
JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

JANA2: Multi-threaded Event Reconstruction

David Lawrence
Jefferson Lab

September 21, 2022

HSF Framework Working Group

1
JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Apr. 1, 2020

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

The JANA Framework

● JANA is a multithreaded reconstruction framework project with nearly 2 decades
of experience behind it

● JANA2 is a rewrite incorporating more modern coding and CS practices and
improving on the original using lessons learned

○ Streaming DAQ and Heterogeneous hardware support strongly considered in redesign

Projects using JANA
● GlueX
● INDRA-ASTRA (near-realtime calibrations using AI/ML)
● BDX
● TriDAS (+ERSAP) + JANA2 Streaming DAQ

2

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Experimental Physics
Software and Computing

Infrastructure

GlueX Computing Needs

11/27/18 3

2017
(low intensity GlueX)

2018
(low intensity GlueX)

2019
(PrimEx)

2019
(high intensity GlueX)

Real Data 1.2PB 6.3PB 1.3PB 3.1PB

MC Data 0.1PB 0.38PB 0.16PB 0.3PB

Total Data 1.3PB 6.6PB 1.4PB 3.4PB

Real Data CPU 21.3Mhr 67.2Mhr 6.4Mhr 39.6Mhr

MC CPU 3.0Mhr 11.3MHr 1.2Mhr 8.0Mhr

Total CPU 24.3PB 78.4Mhr 7.6Mhr 47.5Mhr

Out - years
(high intensity GlueX)

Real Data 16.2PB

MC Data 1.4PB

Total Data 17.6PB

Real Data CPU 125.6Mhr

MC CPU 36.5Mhr

Total CPU 162.1Mhr

Projection for out-years
of GlueX High Intensity
running at 32 weeks/year

Anticipate 2018 data
will be processed by
end of summer 2019

Event size:
12-13kB

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Experimental Physics
Software and Computing

Infrastructure

JANA’s Role in Data Processing

4

DAQ obj

reconstruction
algorithms

obj
obj

obj

obj
obj

obj

JANAraw data files

C++ objects
(low level) C++ objects

(refined)

reconstructed data files

or

stream

or

stream

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022
5

...
sequential

arrow
parallel
arrow

sequential
arrow

queue queue

JANA2 arrows separate sequential and parallel tasks

● CPU intensive event reconstruction will be done as a parallel arrow
● Other tasks (e.g. I/O) can be done as a sequential arrow
● Fewer locks in user code allows framework to better optimize workflow

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Reactive/Dataflow Programming

• Data is presented to arrow in the
form of a queue

• Arrow transforms data and places it
in downstream queue

• Minimal synchronization time spent
in accessing queues

• Course tasks within arrow can
eliminate most or all other
synchronization points

6

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

STOCK

MANUFACTURE

in
stock?

YES

NO

FACTORY

STOCK

MANUFACTURE

in
stock?

YES

NO

FACTORY

Data on demand = Don’t do it unless you need it

Factory Model

STOCK

MANUFACTURE

in
stock?

ORDER

PRODUCT

YES

NO

FACTORY
(algorithm)

Stock = Don’t do it twice Conservation
of CPU cycles! 7

77

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Complete Event Reconstruction in JANA

JANA

Event
Processor

Event
Source

HDDM File
EVIO File

ET system
Web Service

User supplied code
Fill histograms
Write DST
L3 trigger

Framework has a layer that
directs object requests to the

factory that completes it

This allows the framework
to easily redirect requests to

alternate algorithms
specified by the user at run

time

Multiple algorithms
(factories) may exist in the

same program that produce
the same type of data

objects

8

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Multi-threading

Event
Processor

Event
Source

thread

thread

thread

thread

o A complete set of factories is
assigned to an event giving it
exclusive use while that event is
processed

o Factories only work with
other factories in the same
thread eliminating the need for
expensive mutex locking within
the factories

o All events are seen by all
Event Processors (multiple
processors can exist in a
program)

9

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Large experiments have complex call graphs

Run 42513:
Physics Production mode Trigger: FCAL_BCAL_PS_m9.conf
setup: hd_all.tsg
0/90 PERP 90
JD70-100 58um
TPOL Be 75um
beam looks stable

