Embedded Symmetry

Ewp $6 q q \in q$ 2入wueflı

«Gravity, Geometry and Symmetry»
A celebration for Pietro Frè's 70's
October 72022
Mario Trigiante
(Politecnico di Torino)

Truly hard even to mention, in this short time, all Pietro Frè's past and present contributions to theoretical physics and his multifaceted cultural interests

My work with Pietro

- Pietro was my PhD supervisor at SISSA-ISAS (Trieste, 1995-1997) on a project originally on T-algebras in supergravity
- The sense of beauty as his driving force to unveil symmetry
- A fruitful collaboration on several subjects (except T-algebras....)
- Focus only on one subject...

A Fruitful Idea...

- One of the topics we have been working on is gauged supergravities
- Ungauged extended sugras: Characteristic global symmetry group G, no scalar potential (physically uninteresting)
- Gauging a suitable subgroup G_{g} of G in order to introduce a scalar potential (gauging)
- Gain in physical content, loose global invariance under G (superstring dualities)
> Can we formulate the conditions for a viable G_{g} in terms of scalar independent G-covariant conditions?
> Can we formally restore global G-invariance in the gauged theory?

The embedding matrix

- In 1998 a partial solution was found for $\mathrm{G}=\mathrm{SL}(8)$ in $\mathrm{N}=8 \mathrm{D}=4$: the embedding matrix...
- Encode all information about the gauge algebra in a G-covariant tensor (embedding matrix)

$$
\mathcal{D}_{\mu} \Phi=\left(\partial_{\mu}-g A_{\mu}^{M} X_{M}\right) \Phi
$$

 $\mathcal{D}_{\mu} \Phi=\left(\partial_{\mu}-g A_{\mu}^{M} X_{M}\right) \Phi$
$X_{M}=\Theta_{M}^{\alpha} t_{\alpha} \quad t_{\alpha} \in \operatorname{Lie}(G)$

$$
X_{M}=\Theta_{M}^{\alpha} t_{\alpha} \quad t_{\alpha} \in \operatorname{Lie}(G)
$$

$>$ Reduce consistency constraints on G_{g} (closure of the gauge algebra and SUSY) to constant, G-covariant conditions on Θ
$>$ Formally restore global G-invariance of the theory, provided Θ is transformed under G with all the other fields

$$
\begin{aligned}
& N=8 \text { gaugings revisited: } \\
& \text { an exhaustive classification * } \\
& \text { Francesco Cordaro }{ }^{\text {a,b }} \text {, Pietro Fré }{ }^{\mathrm{a}, \mathrm{~b}} \text {, Leonardo Gualtieri }{ }^{\text {a,b }} \text {, } \\
& \text { Piet Termonia }{ }^{\mathrm{a}, \mathrm{~b}} \text {, Mario Trigiante }{ }^{\mathrm{c}} \\
& \text { a Dipartimento di Fisisa Teorica, Universitá di Torino, via P. Giuria 1, I-10125 Torino, Italy } \\
& { }^{\mathrm{b}} \text { Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Torino, Torino, Italy } \\
& { }^{\text {c }} \text { Deparment of Physics, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK } \\
& \text { Received } 21 \text { April 1998; accepted } 27 \text { May } 1998 \\
& \text { Next let us introduce the fundamental item in the gauging construction. It is the } \\
& 28 \times 63 \text { constant embedding matrix: } \\
& -\mathcal{E} \equiv e_{\Lambda \Sigma}^{\alpha} \\
& \text { (36) } \\
& \text { ransforming under } \operatorname{SL}(8, \mathbb{R}) \text { as its indices specify, namely in the tensor product of the } \\
& \text { adjoint with the antisymmetric } 28 \text { and that specifies which generators of } \operatorname{SL}(8, \mathbb{R}) \text { are }
\end{aligned}
$$

The embedding matrix

- In 1998 a partial solution was found for $\mathrm{G}=\mathrm{SL}(8)$ in $\mathrm{N}=8 \mathrm{D}=4$: the embedding matrix...
- Encode all information about the gauge algebra in a G-covariant tensor (embedding matrix)

$$
\begin{aligned}
& \mathcal{D}_{\mu} \Phi=\left(\partial_{\mu}-g A_{\mu}^{M} X_{M}\right) \Phi \\
& \quad X_{M}=\Theta_{M}^{\alpha} t_{\alpha} \quad t_{\alpha} \in \operatorname{Lie}(G)
\end{aligned}
$$

- Extension to a tensor with respect to the fully-fledged global symmetry group of the theory first done in $\mathrm{D}=3$ maximal theory, $\mathrm{G}=\mathrm{E}_{8(8)}$ [H. Nicolai and H. Samtleben, Phys. Rev. Lett. 86 (2001), 1686-1689]
- Then in $\mathrm{D}=4$ and $\mathrm{D}=5$ theories, etc.
[B. de Wit, H. Samtleben and M.T., hep-th/0212239; hep-th/0412173; hep-th/0507289; 0705.2101]
- Physical meaning of the embedding tensor: background quantities in superstring/M-theory comapctifications

Compact Internal manifold

- Further related progress: tensor hierarchy
[B. de Wit, H. Samtleben, hep-th/0501243; B. de Wit, H. Nicolai, H. Samtleben, 0801.1294, 0805.4767]
- New «dyonic» gaugings
[G. Dall'Agata, G. Inverso, 1112.3345; G. Dall'Agata, G. Inverso, M.T. , 1209.0760 ; G. Dall'Agata, G. Inverso, A. Marrani, 1405.2437; H. Samtleben, A. Gallerati, M.T., 1410.0711; etc.]

