

Diffractive Vector Meson Production Using Sartre With Machine Learning

QCD with Electron Ion Collider (QEIC) II

Jaswant Singh and Tobias Toll

December 19, 2022

Indian Institute of Technology, New Delhi

Contents

Electron-proton Scattering

Dipole Model

Electron-Ion Scattering

The Event Generator: Sartre

Machine Learning

Results

Conclusions

Electron-proton Scattering

• Exclusive measurement : $e+p \rightarrow e+{\rm VM}/\gamma+p$

- Exclusive measurement : $e + p \rightarrow e + VM/\gamma + p$
- Experimental Signature : Rapidity gap in final state particles

- Exclusive measurement :
 - $e + p \rightarrow e + VM/\gamma + p$
- Experimental Signature : Rapidity gap in final state particles
- Diffractive process:
 cross-section distribution resemble
 to that of diffraction in optics
 (color neutral exchange)

- Exclusive measurement : $e + p \rightarrow e + VM/\gamma + p$
- Experimental Signature : Rapidity gap in final state particles
- Diffractive process:
 cross-section distribution resemble
 to that of diffraction in optics
 (color neutral exchange)

At HERA, 15% of total DIS events were diffractive events

- Exclusive measurement : $e + p \rightarrow e + VM/\gamma + p$
- Experimental Signature :
 Rapidity gap in final state particles
- Diffractive process:
 cross-section distribution resemble
 to that of diffraction in optics
 (color neutral exchange)

- At HERA, 15% of total DIS events were diffractive events
- Measure the momentum transfer $t=(p-p^{'})^2$ and Fourier transform to get spatial structure

- Exclusive measurement : $e + p \rightarrow e + VM/\gamma + p$
- Experimental Signature :
 Rapidity gap in final state particles
- Diffractive process : cross-section distribution resemble to that of diffraction in optics (color neutral exchange)

- At HERA, 15% of total DIS events were diffractive events
- Measure the momentum transfer $t=(p-p^{'})^2$ and Fourier transform to get spatial structure
- Sensitive to high gluon densities

Different stages of the Vector meson production:

- Different stages of the Vector meson production:
 - $\psi(\mathit{Q}^2,\mathit{z},r)$ is wavefunction for the $\gamma^* o qar{q}$

Different stages of the Vector meson production:

- $\psi(\mathit{Q}^2,\mathit{z},r)$ is wavefunction for the $\gamma^* o q ar{q}$
- $q \bar{q}$ dipole elastically scatters from the target

Different stages of the Vector meson production:

- $\psi(\mathit{Q}^2,\mathit{z},r)$ is wavefunction for the $\gamma^* o q ar{q}$
- $q \bar{q}$ dipole elastically scatters from the target
- $\psi_V^*(Q^2,r,z)$ is wavefunction for J/ψ

Different stages of the Vector meson production:

- $\psi(\mathit{Q}^2,\mathit{z},r)$ is wavefunction for the $\gamma^* o q ar{q}$
- $q\bar{q}$ dipole elastically scatters from the target
- $\psi_V^*(Q^2, r, z)$ is wavefunction for J/ψ

Scattering amplitude is given by:

$$\mathcal{A}_{T,L}^{\gamma^*p\to V}{}^p(x,Q,\Delta)=i\int d^2\mathbf{r}\int_0^1\frac{dz}{4\pi}\int d^2\mathbf{b}\; (\Psi_V^*\Psi)_{T,L}e^{-i\;\mathbf{b}\cdot\Delta}\; \frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}}$$

Different stages of the Vector meson production:

- $\psi(\mathit{Q}^2,\mathit{z},r)$ is wavefunction for the $\gamma^* o q ar{q}$
- $q\bar{q}$ dipole elastically scatters from the target
- $\psi_V^*(Q^2, r, z)$ is wavefunction for J/ψ

• Scattering amplitude is given by:

$$\mathcal{A}_{T,L}^{\gamma^*p\to V}{}^p(x,Q,\Delta)=i\int d^2\mathbf{r} \int_0^1 \tfrac{dz}{4\pi} \int d^2\mathbf{b} \; (\Psi_V^*\Psi)_{T,L} e^{-i\;\mathbf{b}\cdot\Delta} \; \tfrac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}}$$

• in pQCD the diffraction formula is given by:

$$\frac{d\sigma^{\gamma^*_{p} \to V_p}}{dt} \sim [xg(x, Q^2)]^2$$

Different stages of the Vector meson production:

- $\psi(\mathit{Q}^2,\mathit{z},r)$ is wavefunction for the $\gamma^* o q ar{q}$
- $q\bar{q}$ dipole elastically scatters from the target
- $\psi_V^*(Q^2, r, z)$ is wavefunction for J/ψ

