 X→Yh	spin 2 X→hh
bbbb <u>CMS-PAS-B2G-20-004</u> , <u>arXiv:2204.12413</u>	✓	V	V
bb+leptons <u>JHEP 2205 (2022) 005</u>	V		V
bbtt <u>JHEP11(2021)057</u>		V	
bbyy cms-pas-hig-21-011	V	V	V
multileptons arXiv:2206.10268	V	V	

X→hh search in Run 2 data

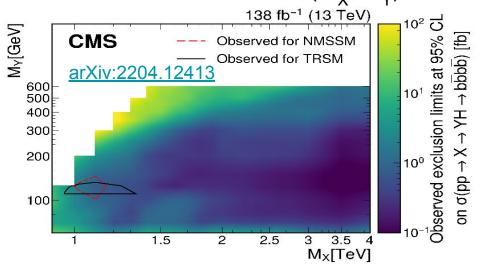
Upper limit on $\sigma(pp \rightarrow X \rightarrow HH)$

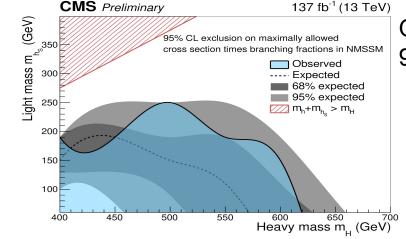



spin 2 resonance

No significant deviations from SM observed

X→Yh search in Run 2 data

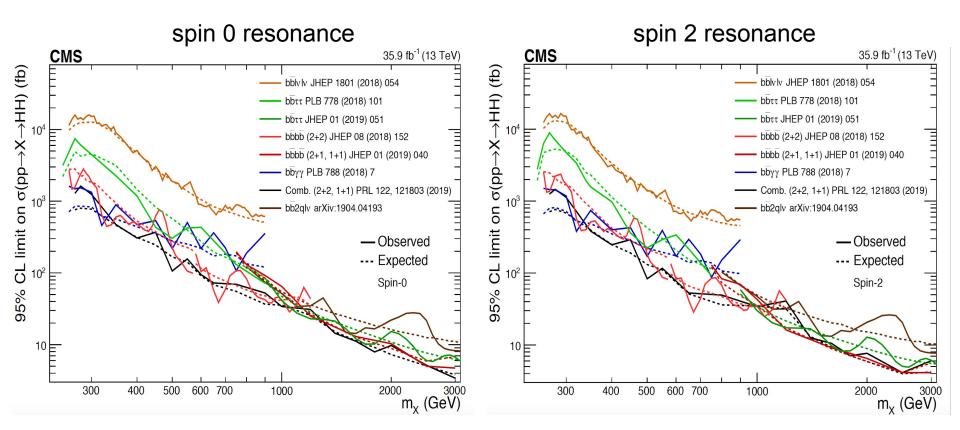

 Excess with local(global) significance of 3.8(2.8)σ for (m_x, m_y) = (650, 90) GeV in bbγγ


NMSSM and TRSM interpretations of X→Yh searches

Assuming maximally allowed NMSSM and TRSM XS's

Observed limits on $\sigma(pp \to X \to YH \to bb \gamma \gamma)$ at 95% CL as a function of (M_X, M_Y) CMS Preliminary 138 fb⁻¹ (13 TeV) Limits below theory cross section NMSSM CMS-PAS-HIG-21-011 $(M_X \to M_Y)$ 000 $(M_X \to M_Y$

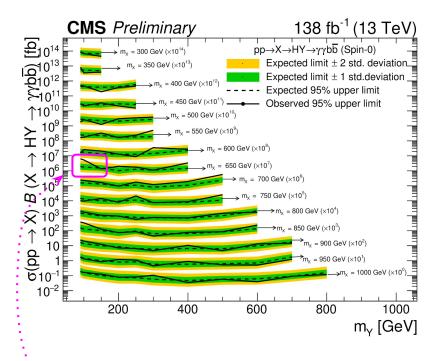
Observed limits on $\sigma(pp \rightarrow X \rightarrow YH \rightarrow 4b)$ at 95% CL as a function of (M_X, M_Y)

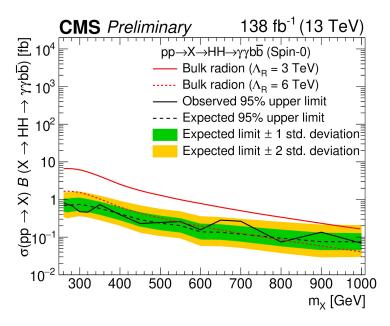

Obs. and exp. limits on $\sigma(pp \rightarrow X \rightarrow YH \rightarrow bb\tau\tau)$ at 95% CL as a function of (M_x, M_y)

