Supergravity, Geometry, AdS/CFT ...and Pietro Fré

Dario Martelli

Università di Torino

Gravity, Geometry and Symmetry

Dipartimento di Fisica - Università degli Studi di Torino

Torino, 7 October 2022

< □ > < 同 > < 回 > < 回 > < 回 >

A very biased recollection of some of Pietro's contributions to supergravity, geometry, the AdS/CFT correspondence...

...and his influence on my research and career

< (17) > < (27 >)

The beginning (for me)

- Fall 1997: I start my PhD at SISSA, missing by a couple of years to cross paths with Pietro... meanwhile Maldacena invents the AdS/CFT correspondence
- \bullet Claim: type IIB string theory on $\mathsf{AdS}_5 \times \textbf{\textit{S}}^5$ is $\mathcal{N}=4$ SYM in a limit
- One of the first spectacular tests passed by this bold claim is that the conformal dimensions of an infinite set of chiral operators in $\mathcal{N} = 4$ SYM match with the spectrum of KK harmonics in $\mathrm{AdS}_5 \times S^5$
- This was calculated in 1985 by [Kim,Romans,van Nieuwenhuizen]
- The AdS/CFT correspondence had revived interest in supergravity, Anti de Sitter and Kaluza-Klein spectroscopy

First attempts at extending the AdS/CFT correspondence

- 1998: Klebanov and Witten write a seminal paper which generalises Maldacena's first proposal in a highly non-trivial way
- Type IIB on ${\sf AdS}_5 imes {\mathcal T}^{1,1}$ is dual to a ${\mathcal N}=1$ quiver gauge theory
- Relation to interesting geometry:
 - T^{1,1} is a homogeneous Sasaki-Einstein manifold ↔ the cone C(T^{1,1}) is a singular algebraic variety {z₁² + z₂² + z₃² + z₄² = 0 ⊂ C⁴}, admitting a Ricci-flat Kähler metric → a Calabi-Yau cone
 - The moduli space of the Klebanov-Witten gauge theory reproduces exactly the same singular algebraic variety
 - **3** Both $T^{1,1}$ and $C(T^{1,1})$ are "toric" \rightarrow toric geometry
- A non-trivial test of this proposal was performed a year later by [Ceresole,Dall'Agata,D'Auria,Ferrara]: worked out the complete KK spectrum on *T*^{1,1} and matched this to dimensions of operators constructed with the fields of the Klebanov-Witten model

Extensions to M theory*

- KW suggest that any supersymmetric compactification of D = 11supergravity, of the type AdS₄ × Y₇ where Y₇ is a Sasaki-Einstein manifold must be dual to some d = 3 SCFT with $\mathcal{N} = 2$
- In particular, the last sentence of the KW paper reads

nontrivially on the canonical line bundle of the conifold. We hope it will be possible to construct a three-dimensional field theory corresponding to M2-branes on (38).

where

$$\{z_1^2 + z_2^2 + z_3^2 + z_4^2 + z_5^2 = \mathbf{0} \subset \mathbb{C}^5\}$$
(38)

- The base of this cone is a Sasaki-Einstein 7-manifold called $V_{5,2}$
- However, the situation was awkward: how were we supposed to figure out the SCFT dual of $V_{5,2}$ or other Sasaki-Einstein manifolds, if we didn't even understand the dual of S^7 ?!

*Title of section 4 of the Klebanov-Witten paper

A D N A B N A B N A B N

M theory compactifications

• List of all the known (in 1999) $AdS_4 \times Y_7$ solutions, where Y_7 is weak G_2 , Sasaki-Einstein, or 3-Sasakian: table from [Duff,Nilsson,Pope] (1986)