• Scattering amplitude is given by:

$$\mathcal{A}_{T,L}^{\gamma^*p\to V}\ ^p(x,Q,\Delta)=i\int d^2\mathbf{r}\int_0^1 \tfrac{dz}{4\pi}\int d^2\mathbf{b}\; \big(\Psi_V^*\Psi\big)_{T,L}e^{-i\;\mathbf{b}\cdot\Delta}\ \tfrac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}}$$

• in pQCD the diffraction formula is given by:

$$\frac{d\sigma^{\gamma^*_{\rho}\to V_{\rho}}}{dt}\sim [xg(x,Q^2)]^2$$

• a sensitive probe to high gluon density and transverse spatial profile.

Dipole Model

• The bSat dipole model:

$$\frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}} = 2\left[1 - \exp(-\frac{\pi^2}{2N_c}r^2\alpha_s(\mu^2)\mathbf{x}g(\mathbf{x},\mu^2)\mathbf{T}_p(\mathbf{b}))\right]$$

Where:
$$T_p(\mathbf{b}) = \frac{1}{2\pi B_p} \exp(-\mathbf{b}^2/2B_p)$$
, $xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1-x)^{5.6}$ and $\mu^2 = \mu_0^2 + \frac{C}{r^2}$

The bSat dipole model:

$$\frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}} = 2\left[1 - \exp(-\frac{\pi^2}{2N_c}r^2\alpha_s(\mu^2)\mathbf{x}g(\mathbf{x},\mu^2)\mathbf{T}_p(\mathbf{b}))\right]$$

■ The bNonSat:

$$\frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}} = \frac{\pi^2}{N_c} r^2 \alpha_s(\mu^2) x g(x, \mu^2) T_p(\mathbf{b})$$

Where:
$$T_p(\mathbf{b}) = \frac{1}{2\pi B_p} \exp(-\mathbf{b}^2/2B_p)$$
, $xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1-x)^{5.6}$ and $\mu^2 = \mu_0^2 + \frac{C}{r^2}$

The bSat dipole model:

$$\frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}} = 2\left[1 - \exp(-\frac{\pi^2}{2N_c}r^2\alpha_s(\mu^2)\mathbf{x}g(\mathbf{x},\mu^2)\mathbf{T}_p(\mathbf{b}))\right]$$

■ The bNonSat:

$$\frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}} = \frac{\pi^2}{N_c} r^2 \alpha_s(\mu^2) x g(x, \mu^2) T_p(\mathbf{b})$$

Where:
$$T_p(\mathbf{b}) = \frac{1}{2\pi B_p} \exp(-\mathbf{b}^2/2B_p)$$
, $xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1-x)^{5.6}$ and $\mu^2 = \mu_0^2 + \frac{C}{r^2}$

 Momentum transfer (-t) distribution is a Fourier Transform to the spatial distribution of the target The bSat dipole model:

$$\frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}} = 2\left[1 - \exp(-\frac{\pi^2}{2N_c}r^2\alpha_s(\mu^2)xg(x,\mu^2)T_p(\mathbf{b}))\right]$$

■ The bNonSat:

$$\frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}} = \frac{\pi^2}{N_c} r^2 \alpha_s(\mu^2) x g(x, \mu^2) T_p(\mathbf{b})$$

Where:
$$T_p(\mathbf{b}) = \frac{1}{2\pi B_p} \exp(-\mathbf{b}^2/2B_p)$$
, $xg(x, \mu_0^2) = A_g x^{-\lambda_g} (1-x)^{5.6}$ and $\mu^2 = \mu_0^2 + \frac{C}{r^2}$

- Momentum transfer (-t) distribution is a Fourier Transform to the spatial distribution of the target
- Fundamental understanding of nucleon structure at high energy

Good-Walker picture:

$$\begin{split} \sigma_{\text{inc}} &\propto \sum_{f \neq i} \langle i | \mathcal{A} | f \rangle^{\dagger} \langle f | \mathcal{A} | i \rangle \\ &= \sum_{f} \langle i | \mathcal{A} | f \rangle^{\dagger} \langle f | \mathcal{A} | i \rangle - \langle i | \mathcal{A} | i \rangle^{\dagger} \langle i | \mathcal{A} | i \rangle \\ &= \langle i | | \mathcal{A} |^{2} | i \rangle - |\langle i | \mathcal{A} | i \rangle|^{2} \\ &= \langle | \mathcal{A} |^{2} \rangle - |\langle \mathcal{A} \rangle|^{2} \end{split}$$