GlueX Reconstruction - automated rendering via janadot plugin

10

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Large experiments have complex call graphs

GlueX Reconstruction - automated rendering via janadot plugin

Modular design:

● Factories (algorithms) need to know what they depend on

● Factories do not need to know what depends on them

● Dependencies do not need to be specified at higher level

11

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Features Added in JANA2

• Better use of “modern” C++ features
– thread model via C++ language (introduced in c++11)

– lock guards
– shared pointers
– lambda functions

• Generalized use of threads (pool)
– multiple queues
– arrows (sequential or parallel)

• NUMA awareness
• Python API (both embedded and as an extension)

12

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Multiple Affinity and Locality strategies

JANA2 Scaling test: PSC Bridges-2 RM Two AMD EPYC 7742 CPUS (128 physical cores)

enum class
AffinityStrategy {

None,
MemoryBound,
ComputeBound };

enum class
LocalityStrategy {

Global,
SocketLocal,
NumaDomainLocal,
CoreLocal,
CpuLocal };

OS, chip type, memory architecture, and nature of job all can affect
which model yields optimal performance

Configurable at run
time via Config.

Parameters

1280 Nthreads

R
at

e
(H

z)

350 175

0 0

175

0

350

0

350

0

350 350 350

00 0

350 350 350

00 0

175

0

175

0

175

0

175

0

Nthreads

R
at

e
(H

z)

0 Nthreads

R
at

e
(H

z)

0 Nthreads

R
at

e
(H

z)

0 Nthreads

R
at

e
(H

z)

0

Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0

Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0
13

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Gaudi Property = JANA Config. Parameter

14

Algorithms need parameters that can be configured at run time.

Gaudi stores configurable parameters in Gaudi::Property members

JANA stores configurable parameters in central service and copies to local variables (e.g. members)

JANA maintains list of all configuration parameters and their defaults.
● values can be dumped to config. file at end of job for use on subsequent jobs
● values that differ from defaults can be flagged
● values that have no implementation in code (typos) can be flagged

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

15

Gaudi: reconstruction.py
explicit piping

JANA: factory C++
implicit piping

Connecting Algorithms

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Primary Key for Connecting Algorithms

16

Gaudi uses collection name (string) as the primary key

JANA uses typeid as the primary key and string as secondary key (“tag”)

primary key

python code

C++ code

secondary key

errors in primary key
are caught at compile
time.

errors in secondary key
are caught at run time.

n.b. C++ linker does not link algorithms together. Run time list is searched using typeid

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Summary
● JANA is a multithreaded framework project with nearly 2 decades of

experience behind it

● JANA2 is a rewrite incorporating more modern coding and CS practices and
improving on the original using lessons learned

○ Streaming DAQ and Heterogeneous hardware support strongly considered in redesign

● JANA2 has been selected for use with the EIC first detector (ePIC) and is
currently being implemented there

Publications:
https://arxiv.org/abs/2202.03085 Streaming readout for next generation electron scattering experiments
https://doi.org/10.1051/epjconf/202125104011 Streaming Readout of the CLAS12 Forward Tagger Using TriDAS and JANA2
https://doi.org/10.1051/epjconf/202024501022 JANA2 Framework for Event Based and Triggerless Data Processing
https://doi.org/10.1051/epjconf/202024507037 Offsite Data Processing for the GlueX Experiment
https://iopscience.iop.org/article/10.1088/1742-6596/119/4/042018 Multi-threaded event reconstruction with JANA
https://pos.sissa.it/070/062 Multi-threaded event processing with JANA
https://iopscience.iop.org/article/10.1088/1742-6596/219/4/042011 The JANA calibrations and conditions database API
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012032 JANA2: Multithreaded Event Reconstruction

Github: https://github.com/JeffersonLab/JANA2
Documentation: https://jeffersonlab.github.io/JANA2/
Example project: https://github.com/faustus123/EIC_JANA_Example

17

https://arxiv.org/abs/2202.03085
https://doi.org/10.1051/epjconf/202125104011
https://doi.org/10.1051/epjconf/202024501022
https://doi.org/10.1051/epjconf/202024507037
https://iopscience.iop.org/article/10.1088/1742-6596/119/4/042018
https://pos.sissa.it/070/062
https://iopscience.iop.org/article/10.1088/1742-6596/219/4/042011
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012032
https://github.com/JeffersonLab/JANA2
https://jeffersonlab.github.io/JANA2/
https://github.com/faustus123/EIC_JANA_Example