Type IIB S-Folds from D=4 SUGRA

- Maximal SUGRA with gauge group

$$
\mathcal{G}=[\mathrm{SO}(6) \times \mathrm{SO}(1,1)] \ltimes N^{(6,2)}
$$

embedded in Type IIB through ExFT [G. Inverso, H. Samtleben, M.T., 1612.05123]

- Its vacua uplifted to special S-fold solutions.

Type IIB S-Folds from D=4 SUGRA

- Maximal SUGRA with gauge group

$$
\mathcal{G}=[\mathrm{SO}(6) \times \mathrm{SO}(1,1)] \ltimes N^{(6,2)}
$$

embedded in Type IIB through ExFT [G. Inverso, H. Samtleben, M.T., 1612.05123]

- Its vacua uplifted to special S-fold solutions.

S-fold solutions: non-geometric b.g.s featuring transition functions which involve duality transformation in SL(2,Z) $)_{I B}$
[C.Hull, A. Çatal-Özer, 0308133; C. Hull, 0406102]

- In our case S-folds have topology $\mathrm{AdS}_{4} \times \widetilde{S}^{5} \times S^{1}$

Type IIB S-Folds from D=4 SUGRA

- Maximal SUGRA with gauge group

$$
\mathcal{G}=[\mathrm{SO}(6) \times \mathrm{SO}(1,1)] \ltimes N^{(6,2)}
$$

embedded in Type IIB through ExFT [G. Inverso, H. Samtleben, M.T., 1612.05123]

- Its vacua uplifted to special S-fold solutions.

S-fold solutions: non-geometric b.g.s featuring transition functions which involve duality transformation in SL(2,Z) IIB
[C.Hull, A. Çatal-Özer, 0308133; C. Hull, 0406102]

- In our case S-folds have topology $\mathrm{AdS}_{4} \times \widetilde{S}^{5} \times S^{1} \longrightarrow \begin{aligned} & \eta \rightarrow \eta+T \\ & \boldsymbol{\Psi} \rightarrow \mathfrak{M} \cdot \boldsymbol{\Psi}\end{aligned}$
- The monodromy \mathfrak{M} is a hyperbolic element of $\operatorname{SL}(2, Z)_{\mathrm{IB}} \quad \mathfrak{M}=J_{n}=-S T^{n}=\left(\begin{array}{cc}n & 1 \\ -1 & 0\end{array}\right) \in \underset{(n>2)}{\operatorname{SL}(2, \mathbb{Z})_{\mathrm{IIB}}}$

Type IIB S-Folds from D=4 SUGRA

- Maximal SUGRA with gauge group

$$
\mathcal{G}=[\mathrm{SO}(6) \times \mathrm{SO}(1,1)] \ltimes N^{(6,2)}
$$

embedded in Type IIB through ExFT [G. Inverso, H. Samtleben, M.T., 1612.05123]

- Its vacua uplifted to special S-fold solutions.

S-fold solutions: non-geometric b.g.s featuring transition functions which involve duality transformation in SL(2,Z) $)_{I B}$
[C.Hull, A. Çatal-Özer, 0308133; C. Hull, 0406102]

Type IIB S-Folds from D=4 SUGRA

- $N=4$ with symmetry $\mathrm{SO}(4)_{\mathrm{R}} \mathrm{J}$-fold
- $N=0 \& S O(6) ; N=1 \& S U(3) \mathrm{J}$-fold
- $N=2 \& S U(2) \times U(1)_{R} J$-fold
[vacuum found in H. Samtleben, A. Gallerati, M.T., 1410.0711; D=10 uplift in: G. Inverso, H. Samtleben, M.T., 1612.05123]
[A. Guarino, C. Sterckx, 1907.04177]
[A. Guarino, C. Sterckx, M.T., 2002.03692]
- $N=2 \& U(1) \times U(1)_{R}$ J-fold 1-parameter, KK spectrum
[vacua found in 2002.03692 ; D=10 uplift in: A. Giambrone, E.Malek, H. Samtleben, M.T., 2103.10797]
- $N=0 \& U(1)^{3}$ (3-param.s) ; $N=1 \& U(1)^{2}$ (2-param.s) J-folds and [vacua found in 2002.03692 ; $\mathrm{D}=10$ uplift in: A. Guarino, DWs
- $N=2 \& U(1) \times U(1)_{R}$ J-fold 2-parameters $(D=4$ vacuum, SUGRA and KK spectrum)
[N. Bobev, F. Gautason, J. van Muiden, 2104.00977; M. Cesaro, G. Larios, O. Varela, 2109.11608]
- $N=0 \& U(1) \times U(1)_{R}$ stable J-fold, 2-parameters ($\mathrm{D}=4 \quad$ [A. Giambrone, A. Guarino, E.Malek, H. Samtleben, C. Sterckx, vacuum and KK spectrum)
Type IIB S-Folds from D=5 SUGRA
- $\mathbf{N}=1, \mathbf{N}=\mathbf{2 \& U}(2)$: Bobev, F. Gautason, K. Pilch, M.Suh,J. van Muiden, 1907.11132, 2003.09154;
- $\mathrm{N}=4$ and $\mathrm{N}=2 \& \mathrm{U}(1) 2$ (1- param.s) J-folds and DWs: I. Arav, J.Gauntlett, M. Roberts, C. Rosen, 2103.15201

