Sum rules for the Gravitational Form Factors in light-front dressed quark model

Jai D. More
Department of Physics, IIT Bombay, India
A. Mukherjee (IITB, India), S. Nair (IMP,CAS), S. Saha(IITB, India)

Based on Phys.Rev.D 105 (2022) \&
JM, Mukherjee, Nair, Saha in preparation

QEIC II, IIT Delhi

December 20, 2022
(1) Re-Introduce
(2) EMT and Dressed quark model
(3) GFFs of quark and gluon
(4) Plots of GFFs
(5) D-term and pressure distributions
(6) Conclusions

Notation [Harindranath 1996]

$$
\begin{aligned}
x^{\mu} & =\left(x^{+}, x^{-}, \mathbf{x}^{\perp}\right) \\
\text { where } x^{+} & =x^{0}+x^{3}, \quad x^{-}=x^{0}-x^{3}, \quad \mathbf{x}^{\perp}=\left(x^{1}, x^{2}\right)
\end{aligned}
$$

Momentum: $p^{\mu}=\left(p^{+}, p^{-}, \mathbf{p}^{\perp}\right)$
long. momentum

The metric tensor:

$$
g^{\mu \nu}=\left[\begin{array}{cccc}
0 & 2 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Mass shell condition $p^{-}=\frac{\mathbf{p}_{\perp}^{2}+m^{2}}{2 p^{+}}$

Deeply Virtual Compton Scattering:: $e p \rightarrow e^{\prime} p^{\prime} \gamma$

Bjorken limit:

$$
\left.\begin{array}{rl}
Q^{2}=-q^{2} & \rightarrow \infty \\
\nu & \rightarrow \infty
\end{array}\right\} \quad x_{B}=\frac{Q^{2}}{2 M \nu} \text { fixed }
$$

$\xi=0$, momentum transfer is purely transverse

GPD \Longleftrightarrow GFFs [Shohini's Talk]

The second Mellin's moment of GPDs:

$$
\begin{aligned}
& \int_{-1}^{1} d x x H^{a}(x, \xi, t)=A^{a}(t)+\xi^{2} D^{a}(t) \\
& \int_{-1}^{1} d x x E^{a}(x, \xi, t)=B^{a}(t)-\xi^{2} D^{a}(t)
\end{aligned}
$$

Ji sum rule: [Ji, PRL 78, (1997)]

Gravitational Form Factors:

Recall: The electromagnetic interaction of a nucleon with an external EM field $::\left\langle p^{\prime}\right| J^{\mu}|p\rangle A_{\mu}$

Gravitational Form Factors:

Recall: The electromagnetic interaction of a nucleon with an external EM field :: $\left\langle p^{\prime}\right| J^{\mu}|p\rangle A_{\mu}$

- Fundamentally one may think the gravitons interacting with the quarks and gluons
- Gravitons not feasible in collider yet. This can be thought of as a pair of vector bosons interacting with quarks and gluons.
- If one calculates the amplitude of such a process in the quantum field theory framework it appears to be dependent on the square of the momentum transfer q^{2}.
- Moments of generalized parton distribution constrainted
 by hard scattering process.

Figs. [Kumano 2018]

Where do you find GFFs?

- DVCS: quark structure @ JLAB proton D term: [Burkert 2018]
- DVMP: gluon structure @ Belle pion GFFs extracted [Kumano 2018]
- @Future EIC aims to extract gluon D-term

P.C. google

Energy mometum tensor

The QCD Lagrangian

$$
\mathcal{L}_{Q C D}=\frac{1}{2} \bar{\psi}\left(i \gamma_{\mu} D^{\mu}-m\right) \psi-\frac{1}{4} F_{a}^{\mu \nu} F_{\mu \nu}^{a},
$$

where the covariant derivative $i D^{\mu}=i \overleftrightarrow{\partial}^{\mu}+g A^{\mu}$
The field strength tensor

$$
F_{a}^{\mu \nu}=\partial^{\mu} A_{a}^{\nu}-\partial^{\nu} A_{a}^{\mu}+g f^{a b c} A_{b}^{\mu} A_{c}^{\nu} .
$$

ψ and $A^{\mu}:=$ the fermion and boson field respectively.

Energy momentum tensor

The symmetric QCD EMT

$$
\theta^{\mu \nu}=\theta_{q}^{\mu \nu}+\theta_{g}^{\mu \nu}
$$

where

$$
\begin{aligned}
\theta_{q}^{\mu \nu} & =\frac{1}{2} \bar{\psi} i\left[\gamma^{\mu} D^{\nu}+\gamma^{\nu} D^{\mu}\right] \psi-g^{\mu \nu} \bar{\psi}\left(i \gamma^{\lambda} D_{\lambda}-m\right) \psi \\
\theta_{g}^{\mu \nu} & =-F^{\mu \lambda a} F_{\lambda a}^{\nu}+\frac{1}{4} g^{\mu \nu}\left(F_{\lambda \sigma a}\right)^{2}
\end{aligned}
$$

Energy momentum tensor

The symmetric QCD EMT

$$
\theta^{\mu \nu}=\theta_{q}^{\mu \nu}+\theta_{g}^{\mu \nu}
$$

where

$$
\begin{aligned}
\theta_{q}^{\mu \nu} & =\frac{1}{2} \bar{\psi} i\left[\gamma^{\mu} D^{\nu}+\gamma^{\nu} D^{\mu}\right] \psi-\underbrace{g^{\mu \nu} \bar{\psi}\left(i \gamma^{\lambda} D_{\lambda}-m\right) \psi}_{=0(E O M)} \\
\theta_{g}^{\mu \nu} & =-F^{\mu \lambda a} F_{\lambda a}^{\nu}+\frac{1}{4} g^{\mu \nu}\left(F_{\lambda \sigma a}\right)^{2}
\end{aligned}
$$