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Backups

18 18

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Python support in JANA2

jana -PPLUGINS=janapy -PJANA_PYTHON_FILE=myfile.pypython3 jana.py

As pure python script As embedded interpreter

19

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Streaming Data

20

“event t1eN” “event t2e2”

Det A

Det B

Recon. Tracks

“time slice 1” “time slice 2”

“event t2e1”

time slices

recon
arrow

event candidates

 arrow

event
selectiontracks,

clusters
…

PID, filter
arrow

eventstime slices

Hits
…

jets,
kin. fits,

…

*Publications relevant to Streaming:
https://arxiv.org/abs/2202.03085 Streaming readout for next generation electron scattering experiments
https://doi.org/10.1051/epjconf/202125104011 Streaming Readout of the CLAS12 Forward Tagger Using TriDAS and JANA2
https://doi.org/10.1051/epjconf/202024501022 JANA2 Framework for Event Based and Triggerless Data Processing
https://doi.org/10.2172/1735849 Evaluation & Development of Algorithms & Techniques for Streaming Detector Readout

● JANA2 has streaming readout features tested under multiple detector setups and in beam conditions*
● EPSCI has multiple experts working on streaming DAQ systems in same group as JANA2 developers
● EPSCI works closely with the JLab Fast Electronics Group (Chris Cuevas) and partners routinely in performance

testing in the DAQ Lab.

https://arxiv.org/abs/2202.03085
https://doi.org/10.1051/epjconf/202125104011
https://doi.org/10.1051/epjconf/202024501022
https://doi.org/10.2172/1735849

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022
21

Support for Heterogeneous Hardware

● Sub-event level parallelism
○ Run ML on GPU or TPU

INDRA-ASTRA initiative:
● Software trigger
● Multi-flavored stream

merging
● Event building

Streaming Readout

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Apr. 1, 2020

21

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

What the user needs to know:

22

auto tracks = jevent->Get<DTrack>();

for(auto t : tracks){

 // ... do something with const DTrack* t

}

vector<const *DTrack> tracks

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Apr. 1, 2020

22

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Data on Demand => Software Trigger

23

// Getting hit objects is cheap so we check that first
auto NcaloHits = jevent->Get<CaloHit>().size();
if(NcaloHits>minCaloHits){

keep_event = true;

// Tracks factory only activated if not already keeping event
}else if(jevent->Get<Tracks>().size() > minTrackHits) {

keep_event = true;

}

Event by event
decision on
whether to
activate a factory:

Software triggers
may have multiple
“keep” or
“discard”
conditions that
may be probed in
order of CPU cost

23

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

If an alternate factory is desired:

24

auto tracks = jevent->Get<DTrack>(“MyTest”);

 or, even better

set configuration parameter: DTrack:DEFTAG=MyTest

● Configuration parameters are set at run time
● NAME:DEFTAG is special and tells JANA to re-route ALL

requests for objects of type NAME to the specified factory.

(i.e. algorithm)

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Apr. 1, 2020

24

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

JANA2 Scaling Tests (JLab + NERSC)

25

kinks indicate hardware boundaries

40 thr.

24 thr.

68 thr.

136 thr.

204 thr.

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Apr. 1, 2020

25

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022
26

JANA2 now has much
better built-in
diagnostics compared
to the original JANA.

This helps pinpoint
bottlenecks,
especially in more
complex systems

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

> jana-generate.py
Usage: jana-generate.py [-h|--help] [type] [args...]
 type: JObject JEventSource JEventProcessor RootEventProcessor JEventProcessorTest JFactory Plugin Project

Boilerplate code generation

> jana-generate.py Plugin DaveTest
> ls DaveTest/
CMakeLists.txt DaveTest.cc
> mkdir DaveTest/build
> cd DaveTest/build/
> cmake ..
…
> make install
[50%] Building CXX object CMakeFiles/DaveTest_plugin.dir/DaveTest.cc.o
[100%] Linking CXX shared library DaveTest.so
[100%] Built target DaveTest_plugin
Install the project...
-- Install configuration: ""
-- Installing: /Users/davidl/builds/JANA2/JANA2/plugins/DaveTest.so