$\mathrm{N}=2$ S-Folds

Solution with $U(1) \times U(1)_{R}$ symmetry and 1 parameter χ (flat dir. of $V \longrightarrow$ exactly marginal deformation)

- Background geometry: $\quad \mathrm{AdS}_{4} \times \widetilde{S}^{5} \times S^{1}=\mathrm{AdS}_{4} \times S^{2} \times \widetilde{S}^{3} \times S^{1}$

$$
d s^{2}=\frac{1}{2} \Delta^{-1}\left(d s_{\mathrm{AdS}_{4}}^{2}+d s_{\mathrm{S}^{2}}^{2}+\cos ^{2}(\theta) d s_{\mathrm{S}^{3}}^{2}+d \eta^{2}\right) \quad \Delta \equiv(6-2 \cos (2 \theta))^{-\frac{1}{4}}
$$

$\mathrm{N}=2$ S-Folds

Solution with $U(1) \times U(1)_{R}$ symmetry and 1 parameter χ

Isometry $\mathrm{U}(1) \times \mathrm{U}(1)_{\mathrm{R}}$

- Background geometry: $\left.\quad \mathrm{AdS}_{4} \times \tilde{S}^{5} \times S^{1}=\mathrm{AdS}_{4} \times S^{2} \times \widetilde{S}^{3}\right) \times S^{1}$

$$
d s^{2}=\frac{1}{2} \Delta^{-1}\left(d s_{\mathrm{AdS}_{4}}^{2}+d s_{\mathrm{S}^{2}}^{2}+\cos ^{2}(\theta) d s_{\mathrm{S}^{3}}^{2}+d \eta^{2}\right) \quad \Delta \equiv(6-2 \cos (2 \theta))^{-\frac{1}{4}}
$$

$$
\begin{aligned}
& d s_{\mathrm{S}^{2}}^{2}=d \theta^{2}+\sin ^{2}(\theta) d \varphi^{2} \\
& d s_{\mathrm{S}^{3}}^{2}=\widehat{\sigma}_{2}^{2}+8 \Delta^{4}\left(\widehat{\sigma}_{1}^{2}+\widehat{\sigma}_{3}^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\hat{\sigma}^{1} \equiv \sigma^{1}+\chi(-\cos (\alpha) \cos (\beta) \cos (\gamma)+\sin (\alpha) \sin (\gamma)) \mathrm{d} \eta, \\
\hat{\sigma}^{2} \equiv \sigma^{2}-\chi(\sin (\alpha) \cos (\beta) \cos (\gamma)+\cos (\alpha) \sin (\gamma)) \mathrm{d} \eta, \\
\hat{\sigma}^{3} \equiv \sigma^{3}+\chi \cos (\gamma) \sin (\beta) \mathrm{d} \eta . \\
d \sigma^{\mathrm{x}}-\epsilon^{\mathrm{xyz}} \sigma^{\mathrm{y}} \wedge \sigma^{z}=0
\end{gathered}
$$

Internal coord.s $y^{a}=\left(y^{i}, \eta\right)=(\theta, \phi, \underbrace{\alpha, \beta, \gamma}, \eta)$

$$
S^{2} \quad \tilde{S}^{3} \quad S^{1}
$$

$\mathrm{N}=2$ S-Folds

Solution with $U(1) \times U(1)_{R}$ symmetry and 1 parameter χ
\widetilde{S}^{3} isometry
The parameter $\boldsymbol{\chi}$ induces a second twist: $\mathbf{h}(\eta)=e^{2 \chi \mathbf{H} \eta} \in U(1) \in S \cup(2)$ defining a fibration of the 3 -sphere over S^{1}

$$
\chi=0
$$

$$
\begin{aligned}
& \chi \neq 0 \quad \begin{array}{l}
\hat{g}[\alpha, \beta, \gamma, \eta]=h(\eta) \cdot g[\alpha, \beta, \gamma] \in \operatorname{SU}(2) \\
\\
\\
\\
\\
\\
\\
\\
S^{1} \text { affecally: } \hat{g}[\alpha, \beta, \gamma, \eta]=g\left[\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right]
\end{array}
\end{aligned}
$$