4	M.J. Duff et al., Kaluza-Klein supergravity					
		Table	Table 6			Leter we shall conside
T	Solution	G	ж	N	<i>b</i> ₂	Stable?
albei ett	Round S ⁷	SO(8)	1	8	0	Yes
	Squashed S7	SO(5) × SU(2)	G ₂	1	0	Yes
	$S^5 \times S^2 = M(1, 0)$	SU(4) × SU(2)	SO(7)	0	1	No
	$S^4 \times S^3$	$SO(5) \times SU(2) \times SU(2)$	SO(7)	0	0	No
	$S^2 \times S^2 \times S^3 = Q(0, 0, 1)$	[SU(2)] ⁴	SO(7)	0	2	No
	$S^2 \times T_1 S^3 = Q(0, 1, 1)$	$[SU(2)]^3 \times U(1)$	SO(7)	0	2	No
	Twisted	1011011 1101	000	0	-	No
	$(S^2 \times S^2) \times S^3$	$[SU(2)]^3 \times U(1)$	SO(7)	0	2	No
	$CP^2 \times S^3 = M(0, 1)$	$SU(3) \times SU(2) \times SU(2)$	SO(7)	0	1	NO
+	$SU(3) \times S^2$	SU(3) × SU(2)	SO(7)	0	10 000	No
	SO(3)max	30(3) ~ 30(2)	50(1)			
	SO(5)		-		0	Yes
	SO(3)max	SO(5)	G ₂	1	0	res
		SO(5) × U(1)	SU(3)	2	0.	Yes
A CONTRACTOR OF A CONTRACTOR O	V _{5,2} M(3, 2)	$SU(3) \times SU(2) \times U(1)$	SU(3)	2	1	Yes .
I	M(3, 2) M(m, n)	$SU(3) \times SU(2) \times U(1)$	SO(7)	0	1	See below
		$[SU(2)]^3 \times U(1)$	SU(3)	2	2	Yes
and the second second	Q(1, 1, 1)	$[SU(2)]^3 \times U(1)$	SO(7)	0	2	See below
	Q(p,q,r)	$SU(3) \times SU(2)$	SU(2)	3	1	Yes
-	$N(1, 1)_{I}$	SU(3) × SU(2)	G2	1	1	Yes
	N(1, 1)11	SU(3) × U(1)	G2 G2	1	1	Yes
	$N(k, l)_{I, II}$		02	8	21	Yes
	T^7 K3×T ³	[U(1)] ⁷ [U(1)] ³	1 SU(2)	4	21	Yes

From KK spectroscopy to extensions of AdS/CFT

- For $AdS_4 \times Y_7$ solutions, where Y_7 is one of the three homogeneous Sasaki-Einstein manifolds, the KK spectra where worked out in Torino!
 - In 1985: [Castellani,D'Auria,Fré,Pilch,van Nieuwenhuizen] for $Y_7 = M^{3,2}$
 - In 1999: a second [Ceresole,Dall'Agata,D'Auria,Ferrara] for $Y_7 = V_{5,2}$
 - In 2000: [Merlatti] for $Y_7 = Q^{1,1,1}$
- In 1999 Pietro and his collaborators write an important paper, that will have an enduring impact on the AdS/CFT correspondence, as well as on my research throughout my academic life!
- They proposed three-dimensional quiver gauge theories dual to the Sasaki-Einstein manifolds $M^{3,2}$ and $Q^{1,1,1}$
- Their paper anticipated several key ingredients that were crucial for the developments that occurred in the next decade

イロト 不得 トイラト イラト 一日

AdS/CFT, Sasakian geometry, etcetera

3D superconformal theories

from Sasakian seven-manifolds:

new nontrivial evidences for AdS_4/CFT_3 *

Davide Fabbri¹, Pietro Fré¹, Leonardo Gualtieri¹, Cesare Reina²,

Alessandro Tomasiello², Alberto Zaffaroni³ and Alessandro Zampa²

¹ Dipartimento di Fisica Teorica, Universitá di Torino, via P. Giuria 1, I-10125 Torino, Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Torino, Italy

² International School for Advanced Studies (ISAS), via Beirut 2-4, I-34100 Trieste

³ CERN, Theoretical Division, CH 1211 Geneva, Switzerland,

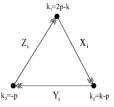
Abstract

In this paper we discuss candidate superconformal $\mathcal{N} = 2$ gauge theories that realize the AdS/CFT correspondence with M-theory compactified on the homogeneous Sasakian 7-manifolds M^7 that were classified long ago. In particular we focus on the two cases $M^7 = Q^{1,1,1}$ and $M^7 = M^{1,1,1}$, for the latter the Kaluza Klein spectrum being completely known. We show how the toric description of M^7 suggests the gauge group and the supersingleton fields. The conformal dimensions of

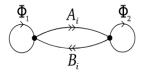
(日)

An inspiration for my future research...