> jana-generate.py --help
…
Plugin
Create a code skeleton for a plugin in its own directory. Takes the following positional arguments:
 name The name of the plugin, e.g. "trk_eff" or "TrackingEfficiency"
 [is_standalone] Is this a new project, or are we inside the source tree of an existing CMake project? (default=True)
 [is_mini] Reduce boilerplate and put everything in a single file? (default=True)
 [include_root] Include a ROOT dependency and stubs for filling a ROOT histogram? (default=True)

 Example: `jana_generate.py Plugin TrackingEfficiency 1 0 0`
…

27

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Heterogeneous Hardware Support

subtask
arrow
(GPU)

split arrow

recon
arrow
(CPU)

merge
arrow
(CPU)

recon
arrow
(CPU)

28

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Inspection Tools

> jana -Pplugins=JTest,janacontrol

> jana-control.py [--host host] [--port port]

Add janacontrol plugin to any process

Run GUI from remote (or same) node
29

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

JANA Command Line Debugging w/ gdb

Certain JANA
methods are written
with the intention of
being called from
debugger.

This allows easier
browsing from the
framework point of of
view.

30

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Example with Geometry Service

EndCapProcessor

EEndCapHit

EEndCapDigiHit

EASIC_hit

ExampleDD4HepService

requests start with
higher level objects and
propagate to lower level

objects

data propagates from
lower level objects to
higher level objects

ERawDataSource

plugin

plugin

plugin

https://github.com/faustus123/EIC_JANA_Example

“…[take] a collection of hits and
selecting those hits that are on
a particular endcap tracking
detector and have a position
outside a minimum radial
range.”

Wouter suggested example:

31

https://github.com/faustus123/EIC_JANA_Example

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

Example with Mixed TObject and JObject

EndCapProcessor

EEndCapHit

EEndCapDigiHit

EASIC_hit

ExampleDD4HepService

ERawDataSource

plugin

plugin

plugin

https://github.com/faustus123/EIC_JANA_Example/tree/TObject_example

JObject

JObject

TObject

32

https://github.com/faustus123/EIC_JANA_Example

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

JFactory_EEndCapHit

boilerplate

added for this example

33

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

JFactory_EEndCapHit::Process

34

Experimental Physics
Software and Computing

Infrastructure

JANA2: Multi-threaded Event Reconstruction - David Lawrence - JLab - HSF Framework WG Sep. 21, 2022

ExampleDD4HepService

Service is added to application with single line:

35

Here I try and breakdown some example reconstruction code from ATHENA’s juggler framework
based on GAUDI. At the same time I try and compare this to what an equivalent JANA2
implementation would look like.

This is the first algorithm I looked at in the ATHENA repository and can be found here:

https://eicweb.phy.anl.gov/EIC/juggler/-/blob/master/JugReco/src/components/SimpleClustering.cpp

I looked at it first since the name “SimpleClustering” seemed like a good place to start.

The following are some notes I made a while back when trying to understand
how JANA, Gaudi, and Fun4all approach the basic function of the framework. It
is terribly incomplete, but may give some insight so I included it here in the
backup slides.

https://eicweb.phy.anl.gov/EIC/juggler/-/blob/master/JugReco/src/components/SimpleClustering.cpp

This is a preamble to the file. Nothing remarkable here.

Class is defined in implementation file in a Java-like way. This may
be a stylistic choice, but definitely something allowed by GAUDI.
Without a header file, the class cannot be directly used in code
outside of this. Any use would have to come from properties of the
class coming through one of its base classes.

The class is declared to GAUDI by the DECLARE_COMPONENT
call at the bottom of the file. This is defined through a few files but
eventually gets to this file and the following line:

Gaudi/GaudiPluginService/include/Gaudi/PluginServiceV2.h

Registry::instance().add(id, { libraryName(), std::move(f), std::move(props) });

At this point I don’t know if that is instantiating an object of this class
or otherwise generating code that can be used to instantiate
SimpleClustering objects later.