$\mathrm{N}=2$ S-Folds

Solution with $U(1) \times U(1)_{R}$ symmetry and 1 parameter χ
\widetilde{S}^{3} isometry
The parameter $\boldsymbol{\chi}$ induces a second twist: $\mathbf{h}(\eta)=e^{2 \chi \mathbf{H} \eta} \in \mathbf{U}(1) \in S \cup(2)$ defining a fibration of the 3 -sphere over S^{1}

$$
\begin{aligned}
& \chi=0 \\
& \cdots \rightarrow[\alpha, \beta, \gamma] \in \operatorname{SU}(2) \\
& \mathrm{SU}(2) \rightarrow g[\alpha, \beta, \gamma] \leftarrow \mathrm{U}(1)_{\mathrm{R}} \\
& \chi \neq 0 \\
& \hat{g}[\alpha, \beta, \gamma, \eta]=h(\eta) \cdot g[\alpha, \beta, \gamma] \in \operatorname{SU}(2) \\
& \widetilde{S}^{3} \ltimes S^{1} \equiv \widetilde{S}^{3} \times[0, T] / \sim \\
& {[g(\alpha, \beta, \gamma), \eta=0] \sim[\underbrace{h(T)} \cdot g(\alpha, \beta, \gamma), \eta=T]}
\end{aligned}
$$

$\mathrm{N}=2$ S-Folds

Global properties of the parameter $\chi: \quad \chi \in\left[0, \frac{2 \pi}{T}\right)$

- Write the 3-sphere as a Hopf fibration over S^{2}. The Hopf-fiber and S^{1} combine in a torus so that $\widetilde{S}^{3} \ltimes S^{1}$ can be written as an elliptic fibration over S^{2}

$$
T^{2}-\hat{\tau}=\frac{i}{4 \pi}-\frac{1}{2 \pi} \chi T \quad \text { (} \chi \text { part of a complex structure parameter) } \quad z=\frac{\psi}{4 \pi}+\hat{\tau} \frac{\eta}{T}, \quad 0 \leq \psi<4 \pi
$$

$$
\chi \rightarrow \chi+\frac{2 \pi}{T} \Rightarrow \hat{\tau} \rightarrow \hat{\tau}-1 \quad \text { (Dehn twist) }
$$

$\mathrm{N}=2$ S-Folds

Global properties of the parameter $\boldsymbol{\chi}: \quad \chi \in\left[0, \frac{2 \pi}{T}\right)$

- Write the 3 -sphere as a Hopf fibration over S^{2}.The Hopf-fiber and S^{1} combine in a Torus so that $\widetilde{S}^{3} \ltimes S^{1}$ can be written as an elliptic fibration over S^{2}

$$
\chi \rightarrow \chi+\frac{2 \pi}{T} \Rightarrow \hat{\tau} \rightarrow \hat{\tau}-1 \quad \text { (Dehn twist) }
$$

- Same global property of conformal manifold found from KK spectrum computed within the framework of ExFT [E. Malek, H. Samtleben, 1911.12640]. Grouped KK states in OSp(2|4) supermultiplets.

$\mathrm{N}=2$ S-Folds

KK spectrum

- Conformal dimension for a spin-J state in a representation [k] of $\operatorname{SU}(2)$

$$
\begin{aligned}
& \Delta=\frac{1}{2}+\sqrt{\frac{17}{4}+\frac{1}{2} R^{2}-J(J+1)-2 k(k+1)+\ell(\ell+4)+4\left(\frac{\pi n}{T}-j \chi\right)^{2}} \\
\ell= & \widetilde{S}^{5} \text {-level } n=S^{1} \text {-level } \\
j= & -k,-k+1, \ldots, k-1, k: \cup(1) \subset S \cup(2) \text {-charge }
\end{aligned}
$$

$\mathrm{N}=2$ S-Folds

KK spectrum

- Conformal dimension for a spin-J state in a representation $[\mathbf{k}]$ of $\mathrm{SU}(2)$

$$
\begin{aligned}
& \Delta=\frac{1}{2}+\sqrt{\frac{17}{4}+\frac{1}{2} R^{2}-J(J+1)-2 k(k+1)+\ell(\ell+4)+4\left(\frac{\pi n}{T}-j \chi\right)^{2}} \\
\ell= & \widetilde{S}^{5} \text {-level } n=S^{1} \text {-level } \\
j= & -k,-k+1, \ldots, k-1, k: \cup(1) \subset \mathrm{SU}(2) \text {-charge }
\end{aligned}
$$

- New $\boldsymbol{\chi}$-twist $\mathbf{h}(\eta)$ introduces extra dependence of the KK states on η

$$
\Phi_{(n)}^{(k, j)}\left(y^{i}, \eta\right)=\Phi_{(n)}^{(k, j)}\left(y^{i}\right) \underbrace{e^{-2 i j \chi \eta}}_{\mathbf{h}(\eta)} e^{\frac{2 i \pi n \eta}{T}} \quad \frac{\partial^{2}}{\partial \eta^{2}} \Phi_{(n)}^{(k, j)}=-4\left(j \chi-\frac{\pi n}{T}\right)^{2} \Phi_{(n)}^{(k, j)}
$$