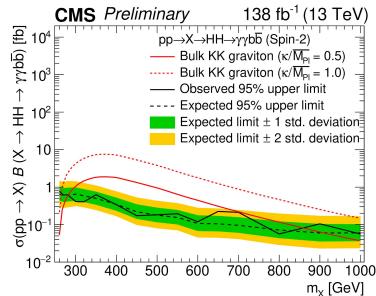
BACKUP

$X\rightarrow$ hh comb with 2016 data (~36 fb⁻¹)

No significant excess found

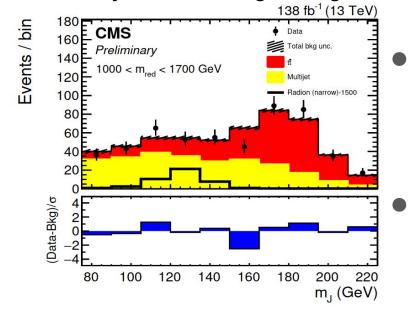

Upper limit on $\sigma(pp \rightarrow X \rightarrow hh)$


$X\rightarrow hh\rightarrow bbyy$ and $X\rightarrow Yh\rightarrow bbyy$ - overview

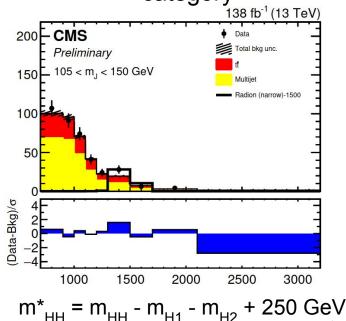

- Clean but rare final state
 - γ pair + b-jets pair resonant on m_H
 - o bkg from jets(+ $\gamma\gamma$) $\rightarrow \gamma$ and b-jet ID requirements
- MVA strategy to optimize signal-bkg separation
 - \circ BDT's to separate sig from $\gamma(\gamma)$ +jets
 - DNN to separate HH from ttH(γγ)
- Sensitivity optimized to different m_x & m_y hypotheses
 - BDT's trained in six separate intervals of m_X/(m_Y+m_h) and used to define three analysis categories
 - For each probed m_X , selection on $m^*_{bbyy} = M_{yyjj} M_{yy} M_{jj} + 250$ GeV to keep ~60% of signal
- Signal extraction from simultaneous fit of m_{yy} and m_{bb}

$X\rightarrow hh\rightarrow bbyy$ and $X\rightarrow Yh\rightarrow bbyy$ - results

Excess with local(global) significance of $3.8(2.8)\sigma$ for $(m_x, m_y) = (650, 90)$ GeV



CMS-PAS-B2G-20-004

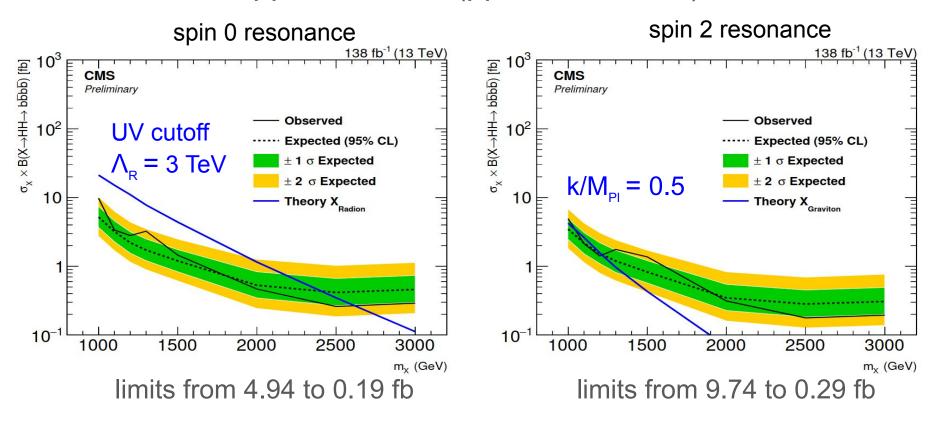

X→hh→4b - overview

- m_x ∈ [1, 3] TeV and spin 0 or 2
- Final states with 1 or 2 boosted H
 - 2 AK8 jets, or 1 AK8 + 2 AK4 jets
- main bkg from QCD and tt
 - b-jet ID based on DNN discriminators
 - modeling from data assisted by MC

lead AK8 jet mass in high b-tag scores cat'

m*_{HH} in high b-tag scores category

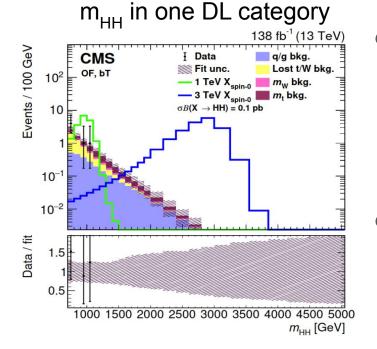
One category for semi-boosted + two cat's for fully-boosted based on the b-tag scores