Good-Walker picture:

$$\mathcal{A}(\Omega_{j}) = \int dr \frac{dz}{4\pi} d^{2}\mathbf{b}(\Psi_{V}^{*}\Psi)(r,z) 2\pi r b J_{0}([1-z]r\Delta) \\ \times e^{-i\mathbf{b}\cdot\Delta} \frac{d\sigma_{q\bar{q}}}{d^{2}\mathbf{b}}(x,r,b,\Omega_{j}) \\ = \sum_{f} \langle i|\mathcal{A}|f\rangle^{\dagger} \langle f|\mathcal{A}|i\rangle - \langle i|\mathcal{A}|i\rangle^{\dagger} \langle i|\mathcal{A}|i\rangle \\ = \langle i||\mathcal{A}|^{2}|i\rangle - |\langle i|\mathcal{A}|i\rangle|^{2} \\ = \langle |\mathcal{A}|^{2}\rangle - |\langle \mathcal{A}\rangle|^{2}$$

Good-Walker picture:

$$\mathcal{A}(\Omega_{j}) = \int dr \frac{dz}{4\pi} d^{2}\mathbf{b}(\Psi_{V}^{*}\Psi)(r,z) 2\pi r b J_{0}([1-z]r\Delta)$$

$$\mathbf{\sigma_{inc}} \propto \sum_{f \neq i} \langle i|\mathcal{A}|f \rangle^{\dagger} \langle f|\mathcal{A}|i \rangle \qquad \qquad \times e^{-i\mathbf{b}.\Delta} \frac{d\sigma_{q\bar{q}}}{d^{2}\mathbf{b}}(x,r,b,\Omega_{j})$$

$$= \sum_{f} \langle i|\mathcal{A}|f \rangle^{\dagger} \langle f|\mathcal{A}|i \rangle - \langle i|\mathcal{A}|i \rangle^{\dagger} \langle i|\mathcal{A}|i \rangle$$

$$= \langle i||\mathcal{A}|^{2}|i \rangle - |\langle i|\mathcal{A}|i \rangle|^{2}$$

$$= \langle |\mathcal{A}|^{2} \rangle - |\langle \mathcal{A} \rangle|^{2} \qquad \qquad \frac{d\sigma_{tot}}{dt} = \frac{1}{16\pi} \langle |\mathcal{A}|^{2} \rangle, \quad \frac{d\sigma_{coherent}}{dt} = \frac{1}{16\pi} |\langle \mathcal{A} \rangle|^{2}$$

ep:

$$1 - \mathcal{N}^{p}(\mathbf{x}, \mathbf{r}, \mathbf{b}) = 1 - \frac{d\sigma_{q\bar{q}}^{p}(\mathbf{x}, \mathbf{r}, \mathbf{b})}{2 d^{2}\mathbf{b}}$$

Using Independent Scattering

ep:

$$1 - \mathcal{N}^p(\mathbf{x}, \mathbf{r}, \mathbf{b}) = 1 - \frac{d\sigma_{q\bar{q}}^p(\mathbf{x}, \mathbf{r}, \mathbf{b})}{2 d^2 \mathbf{b}}$$

eA:

Using Independent Scattering

$$1 - \mathcal{N}^{A}(x, \mathbf{r}, \mathbf{b}) = \prod_{i=1}^{A} \left(1 - \mathcal{N}^{p}(x, \mathbf{r}, |\mathbf{b} - \mathbf{b}_{i}|) \right)$$

ep:

$$1 - \mathcal{N}^{p}(\mathbf{x}, \mathbf{r}, \mathbf{b}) = 1 - \frac{d\sigma_{q\bar{q}}^{p}(\mathbf{x}, \mathbf{r}, \mathbf{b})}{2 d^{2}\mathbf{b}}$$

eA:

Using Independent Scattering

$$1 - \mathcal{N}^{A}(x, \mathbf{r}, \mathbf{b}) = \prod_{i=1}^{A} \left(1 - \mathcal{N}^{p}(x, \mathbf{r}, |\mathbf{b} - \mathbf{b}_{i}|) \right)$$

bSat:

$$\frac{d\sigma_{q\bar{q}}^{(A)}}{d^2\mathbf{b}}(x,r,\mathbf{b},\Omega_j) = 2\left[1 - \exp\left(-\frac{\pi^2}{2N_C}r^2\alpha_s(\mu^2)xg(x,\mu^2)\sum_{i=1}^A T(|\mathbf{b} - \mathbf{b}_i|)\right)\right]$$