$\mathrm{N}=2$ S-Folds

KK spectrum

- Conformal dimension for a spin-J state in a representation [k] of $\operatorname{SU}(2)$

$$
\begin{aligned}
& \quad \Delta=\frac{1}{2}+\sqrt{\frac{17}{4}+\frac{1}{2} R^{2}-J(J+1)-2 k(k+1)+\ell(\ell+4)+4\left(\frac{\pi n}{T}-j \chi\right)^{2}} \\
& \ell=\widetilde{S}^{5} \text {-level } n=S^{1} \text {-level } \\
& j=-k,-k+1, \ldots, k-1, k: \mathrm{U}(1) \subset \mathrm{SU}(2) \text {-charge }
\end{aligned}
$$

- New $\boldsymbol{\chi}$-twist $\mathbf{h}(\eta)$ introduces extra dependence of the KK states on η

$$
\Phi_{(n)}^{(k, j)}\left(y^{\mathrm{i}}, \eta\right)=\widehat{\Phi}_{(n)}^{(k, j)}\left(y^{\mathrm{i}}\right) e^{-2 i j \chi \eta} e^{\frac{2 i \pi n \eta}{T}} \quad \frac{\partial^{2}}{\partial \eta^{2}} \Phi_{(n)}^{(k, j)}=-4\left(j \chi-\frac{\pi n}{T}\right)^{2} \Phi_{(n)}^{(k, j)}
$$

- $\chi=\frac{p \pi}{T}(\mathrm{p}=1,2)$ two real states with $n=p j$ become massless when $p j \in \mathbb{Z}$

$\mathrm{N}=2$ S-Folds

KK spectrum

- Conformal dimension for a spin-J state in a representation [k] of $\operatorname{SU}(2)$

$$
\begin{aligned}
& \Delta=\frac{1}{2}+\sqrt{\frac{17}{4}+\frac{1}{2} R^{2}-J(J+1)-2 k(k+1)+\ell(\ell+4)+4\left(\frac{\pi n}{T}-j \chi\right)^{2}} \\
\ell= & \widetilde{S}^{5} \text {-level } n=S^{1} \text {-level } \\
j= & -k,-k+1, \ldots, k-1, k: \cup(1) \subset \mathrm{SU}(2) \text {-charge }
\end{aligned}
$$

- New $\boldsymbol{\chi}$-twist $\mathbf{h}(\eta)$ introduces extra dependence of the KK states on η

$$
\Phi_{(n)}^{(k, j)}\left(y^{\mathrm{i}}, \eta\right)=\widehat{\Phi}_{(n)}^{(k, j)}\left(y^{i}\right) e^{-2 i j \chi \eta} e^{\frac{2 i \pi n \eta}{T}} \quad \frac{\partial^{2}}{\partial \eta^{2}} \Phi_{(n)}^{(k, j)}=-4\left(j \chi-\frac{\pi n}{T}\right)^{2} \Phi_{(n)}^{(k, j)}
$$

- $\chi=\frac{p \pi}{T}(\mathrm{p}=1,2)$ two vectors in $\operatorname{Adj}(\mathrm{SU}(2)) \quad(|\mathrm{j}|=1)$ become massless

$$
\begin{aligned}
& \chi=\frac{\pi}{T} \text { at } n=1 \\
& \chi=\frac{2 \pi}{T} \text { at } n=2
\end{aligned}
$$

$\mathrm{N}=2$ S-Folds

KK spectrum

- Conformal dimension for a spin-J state in a representation $[\mathbf{k}]$ of $\operatorname{SU}(2)$

$$
\begin{aligned}
& \quad \Delta=\frac{1}{2}+\sqrt{\frac{17}{4}+\frac{1}{2} R^{2}-J(J+1)-2 k(k+1)+\ell(\ell+4)+4\left(\frac{\pi n}{T}-j \chi\right)^{2}} \\
& \ell=\widetilde{S}^{5} \text {-level } n=S^{1} \text {-level } \\
& j=-k,-k+1, \ldots, k-1, k: \cup(1) \subset \mathrm{SU}(2) \text {-charge }
\end{aligned}
$$

- New $\boldsymbol{\chi}$-twist $\mathbf{h}(\eta)$ introduces extra dependence of the KK states on η

$$
\Phi_{(n)}^{(k, j)}\left(y^{\mathrm{i}}, \eta\right)=\widehat{\Phi}_{(n)}^{(k, j)}\left(y^{\mathrm{i}}\right) e^{-2 i j \chi \eta} e^{\frac{2 i \pi n \eta}{T}} \quad \frac{\partial^{2}}{\partial \eta^{2}} \Phi_{(n)}^{(k, j)}=-4\left(j \chi-\frac{\pi n}{T}\right)^{2} \Phi_{(n)}^{(k, j)}
$$