Events / bin

Signal extraction from fit to m* HH and leading AK8 jet mass

11

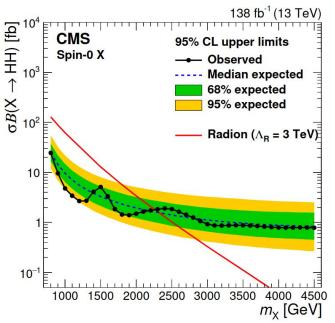
X→hh→4b - results


No significant excess found in the 1-3 TeV m_X range
 Upper limit on σ(pp→X→hh→4b)

For $\Lambda_R = 3$ TeV & k/M_{PI} = 0.5, radion with m \in [1, 2.6] TeV and graviton with m \in [1, 1.2] TeV excluded @95% CL

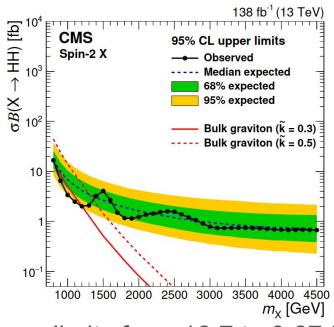
X→hh→bb+leptons boosted - overview

- Resonance with m_x ∈ [0.8, 4.5] TeV and spin = 0 or 2
- Target HH decays bb $WW(qq\ell v) + bb TT(2\ell 4v) + bb VV(2\ell 2v)$ single-lepton (SL) final state = large radius jet + nearby lepton + p_T^{miss} di-lepton (DL) final state = 2 leptons + p_T^{miss}
 - + H→bb reconstructed as a large radius heavy-flavored jet
- Main bkg from tt and Z+jets modeled with simulation


- Event categorization on lept. flavour,
 b-tag score, and other variables
 providing good sig-bkg separation
 - 8 SL categories + 4 DL categories
 - 2D fit to (m_{HH}, m_{bb})