- 2000: I was in my final year of the PhD, learning about the AdS/CFT correspondence and trying to generalise Maldacena's proposal...
- Pietro's paper caught my attention and I tried to understand what they were saying.. with limited success..
- The same year [Billó,Fré,Merlatti,Zaffaroni] write another paper discussing a proposal for an $\mathcal{N} = 3$ quiver theory dual to the 3-Sasakian manifold $N^{1,1}$
- I remember spending time trying to match the baryonic operators of their theory to the geometry of N^{1,1}, getting a mismatch by a factor...

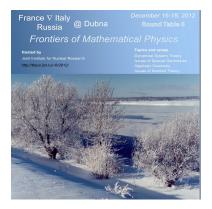

Some of my later contributions...

- Constructed new infinite families of Sasaki-Einstein manifolds (2004)
- Constructed infinite families of d = 4, $\mathcal{N} = 1$ (toric) quiver gauge theories dual to Sasaki-Einstein 5-manifolds (2004-2005)
- Sasakian geometry: volume extremization; interpreted as dual to *a*-maximization for d = 4, $\mathcal{N} = 1$ SCFTs \rightarrow predicted *F*-extremization for d = 3, $\mathcal{N} = 2$ SCFTs (2005-2006)
- Constructed new infinite families of asymptotically conical Ricci-flat Kähler metrics on (partial) resolutions (2007)
- Studied the moduli space of *d* = 3, *N* = 2, Chern-Simons matter theory → relation to Calabi-Yau four-folds → AdS₄/CFT₃ (2008)


(日)

Some of my later contributions...

• Constructed infinite families of d = 3, $\mathcal{N} = 2$ (toric) quiver gauge theories dual to Sasaki-Einstein 7-manifolds, including a new proposal for $Y_7 = M^{3,2}$ (p = 2, k = 3 in the figure below) (2008)

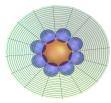


• Constructed the d = 3, $\mathcal{N} = 2$ quiver gauge theory dual to the Sasaki-Einstein 7-manifold $Y_7 = V_{5,2}$ (2009)

Crossing paths with Pietro...

- Pietro's work has been characterized by deep geometric insights [cf. other contributions at this conference]. For example, his well-known paper on "Geometric supergravity in *D* = 11" [D'Auria, Fré] (1982)
- Possibly the first time met Pietro it was in Dubna in December 2012

Crossing paths with Pietro...


- I also recall quite clearly my talk at the conference "Supergravity at 40" at the GGI, where I spoke about supergravity, Sasakian geometry, etcetera in front of Pietro and some other "fathers" of our field...
- In the following years Pietro continued to work, among other things, on Calabi-Yau singularities and their use in holography:
 - A new class of supersymmetric M2-branes solutions of D = 11 supergravity [Fré] (2016)
 - Study of Kähler quotient resolution of C³/Γ Calabi-Yau singularities (generalized Kronheimer construction) in relation to d = 3, N = 2 Chern–Simons theories [Bruzzo,Fino,Fré] (2017)
 - Crepant resolutions of the C³/Z₄ singularity and application to the gauge/gravity duality [Bruzzo,Fino,Fré,Grassi,Markushevich] (2019)

...

イロト 不得 トイヨト イヨト 二日

Back to the present

- In 2018 (while I was in sabbatical at GGI), Pietro asked me if I would consider moving to Torino, specifically in the maths department
- I thought it was a great opportunity and a year later I moved!
- We started* a fun collaboration with Pietro, Ugo and Massimo, that led to the construction of new asymptotically conical Ricci-flat Kähler metrics on a (partial) resolution of the $\mathbb{C}^3/\mathbb{Z}_4$ singularity

*Unfortunately, a few months after I moved to Torino, a global pandemic hit the planet!

イロト イヨト イヨト

Conclusions

Dario Martelli (UNITO)

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Conclusions

Thank you, Pietro!

< □ > < 同 > < 回 > < 回 > < 回 >

э