- $\chi=\frac{p \pi}{T}$ two vectors in $\operatorname{Adj}(\operatorname{SU}(2)) \quad(|j|=1)$ become massless

$$
\mathrm{U}(1) \rightarrow \mathrm{SU}(2)
$$

Example: spin-2 at level $\ell=3$
(20.4

Same spectra

$$
\text { Example: spin-2 at level } \ell=3
$$

$$
\text { Example: spin-2 at level } \ell=3
$$

Symmetry from periodicity of χ and parity: $\chi \rightarrow-\chi$

- We found that the $\mathrm{N}=2$ vacua are points in a web of marginally connected 3parameter $N=0,2,4$ vacua. Proof of perturbative stability of the $N=0$ ones, evidence for their non-pert. stability: possible $\mathrm{N}=0$ conformal manifold of CFTs.
[A. Giambrone, A. Guarino, E.Malek, H. Samtleben, C. Sterckx, M.T., 2112.11966]
- Recently found in $\mathrm{N}=3$ gauged sugra with a web of marginally connected $\mathrm{N}=3,2,1$ and 0 vacua. Pert. stable in SUGRA
[A,Giambrone, P.Frè, D.Ruggeri, P.Vasko, M.T. 2206.09971]
> Embed vacua in M-theory
To be done...
> Study holographic duality and RG flow

Etc.
It all started from a good idea....

Many other great ideas you've had, and many more are to come, while pursuing the beauty of symmetry.

I wish to thank you Pietro for your friendship, your collaborationand your constant inspiration
to your new start...

Cheersal

Gravitino masses as functions of $\delta, \chi_{1}, \chi_{2}$

$$
\begin{aligned}
m^{2} L^{2}: & : \frac{2 \delta\left(\delta^{3} \pm \sqrt{2} \sqrt{2 \delta^{4}+8 \delta^{2}+\left(\chi_{1}-\chi_{2}\right)^{2}+8}+5 \delta\right)+\left(\chi_{1}-\chi_{2}\right)^{2}+8}{4\left(\delta^{2}+1\right)} \times 2 \\
& \frac{ \pm 2 \sqrt{\left(\delta^{2}+1\right)\left(9 \delta^{2}+\left(\chi_{1}+\chi_{2}\right)^{2}+9\right)}+10\left(1+\delta^{2}\right)+\left(\chi_{1}+\chi_{2}\right)^{2}}{4\left(\delta^{2}+1\right)} \times 2
\end{aligned}
$$

Previously discussed $N=2$ vacua: $\delta=0, \chi_{1}=-\chi_{2}=\chi$

Type IIB S-Folds from D=4 SUGRA

- They locally coincide with (singular) Janus solutions

$$
\operatorname{AdS}_{4} \times \widetilde{S}^{5} \times \mathbb{R}
$$

[$\mathrm{N}=0$: D.Bak, M. Gutperle,S. Hirano, 0304129;
N=1:E. D'Hoker, J. Estes,M. Gutperle, 0603012;
N=4: E. D'Hoker, J. Estes,M. Gutperle, 0705.0022]

- Expected dual SCFT:
[$\mathrm{N}=0$: A.B.Clark, D.Z.Freedman, A.Karch, M.Schnabl, 0407073;

Janus sol.s $\longleftrightarrow D=3$ conformal Janus interfaces in $N=4 D=4 S Y M ; \quad N=\mathbf{0 , 1 , 2 , 4}$: D'Hoker, J. Estes, M. Gutperle, 0603013;
N=4: D.Gaiotto, E.Witten, 0804.2907]

```
J-fold SUGRA sol.s }<\textrm{D}=3\mathrm{ J-fold SCFT
```

[D.Gaiotto, E.Witten, 0807.3720;
N=4: B. Assel and A. Tomasiello, 1804.0641;
N=2; N. Bobev, F. Gautason, K. Pilch, M.Suh,J. van Muiden, 2003.09154; E. Beratto, N. Mekareeya, M. Sacchi, 2009.10123; N. Bobev, F. Gautason, J. van Muiden, 2104.00977]

$\mathrm{N}=2$ S-Folds

Solution with $\mathrm{U}(2)$-symmetry: the $\mathrm{SL}(2, \mathrm{R})_{I I B}$-invariant sector

Isometry $\operatorname{SU}(2) \times U(1)_{R}$

- Background geometry: $\quad \mathrm{AdS}_{4} \times \widetilde{S}^{5} \times S^{1}=\mathrm{AdS}_{4} \times S^{2} \times \widetilde{S}^{3} \times S^{1}$

$$
d s^{2}=\frac{1}{2} \Delta^{-1}\left(d s_{\mathrm{AdS}_{4}}^{2}+d s_{\mathrm{S}^{2}}^{2}+\operatorname{Cos}^{2}(\theta) d s_{\mathrm{S}^{3}}^{2}+d \eta^{2}\right)
$$

$$
\Delta \equiv(6-2 \cos (2 \theta))^{-\frac{1}{4}}
$$

- 5-form field strength:

$$
\begin{array}{r}
\tilde{F}_{5} \equiv d C_{(4)}+\frac{1}{2} \epsilon_{\alpha \beta} B_{(2)}^{\alpha} \wedge H_{(3)}^{\beta}=(1+\star) 4 \Delta^{4} \sin (\theta) \cos ^{3}(\theta)\left[3 d \theta \wedge d \phi \wedge \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right. \\
\left.-d \eta \wedge\left(\cos (2 \theta) d \theta-\frac{1}{2} \sin (2 \theta) \sin (2 \phi) d \phi\right) \wedge \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right] \\
B_{(2)}^{\alpha}=\left(B_{(2)}, C_{(2)}\right) \\
H_{(3)}^{\alpha}=d B_{(2)}^{\alpha}
\end{array}
$$