X→hh→bb+leptons boosted - results

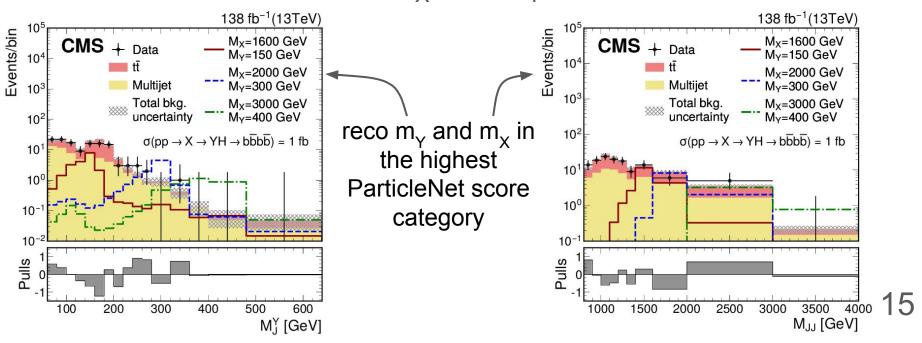
No significant excess found


Upper limit on $\sigma(pp \rightarrow X \rightarrow HH)$

spin 0 resonance

Upper limits from 24.5 to 0.78 fb

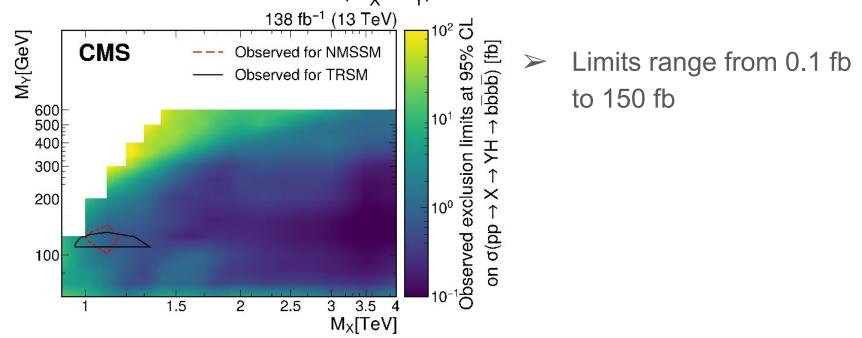
spin 2 resonance



Upper limits from 16.7 to 0.67 fb

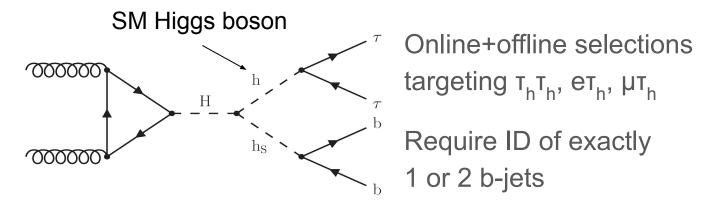
Sensitivity similar to search for X→HH→4b

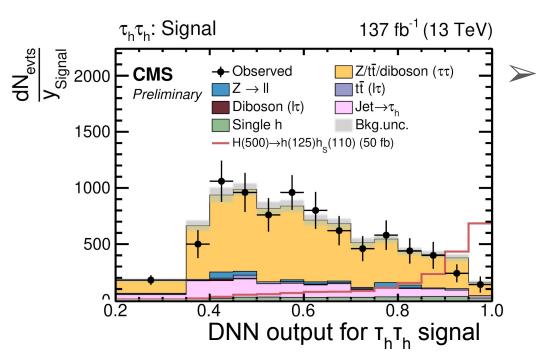
X→Yh→4b boosted - overview


- $m_X \in [0.9, 4]$ TeV and $m_Y \in [60, 600]$ GeV \rightarrow boosted H & Y
- Similar final state and bkgs of boosted non-resonant HH(4b)
 - Similar ParticleNet-based strategy for H(bb) ID, m_{bb} regression and event categorization
- Modeling of QCD bkg from data and of tt from simulation
 - Data control regions for validation & to improve data/MC agreement
- 2D fit to reconstructed m_x and m_y of signal candidates

X→Yh→4b boosted - results

No significant excess found

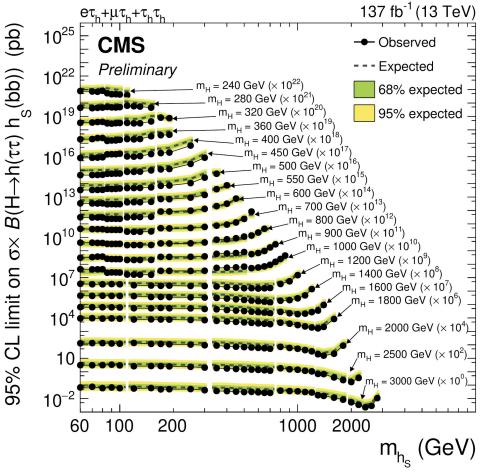

Observed limits on $\sigma(pp \rightarrow X \rightarrow YH \rightarrow 4b)$ at 95% CL as a function of (M_X, M_Y)


Assuming maximally allowed NMSSM and TRSM XS's

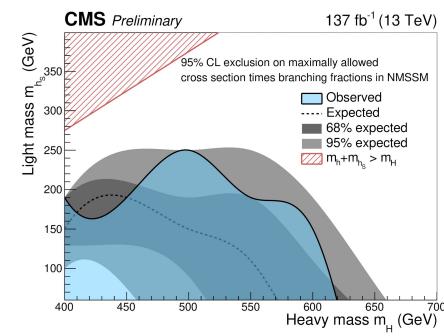
- \rightarrow NMSSM excluded within $M_x \in [1, 1.15]$ TeV and $M_y \in [101, 145]$ GeV
- > TRSM excluded within $M_{\chi} \in [0.95, 1.33]$ TeV and $M_{\gamma} \in [110, 132]$ Ge $_{16}$

$H \rightarrow h_S h \rightarrow bbtt (= X \rightarrow Yh \rightarrow bbtt) - overview$

Main backgrounds from QCD, tt, and Z+jets


Optimize signal vs bkgs separation with NN multiclassifier

Signal region dominated
 by events with genuine τ_h


$H \rightarrow h_S h \rightarrow bbtt (= X \rightarrow Y h \rightarrow bbtt) - results$

- No deviations from SM observed
 - \circ Upper limits from 125 fb (m_H = 240 GeV) to 2.7 fb (m_H = 3 TeV)

model-independent limit on $H\rightarrow hh_s$ XS vs h_s mass for different m_H hypotheses

NMSSM interpretation

- \rightarrow Exclude m_H up to ~620 GeV
- Exclude m_{hs} up to ~250 GeV