Coherent:

$$\left\langle \frac{d\sigma_{q\bar{q}}}{d^2b} \right\rangle_{\Omega} = 2 \left[1 - \left(1 - \frac{T_A(b)}{2} \sigma_{q\bar{q}}^{\mathrm{p}} \right)^A \right]$$

Coherent:

$$\left\langle \frac{d\sigma_{q\bar{q}}}{d^2b} \right\rangle_{\Omega} = 2 \left[1 - \left(1 - \frac{T_A(b)}{2} \sigma_{q\bar{q}}^{\mathrm{p}} \right)^A \right]$$

Incoherent:

- We don't have analytical solution
- Numerical Methods

$$\langle \mathcal{A}
angle_{\Omega} pprox rac{1}{C_{ extit{max}}} \sum_{j=1}^{C_{ extit{max}}} \mathcal{A}(\Omega_j)$$

Coherent:

$$\left\langle \frac{d\sigma_{q\bar{q}}}{d^2b} \right\rangle_{\Omega} = 2 \left[1 - \left(1 - \frac{T_A(b)}{2} \sigma_{q\bar{q}}^{\mathrm{p}} \right)^A \right]$$

Incoherent:

- We don't have analytical solution
- Numerical Methods

$$\langle \mathcal{A}
angle_{\Omega} pprox rac{1}{C_{ extit{max}}} \sum_{j=1}^{C_{ extit{max}}} \mathcal{A}(\Omega_j)$$

Amplitude:

$$\mathcal{A}(\Omega_{j}) = \int dr \frac{dz}{4\pi} d^{2}\mathbf{b}(\Psi_{V}^{*}\Psi)(r,z) 2\pi r b J_{0}([1-z]r\Delta) e^{-i\mathbf{b}\cdot\Delta} \frac{d\sigma_{q\bar{q}}}{d^{2}\mathbf{b}}(x,r,b,\Omega_{j})$$

Coherent, Incoherent and Total Cross-section

$$\left\langle \frac{d\sigma_{q\bar{q}}}{d^2b} \right\rangle_{\Omega} = 2 \left[1 - \left(1 - \frac{T_A(b)}{2} \sigma_{q\bar{q}}^{\mathrm{p}} \right)^A \right]$$

$$\sigma_{incoherent} = \langle |\mathcal{A}|^2 \rangle - |\langle \mathcal{A} \rangle|^2$$

$$rac{d\sigma_{
m Total}}{dt} = rac{d\sigma_{
m Coherent}}{dt} + rac{d\sigma_{
m Incoherent}}{dt}$$

The Event Generator: Sartre

Event generator: Dedicated to EIC physics Simulation

Sartre

- Dedicated to the Exclusive diffractive vector meson production
- Sartre: Event Generator for ep and eA
- bSat, bNonSat is basis of Sartre
- Use 3D lookup tables in (Q², W², t) and use the powerful computer to produce the tables
- Hosted at sartre.hepforge.org
- Developer/maintainer : Tobias Toll, Thomas Ullrich

Comput. Phys. Commun. 185 (2014) 1835-1853

Event generator: Exclusive diffractive vector meson production and DVCS

- For total need ~ 500 configuration
- For each kinematic point(4D integral) we have to average over all number of configurations
- Look-up table: Amplitudes stored in the tables corresponding to (Q², W², t)

 $\bullet \ \ \, \mathsf{Look\text{-}up\ Tables:} \langle |\mathcal{A}_{\mathcal{T}}|^2 \rangle, |\langle \mathcal{A}_{\mathcal{T}} \rangle|, \langle |\mathcal{A}_{\mathcal{L}}|^2 \rangle, |\langle \mathcal{A}_{\mathcal{L}} \rangle|$

- Look-up Tables: $\langle |\mathcal{A}_T|^2 \rangle$, $|\langle \mathcal{A}_T \rangle|$, $\langle |\mathcal{A}_L|^2 \rangle$, $|\langle \mathcal{A}_L \rangle|$
- lots of CPU power to generate them (~months)

- Look-up Tables: $\langle |\mathcal{A}_T|^2 \rangle$, $|\langle \mathcal{A}_T \rangle|$, $\langle |\mathcal{A}_L|^2 \rangle$, $|\langle \mathcal{A}_L \rangle|$
- lots of CPU power to generate them (~months)
- Computationally difficult for standard computer

- Look-up Tables: $\langle |\mathcal{A}_T|^2 \rangle$, $|\langle \mathcal{A}_T \rangle|$, $\langle |\mathcal{A}_L|^2 \rangle$, $|\langle \mathcal{A}_L \rangle|$
- lots of CPU power to generate them (~months)
- Computationally difficult for standard computer
- Table range:

- Look-up Tables: $\langle |\mathcal{A}_T|^2 \rangle$, $|\langle \mathcal{A}_T \rangle|$, $\langle |\mathcal{A}_L|^2 \rangle$, $|\langle \mathcal{A}_L \rangle|$
- lots of CPU power to generate them (~months)
- Computationally difficult for standard computer
- Table range:
 - $0 \le |t| \le 0.5$, $384 \le W^2 \le 20164$, $0.001 \le Q^2 \le 20.0 \text{ GeV}^2$

Machine Learning

• Fit to the data (3D tables) generated using the dipole model

- Fit to the data (3D tables) generated using the dipole model
- Though Neural Network is black-box
 - Fit to dipole model helps us to have some handle of the physics

- Fit to the data (3D tables) generated using the dipole model
- Though Neural Network is black-box
 - Fit to dipole model helps us to have some handle of the physics
- A nice computation tool to reduce CPU hours
 - With current framework in Sartre it take months to generate tables in all kinematic region
 - Any new physics input, produce all tables again from beginning

- Fit to the data (3D tables) generated using the dipole model
- Though Neural Network is black-box
 - Fit to dipole model helps us to have some handle of the physics
- A nice computation tool to reduce CPU hours
 - With current framework in Sartre it take months to generate tables in all kinematic region
 - Any new physics input, produce all tables again from beginning
- Way out: Produce tables with few bins and train NN to produce to tables in all kinematic region
 - Long-term, Use NN architecture with all parameters of dipole model as input

Avg. Relative Error(%) vs Data

Avg. Relative Error(%) vs Data

25

Needs \sim 40%(of \sim 20000) data to train the neural network with in the error(5%) cut-off for Longitudinal case

Avg. Relative Error(%) vs Data

- Needs \sim 40%(of \sim 20000) data to train the neural network with in the error(5%) cut-off for Longitudinal case
- Needs \sim 5% (of \sim 20000)data to train the neural network with in the error(5%) cut-off for Transverse case

Results

Results

Results...

Conclusions

Conclusions: Neural Network

- We need 10% of the bins for Transverse and 40-50% for Longitudinal amplitude square tables.
- In total we need to generate $\sim 25\%$ of the table points.
- We can produce the tables(NN) much faster than using model.
- Work in progress to reduce the error for longitudinal amplitude

Outlook and Summary

- Need to reduce the error of outcome of the Neural Network(For longitudinal case)
- Produce the more tables for the other species(pb, Zr,...).
- We generated the events using the 3D table produced from the neural network in Sartre
- Dipole Scattering amplitude:

$$\mathcal{A}_{T,L}^{\gamma^*p\to V}{}^p(x,Q,\Delta)=i\int d^2\mathbf{r}\int_0^1\frac{dz}{4\pi}\int d^2\mathbf{b}\left(\Psi_V^*\Psi\right)_{T,L}e^{-i\;\mathbf{b}\cdot\Delta}\,\frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}}$$

Scattering amplitude(NNET):

$$\mathcal{A}_{T,L}^{\gamma^*p\to V}{}^p(x,Q,\Delta)=i\int d^2\mathbf{r}\int_0^1\frac{dz}{4\pi}\int d^2\mathbf{b}\; (\Psi_V^*\Psi)_{T,L}e^{-i\;\mathbf{b}\cdot\Delta}\; \frac{d\sigma_{q\bar{q}}}{d^2\mathbf{b}}(NNT)$$

- we are working on the inclusive diffractive deep inelastic scattering(DDIS)
- Upgrade Sartre to inclusive diffraction.
 - We need 4D tables
 - Need to include t-dependence

Back-up Slides

- No indication of saturation
- Well explanation by bSat & bNonSat dipole model
- No saturation even in LHeC kinematic regime($x = 10^{-7}$)

saturation scale

Proton :
$$Q^2(x) = \left(\frac{x_0}{x}\right)^{\lambda}$$
 $\lambda \sim 0.2 - 0.3$

- Q_x^2 value large at low-x
 - > treat as perturbative scale
- Two way to increase the saturation scale:
 - ightharpoonup Increase the c.o.m energy in ep collisions to probe small x values ($x \sim \frac{Q^2}{W^2}$)
 - Change the target particle from proton to nucleus
- Use heavy ion geometry to enhance saturation scale

scale ...

Nucleus:

$$Q_s^2(x,A) \sim A^{\frac{1}{3}} \left(\frac{1}{x}\right)^{\lambda} \sim \left(\frac{A}{x}\right)^{1/3}$$

$$x \sim \frac{Q^2}{W^2} \qquad W^2 = M_A^2 + Q^2 \frac{(1-x)}{x}$$