$\mathrm{N}=2$ S-Folds

Solution with $\mathrm{U}(2)$-symmetry: the $\mathrm{SL}(2, \mathrm{R})_{I I B}$-covariant sector

- 2-form fields:

$$
\left.\begin{array}{rl}
B_{(2)}^{\alpha} & =\left(B_{(2)}, C_{(2)}\right)=A(\eta)^{\alpha}{ }_{\beta} \mathfrak{b}_{(2)}^{\beta} \\
& \mathfrak{b}_{(2)}^{1}
\end{array}=\frac{1}{\sqrt{2}} \cos (\theta)\left[\left(\cos (\phi) d \theta+\frac{1}{2} \sin (2 \theta) d(\cos (\phi))\right) \wedge \sigma_{2}+\cos (\phi) \frac{4 \sin (2 \theta)}{6-2 \cos (2 \theta)} \sigma_{1} \wedge \sigma_{3}\right]\right] .
$$

- Axion-dilaton system $\tau=C_{(0)}+i e^{-\varphi}$:

$$
\left.m_{\alpha \beta}=\frac{1}{\operatorname{Im}(\tau)}\left(\begin{array}{cc}
|\tau|^{2} & -\operatorname{Re}(\tau) \\
-\operatorname{Re}(\tau) & 1
\end{array}\right)=\left(A(\eta)^{-1}\right)^{\sigma}{ }_{\alpha}\left(A(\eta)^{-1}\right)^{\gamma}{ }_{\beta} \mathfrak{m}_{\sigma \gamma}\right)
$$

$$
\mathfrak{m}_{\sigma \gamma}=2 \Delta^{2}\left(\begin{array}{cc}
\sin ^{2}(\theta) \cos ^{2}(\phi)+1 & -\frac{1}{2} \sin ^{2}(\theta) \sin (2 \phi) \\
-\frac{1}{2} \sin ^{2}(\theta) \sin (2 \phi) & \sin ^{2}(\theta) \sin ^{2}(\phi)+1
\end{array}\right)
$$

$\mathrm{N}=2$ S-Folds

Solution with $\mathrm{U}(2)$-symmetry: the $\mathrm{SL}(2, \mathrm{R})_{I I B}$-covariant sector

- 2-form fields:

$$
\begin{aligned}
B_{(2)}^{\alpha} & =\left(B_{(2)}, C_{(2)}\right)=A(\eta)^{\alpha}{ }_{\beta} \mathfrak{b}_{(2)}^{\beta} \\
& \mathfrak{b}_{(2)}^{1}
\end{aligned}=\frac{1}{\sqrt{2}} \cos (\theta)\left[\left(\cos (\phi) d \theta+\frac{1}{2} \sin (2 \theta) d(\cos (\phi))\right) \wedge \sigma_{2}+\cos (\phi) \frac{4 \sin (2 \theta)}{6-2 \cos (2 \theta)} \sigma_{1} \wedge \sigma_{3}\right] \quad \begin{aligned}
& \mathfrak{b}_{(2)}^{2}=-\frac{1}{\sqrt{2}} \cos (\theta)\left[\left(\sin (\phi) d \theta+\frac{1}{2} \sin (2 \theta) d(\sin (\phi))\right) \wedge \sigma_{2}+\sin (\phi) \frac{4 \sin (2 \theta)}{6-2 \cos (2 \theta)} \sigma_{1} \wedge \sigma_{3}\right]
\end{aligned}
$$

- Axion-dilaton system $\tau=C_{(0)}+i e^{-\varphi}$:

$$
\left.m_{\alpha \beta}=\frac{1}{\operatorname{Im}(\tau)}\left(\begin{array}{cc}
|\tau|^{2} & -\operatorname{Re}(\tau) \\
-\operatorname{Re}(\tau) & 1
\end{array}\right)=\left(A(\eta)^{-1}\right)^{\sigma}{ }_{\alpha}\left(A(\eta)^{-1}\right)^{\gamma}{ }_{\beta} \mathfrak{m}_{\sigma \gamma}\right)
$$

Dependence on η through

$$
A(\eta)^{\alpha}{ }_{\beta} \equiv\left(\begin{array}{cc}
\cosh (\eta) & \sinh (\eta) \\
\sinh (\eta) & \cosh (\eta)
\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})_{\text {IIB }} \quad \mathfrak{m}_{\sigma \gamma}=2 \Delta^{2}\left(\begin{array}{cc}
\sin ^{2}(\theta) \cos ^{2}(\phi)+1 & -\frac{1}{2} \sin ^{2}(\theta) \sin (2 \phi) \\
-\frac{1}{2} \sin ^{2}(\theta) \sin (2 \phi) & \sin ^{2}(\theta) \sin ^{2}(\phi)+1
\end{array}\right)
$$

