Reflections on Supergravity

celebrating Pietro Fré

Università degli Studi di Torino, 7 October 2022

Hermann Nicolai MPI für Gravitationsphysik, Potsdam (Albert Einstein Institut)

bla

A common thread

- Geometry, Symmetries and Supergravity
- First encounter in Erice (1981): highlighting the 'Torino approach' to supergravity!

Our only joint work

Class. Quantum Grav. 2 (1985) 133-145. Printed in Great Britain

Multiplet structure and spectra of N = 2 supersymmetric compactifications

A Ceresole†§, P Fré‡ and H Nicolai‡

† Istituto di Fisica Teorica Università di Torino, Italy ‡ CERN, Geneva, Switzerland

Received 13 September 1984

Abstract. We use properties of the Osp(2, 4) algebra to determine the spectra of N = 2 supersymmetric compactifications. The correspondence with the results obtained by harmonic expansions is established.

Supergravity

When supergravity was discovered in 1976 [Ferrara,Freedman,van Nieuwenhuizen(1976);Deser,Zumino(1976)] it came with great expectations:

- Perturbatively finite quantum gravity?
- Unification of fundamental interactions?

How have these expectations worked out after 46 years? \rightarrow enormous progress on many fronts but still no hint from experiment or observation whether and how Nature might make use of this theoretical framework.

In this talk: a personal (and perhaps unconventional) perspective on the present state of the art.

N=8 supergravity: to be or not to be?

Goroff-Sagnotti counterterm (for pure gravity) does not admit superextension, but supersymmetric counterterm exists at three loops \rightarrow no hope for an 'easy' proof of finiteness! Nevertheless:

We now know that N = 8 supergravity is more finite than expected: behaves like N = 4 super-Yang-Mills up to four loops [Bern, Carrasco, Dixon, Johansson, Roiban, PRL103(2009)081301]

• However: recent computation at five loops shows divergence at $D = \frac{24}{5} = 2 + \frac{14}{L} < \frac{26}{5} = 4 + \frac{6}{L}$ (for L = 5) [Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, PRD98(2018)086021]

Although no fully supersymmetric and fully $E_{7(7)}$ invariant counterterm known, finiteness would probably still require novel (so far hidden) symmetries...

Thus: question of finiteness is still up in the air!

Superstring Finiteness?

Superstring: $N=1(\frac{1}{2})$ conformal supergravity in D=2!The string magic: quantum gravity path integral reduces to (sum over) *finite*-dimensional integrals:

amplitude =
$$\sum_{g \ge 0} g_s^{2-2g} \int_{(\mathcal{S})\mathcal{M}_{g,n}} d\mu_{g,n} \langle V_1(P_1) \cdots V_n(P_n) \rangle_{\Sigma_g}$$

where

- $\langle \cdots \rangle = \mathbf{CFT}$ correlator on Riemann surface Σ_g of genus g
- $(S)M_{g,n}$ = moduli or supermoduli space of *n*-punctured Riemann surface of genus *g* with suitable measure $d\mu_{g,n}$.

No UV divergences, but in presence of tachyons there are IR divergences \equiv integral over $\mathcal{M}_{g,n}$ does not converge at cusp(s) \Leftrightarrow supersymmetry is essential!

Depending on your point of view question of finiteness remains unsettled, especially noting that supersymmetry must be broken.

Phenomenology: early (failed) attempts

- 1. Focus on vector-like $SU(3) \times U(1) \subset SO(8)$, with identifications $SU(3) \equiv SU(3)_c$ and $U(1) \equiv U(1)_{em}$ [Gell-Mann(1978)] \rightarrow does not work: color sextets and octets
- 2. Following a suggestion by Cremmer and Julia: elevate (chiral) R symmetry SU(8) to a *dynamical* symmetry $\rightarrow 3 \times (\bar{5} \oplus 10)$ fermions of SU(5) GUT + much more [Ellis,Gaillard,Zumino(1981)]

Prevailing view (since about 1982): N=8 supergravity is *obviously not* a good candidate for quantum gravity and the unification of all interactions!

Alternatively (\rightarrow Pietro's work!)