The JANA equivalent here would be to create a class inheriting from
JFactory and then report that to JANA by instantiating a
JFactoryGenerator class via template.

 JANA will use the JFactoryGenerator class to instantiate multiple
SimpleClustering objects later.

Data objects in Gaudi are contained in
DataHandle templated classes. It looks
like these wrappers are instantiated
with a pointer to the algorithm object
they belong to.

typo?

Convenience declarations

Gaudi Property objects look to similarly wrap variables in a
class and register it with the Gaudi system. This will allow
Gaudi to know and set these values externally.

Input and output objects are declared explicitly in
the constructor. It is not clear why this is needed in
addition to the DataHandle constructors above.

The JANA equivalent to these properties are configuration
parameters. It is not clear if Gaudi expects to change these after
event processing has started, but in JANA they are not expected to
change. A comparable JANA call would be:

double m_minModuleEdep = 5.0 * MeV;
app->SetDefaultParameter(“minModuleEdep”, m_minModuleEdep, “...”);

Gaudi initialization method. This returns a value indicating if the
initialization succeeds or fails.

JANA initialization method. Unlike Gaudi, JANA does not emit
a return value. In JANA, Init() is only called at event
processing time if/when an algorithm is first used and so it is
assumed to be required. Fatal errors in the Init() method are
expected to emit errors to the logging service and to tell the
application to quit via a call to app->Quit(). One may also
explicitly set an exit code with app->SetExitCode(val).

Here, a string property of the class is used to determine if an
input container should be made for MC hits.

This is the top of the execute() method which is called for every
event for which the algorithm is active. The first lines are used to get
the inputs for the algorithm and to create the output containers for
the algorithm.

This mechanism uses the existence of a container that may or may
not have been created in the init() method to determine whether to
get the actual hits into the container.

JANA method that is called for every event.

Input objects obtained as vector<const DFCALHit*> calohits

Algorithm creates cluster objects and “Inserts” them into the event using
the Insert() method. One could also fill a local std::vector<> of pointers
and publish those with the Set() method.

If the DFCALCluster class inherits from JObject, then the
AssociatedObject mechanism can be used. This allows the framework to
know about which hit objects were used to make the cluster.

Here is a comparison with Fun4All. This is taken from the following:

https://github.com/ECCE-EIC/coresoftware/blob/master/offline/packages/CaloReco/RawClusterBuilderFwd.h

I wanted to use another calorimeter clustering algorithm and this was the best I could locating with a quick
search.

To start with, I should note that some of the code dealing with this is spread over a few classes:

RawClusterDefs
RawCluster
RawClusterContainer
RawClusterBuilderFwd

Namespace. Defines RawClusterDefs::keytype
Inherits from PHObject
Inherits from PHObject
Inherits from SubsysReco

https://github.com/ECCE-EIC/coresoftware/blob/master/offline/packages/CaloReco/RawClusterBuilderFwd.h

This is just a namespace used to define the keytype used for the
RawCluster objects. Presumably this is useful for object persistence
since the unique id can be reproduced if the data were replayed.

JANA has removed support for object ids in JANA2. This is
due to almost never being used in JANA1. This is likely due to
the heavy use of pointers which also provide unique ids within
the event, but don’t require lookup tables to get at the object
data.

The RawClusterContainer class is interesting because it really
serves as a customized container class for RawCluster objects. It
has several methods like AddCluster, getCluster, getClusters, …
that include the word “cluster” in their names. These do not seem to
be doing anything special that any other container class would not
already be doing. It is unclear why a more general (templated)
container class is not used which could provide more uniformity in
the code.

n.b. getTotalEdep() looks to be the only method that has
functionality that would not be provided by a generic container
class.

In JANA, the JFactory (i.e. algorithm) class that produces the
data objects owns them and serves the combined purpose of the
RawClusterContainer and RawClusterBuilderFwd classes. The
JFactory class is actually a template itself where the template
parameter is the specific type of primary data object the factory
produces.
n.b. More than one object type can be produced by a JFactory.
The supplementary types would use Insert() to add them to the
event and would no longer be owned by the factory. This would
make no difference to the end user. The emphasis on having a
factory produce a single, primary object type is meant to
encourage modularity in the overall design by having more,
smaller algorithms.