N=2 S-Folds

The $\operatorname{SL}(2, \mathrm{R})_{\| B}$-twist $\mathbf{A}(\eta)$ induces a monodromy $\quad \mathfrak{M}=A(\eta)^{-1} \cdot A(\eta+T)=\left(\begin{array}{cc}\cosh (T) & \sinh (T) \\ \sinh (T) & \cosh (T)\end{array}\right)$

$$
\begin{aligned}
\mathbf{B}_{(2)} & \rightarrow \mathfrak{M} \cdot \mathbf{B}_{(2)} \\
\tau & \rightarrow \mathfrak{M} \cdot \tau
\end{aligned}
$$

S-fold solution to Type IIB superstring theory:
[G. Inverso, H. Samtleben, M.T., 1612.05123; B. Assel and A. Tomasiello, 1804.0641]

$$
A(\eta) \rightarrow A(\eta) \cdot g_{\mathrm{n}} \quad e^{T}=\frac{1}{2}\left(n+\sqrt{n^{2}-4}\right) \quad g_{\mathrm{n}} \equiv\left(\begin{array}{cc}
\frac{\left(n^{2}-4\right)^{\frac{1}{4}}}{\sqrt{2}} & 0 \\
\frac{n}{\sqrt{2}\left(n^{2}-4\right)^{\frac{1}{4}}} & \frac{\sqrt{2}}{\left(n^{2}-4\right)^{\frac{1}{4}}}
\end{array}\right) \quad(n>2)
$$

$$
\mathfrak{M} \rightarrow g_{\mathrm{n}}^{-1} \cdot \mathfrak{M} \cdot g_{\mathrm{n}}=J_{\mathrm{n}}=-S \cdot T^{\mathrm{n}} \in \operatorname{SL}(2, \mathbb{Z})_{\mathrm{IIB}}
$$

$\mathrm{N}=2$ S-Folds

Solution with $\mathrm{U}(1) \mathrm{x} \mathrm{U}(1)_{\mathrm{R}}$ symmetry and 1 parameter χ

Vacua found in [A. Guarino, C. Sterckx, M.T., 2002.03692] within an $\mathrm{N}=1$ truncation of the maximal theory

Uplifted to Type IIB solution in [A. Giambrone, E.Malek, H. Samtleben, M.T., 2103.10797] where the KK spectrum was computed and the global properties of the parameter χ studied
χ is a flat direction of the scalar potential at the extremum

$$
V_{0}=-\frac{3}{|c|}=-\frac{3}{\left(L_{\mathrm{AdS}}\right)^{2}}
$$

χ expected to be exactly marginal deformation of dual SCFT, coordinate of its Conformal Manifold

$\mathrm{N}=2$ S-Folds

Solution with $U(1) \times U(1)_{R}$ symmetry and 1 parameter χ
The parameter $\boldsymbol{\chi}$ induces a second twist: $\mathbf{h}(\eta)=e^{2 \chi \mathbf{H} \eta} \in \mathbf{U}(1) \in S \cup(2)$ defining a fibration of the 3 -sphere over S^{1}

$$
\begin{aligned}
& \chi=0 \\
& \chi \neq 0 \\
& \hat{g}[\alpha, \beta, \gamma, \eta]=h(\eta) \cdot g[\alpha, \beta, \gamma] \in \operatorname{SU}(2) \\
& \operatorname{SU}(2) \text { broken to } \mathrm{U}(1) \text { commuting with } h(T)=\left(\begin{array}{cc}
\cos (\chi T) & \sin (\chi T) \\
-\sin (\chi T) & \cos (\chi T)
\end{array}\right) \\
& S^{1} \\
& U(1) \rightarrow S U(2) \text { enhancement: } \chi=\frac{\pi}{T}, \frac{2 \pi}{T}
\end{aligned}
$$

N=2 S-Folds

KK spectrum

- Within the framework of ExFT we computed the KK spectrum on the solution and the $\operatorname{OSp}(2 \mid 4)$ supermultiplet structure (see Henning's talk for a review of the general approach).
- Only use $S^{5} \times S^{1}$ scalar harmonics.
[E. Malek, H. Samtleben, 1911.12640; M. Cesàro, O.Varela, 2012.05249]
- Generic pattern: at each level the KK states gather in long vector, gravitino and graviton multiplets [see C. Cordova, T. Dumitrescu, K, Intriligator, 1602.01217 for notation]

$$
\begin{aligned}
& L \bar{L}[J]_{\Delta}^{\mathrm{R}} \quad \text { Lorentz spin of HWS } \quad J=0, \frac{1}{2}, 1 \\
& R=\mathrm{U}(1)_{\mathrm{R}} \text {-charge vector, gravitino, graviton }
\end{aligned}
$$

- Shortening if the unitarity bound $\Delta \geq 1+|R|+J$ is saturated