- Compactification of D = 11 SUGRA [Freund, Rubin(1982)]
- \mathcal{M}_{pqr} spaces and $SU(3) \times SU(2) \times U(1)$ symmetry [Castellani, D'Auria, Fré, NPB239(1984)610]
- But: chiral fermions? Huge negative cosmological constant?
- \rightarrow no obvious path to Standard Model physics !

The Heterotic String (1985)

"... Although much work remains to be done there seem to be no insuperable obstacles to deriving all of known physics from the $E_8 \times E_8$ heterotic string."

[Gross, Harvey, Martinec, Rohm, Nucl. Phys. B256(1985)253]

"We study candidate vacuum configurations in ten-dimensional O(32) and $E_8 \times E_8$ supergravity and superstring theory that have unbroken N = 1 supersymmetry in four dimensions. This condition *permits only a few possibilities*, all of which have vanishing cosmological constant..."

[Candelas, Horowitz, Strominger, Witten, NPB258(1985)46]

So the hope for an (almost) *unique* path from the $E_8 \times E_8$ heterotic string to the Standard Models of particle physics and cosmology, and thus to our four-dimensional real world, was clearly there....

A huge step away from uniqueness

Following [Narain(1985)]: Chiral Four-Dimensional Heterotic Strings from Selfdual Lattices [Lerche,Lüst,Schellekens, NPB287(1987)477]

 \rightarrow Proliferation of string vacua via lattice compactifications!

... all of which lead to different physics (gauge groups, particle multiplets, *etc.*) in 4D low energy world.

Meanwhile this number has gotten even larger: flux compactifications, orbi- and orientifolds, brane constructions, F theory,...

- Big Numbers in String Theory [A.Schellekens,1601.02462 [hep-th]]
- Scanning the skeleton of the 4D F-theory landscape [W.Taylor,Y.N.Wang, JHEP 01 (2018) 111] $\rightarrow 10^{272000}$ vacua? Or even more?

Current strategy: try to recover SM physics with some extension of MSSM, with N = 1 low energy supersymmetry motivated by hierarchy problem. But problems remain, in particular:

- Extra ingredients (superpartners, additional multiplets,...).
- No fully satisfactory mechanism to break supersymmetry.

(No) News from LHC

Exclusion limits, nothing but exclusion limits, ...

- No hints whatsoever of new physics
- RG Evolution of (slightly amended) SM couplings: no Landau poles, no instabilities of effective potential up to Planck scale

Conclusion (so far, at least): Standard Model could survive more or less *as is* all the way to Planck scale !

A strange coincidence?

 $SO(8) \rightarrow SU(3) \times U(1)$ breaking and 'family-color locking'

$(u,c,t)_L$:	$3_c imes ar{3}_f o 8 \oplus 1 \; ,$	$+\frac{1}{2} = \frac{2}{3} - q$
$(ar{u},ar{c},ar{t})_L$:	$ar{3}_c imes 3_f o 8 \oplus 1 \; ,$	$-\frac{1}{2} = -\frac{2}{3} + q$
$(d,s,b)_L$:	$3_c imes 3_f ightarrow 6 \oplus ar{3} \; ,$	$-\frac{1}{6} = -\frac{1}{3} + q$
$(\bar{d},\bar{s},\bar{b})_L$:	$ar{3}_c imes ar{3}_f ightarrow ar{6} \oplus 3 \; ,$	$+\frac{1}{6} = \frac{1}{3} - q$
$(e^-,\mu^-,\tau^-)_L$:	$1_c imes 3_f ightarrow 3 \; ,$	$-\frac{5}{6} = -1 + q$
$(e^+,\mu^+,\tau^+)_L$:	$1_c imes ar{3}_f ightarrow ar{3}$,	$+\frac{5}{6} = 1 - q$
$(u_e, u_\mu, u_ au)_L$:	$1_c imes ar{3}_f ightarrow ar{3}$,	$-\frac{1}{6} = 0 - q$
$(ar u_e,ar u_\mu,ar u_ au)_L$:	$1_c imes 3_f ightarrow 3 \; ,$	$+\frac{1}{6} = 0 + q$

Realized at $SU(3) \times U(1)$ stationary point with residual unbroken N=2 supersymmetry [Warner,HN, NPB259(1985)412] Supergravity and Standard Model assignments agree if spurion charge is chosen as $q = \frac{1}{6}$ [Gell-Mann (1983)]

Fixing the U(1) mismatch

[Meissner,HN: Phys.Rev.D91(2015)065029] Spurion charge shift can be realised as $\exp(\frac{1}{6}\omega \mathcal{I})$ with

$$\mathcal{I} = \frac{1}{2} \left(T \wedge \mathbf{1} \wedge \mathbf{1} + \mathbf{1} \wedge T \wedge \mathbf{1} + \mathbf{1} \wedge \mathbf{1} \wedge T + \mathbf{T} \wedge \mathbf{T} \wedge \mathbf{T} \right) \quad \Rightarrow \quad \mathcal{I}^2 = -\mathbf{1}$$

acting on 56 fermions χ^{ijk} in 8 \wedge 8 \wedge 8 of SU(8), with

However: \mathcal{I} not in SU(8) $\equiv K(E_7) \Rightarrow$ mismatch can not be fixed within N = 8 supergravity \rightarrow requires going all the way to $K(E_{10})$ (and thus E_{10} !) [Kleinschmidt, HN: PLB747(2015)] Idea: N=8 supergravity not quite but 'almost' right...

Curious Gravitinos

Gravitinos are the telltale signature of supergravity! Under $SU(3)_c \times U(1)_{em}$ gravitinos transform as

$$\left(\mathbf{3}_{c},\frac{1}{3}\right)\oplus\left(\bar{\mathbf{3}}_{c},-\frac{1}{3}\right)\oplus\left(\mathbf{1}_{c},\frac{2}{3}\right)\oplus\left(\mathbf{1}_{c},-\frac{2}{3}\right)$$

Unusual features: [K.Meissner,HN:PRD100(2019)035001]

- Spurion shift of electric charges must be included
- strong and electromagnetic interactions \rightarrow very different from N=1 MSSM gravitinos!
- stable against decay into SM matter because of peculiar quantum numbers \Rightarrow (superheavy) Dark Matter candidates?
- Possibly interesting (real physics!) applications: UHECRs and seeds for primordial black holes?

Explaining UHECRs?

[K.Meissner, HN: JCAP1909(2019)041]

New mechanism: color triplet gravitinos could explain observed UHECR events via gravitino-antigravitino annihilation in the 'skin' of neutron stars, provided

- Gravitinos (or 'gravimesons') get absorbed into stars ...
- ... and get 'compressed' in neutron stars so as to enable them to annihilate in appreciable rates

New features:

- Annihilation of Planck mass particles into 10^6 (mostly hadronic) particles $\rightarrow 10^{-6} \times 10^{18} \, \text{GeV} \sim 10^{21} \, \text{eV}$ per ejectum
- Ejection from 'skin' of neutron star could explain observed dominant appearance of ions towards very highest energies
- with some 'reasonable' assumptions calculated event rates come close to the ones observed at Pierre Auger Observatory (in Argentina) \sim one UHECR event per month and per 3000 km².

Hints of supergravity from neutron stars?

[Diagram from: R.N.Wolf et al., PRL110(2013)041101]

Outlook

- Supergravity is a beautiful theoretical framework it is hard to believe that Nature would not make use of it (cf. Yang-Mills theory in the 50ies.)
- But ultimate framework not clear: IIA, IIB and heterotic superstrings not the most symmetric (maximally extended) worldsheet theories

 \rightarrow is supermembrane theory a better ansatz?

Outlook

- Supergravity is a beautiful theoretical framework it is hard to believe that Nature would not make use of it (cf. Yang-Mills theory in the 50ies.)
- But ultimate framework not clear: IIA, IIB and heterotic superstrings not the most symmetric (maximally extended) worldsheet theories

 \rightarrow is supermembrane theory a better ansatz?

Caro Pietro: grazie per i tanti anni di amicizia e di inspirazione – ti auguro ogni bene per il futuro!