Parametrization of matrix element in terms of GFFs for a spin $-1 / 2$ system

$$
\begin{aligned}
\left\langle p^{\prime}, s^{\prime}\right| \theta_{i}^{\mu \nu}(0)|p, s\rangle & =\bar{U}\left(p^{\prime}, s^{\prime}\right)\left[-B_{i}\left(q^{2}\right) \frac{P^{\mu} P^{\nu}}{M}\right. \\
& +\left(A_{i}\left(q^{2}\right)+B_{i}\left(q^{2}\right)\right) \frac{1}{2}\left(\gamma^{\mu} P^{\nu}+\gamma^{\nu} P^{\mu}\right) \\
& +C_{i}\left(q^{2}\right) \frac{q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}}{M} \\
& \left.+\bar{C}_{i}\left(q^{2}\right) M g^{\mu \nu}\right] U(p, s)
\end{aligned}
$$

where $\bar{U}\left(p^{\prime}, s^{\prime}\right), U(p, s):=$ Dirac spinors $\quad P^{\mu}:=\frac{1}{2}\left(p^{\prime}+p\right)^{\mu}$ $M:=$ mass of the target state, $\quad q^{\mu}:=\left(p^{\prime}-p\right)^{\mu}$ A_{i}, B_{i}, C_{i} and $\bar{C}_{i}:=$ quark or gluon GFFs and $i \equiv(Q, G)$ [Harindranath, Kundu, Mukherjee PLB, 728 2014]

Equivalent decomposition:[Harindranath, Kundu, Mukherjee, PLB 728 (2014)]

$$
\begin{aligned}
\left\langle p^{\prime}, s^{\prime}\right| \theta_{i}^{\mu \nu}(0)|p, s\rangle & =\bar{U}\left(p^{\prime}, s^{\prime}\right)\left[A_{i}\left(q^{2}\right) \frac{P^{\mu} P^{\nu}}{M}+J_{i}\left(q^{2}\right) \frac{i\left(P^{\mu} \sigma^{\nu \rho}+P^{\nu} \sigma^{\mu \rho}\right) q_{\rho}}{2 M}\right. \\
& \left.+D_{i}\left(q^{2}\right) \frac{q^{\mu} q^{\nu}-g^{\mu \nu} q^{2}}{4 M}+M \bar{C}_{i}\left(q^{2}\right) g^{\mu \nu}\right] U(p, s),
\end{aligned}
$$

Momentum Conservation

[Polyakov and Schweitzer, (2018),
Pagels Phys. Rev., (1966).]

Total angular momentum conservation

$$
\sum_{i} B_{i}(0)=0
$$

[Ji, PRL, 78:610-613,(1997)].

Unconstrained D term ${ }^{1}$

$$
\begin{aligned}
\left\langle p^{\prime}, s^{\prime}\right| \theta_{i}^{\mu \nu}(0)|p, s\rangle= & \bar{U}\left(p^{\prime}, s^{\prime}\right)[厶, \\
+ & \left.D_{i}\left(q^{2}\right) \frac{q^{\mu} q^{\nu}-g^{\mu \nu} q^{2}}{4 M}+M q^{2}\right) \\
& \left.\delta g^{i j}\right)
\end{aligned}
$$

Mechanícal properities Pressure \& shear force

Related to stress tensor and internal forces

Conservation of EMT

$$
\begin{aligned}
& \left\langle p^{\prime}, s^{\prime}\right| \theta_{i}^{\mu \nu}(0)|p, s\rangle=\bar{U}\left(p^{\prime}, s^{\prime}\right)\left[A_{i} q^{2}, \frac{\beta^{\mu} \rho^{2}}{A_{i}}+j_{i}\left(q^{2}\right) \frac{\rho^{\mu} \sigma^{\nu \rho}+\rho^{\nu}}{2 N i}\right. \\
& \left.\mathcal{H}_{1}\left(q^{2}\right) \frac{q^{\mu} q^{\prime}-g^{\mu \nu} q^{2}}{4 M}+M \bar{C}_{i}\left(q^{2}\right) g^{\mu \nu}\right] U(p, s) \\
& \delta g^{i j} \\
& \sum_{i} \overline{C_{i}}(0)=0
\end{aligned}
$$

[Lorcé, Moutarde and Trawiński, EPJC 79(1), 89,(2019)]

Dressed quark model (DQM)

Instead of a proton state, we take a quark dressed with a gluon. This is a composite spin $1 / 2$ state. (relativistic)

- Due to the presence of gluon dressing, the model employs a gluonic degree of freedom
- The dressed quark state can be expanded in terms of light-front wave functions (LFWFs). Although the LFWF of a bound state, like a proton, cannot be calculated analytically, the LFWF for a dressed quark can be calculated analytically in perturbation theory
- LFWFs are boost invariant and can be written in terms of relative momenta that are frame independent.

Fock state expansion of quark state dressed with a gluon

$$
\begin{aligned}
\left|p^{+}, p_{\perp}, s\right\rangle= & \Phi^{s}(p) b_{s}^{\dagger}(p)|0\rangle+\sum_{s_{1} s_{2}} \int \frac{d p_{1}^{+} d^{2} p_{1}^{\perp}}{\sqrt{16 \pi^{3} p_{1}^{+}}} \int \frac{d p_{2}^{+} d^{2} p_{2}^{\perp}}{\sqrt{16 \pi^{3} p_{2}^{+}}} \sqrt{16 \pi^{3} p^{+}} \\
& \times \delta^{3}\left(p-p_{1}-p_{2}\right) \Phi_{s_{1} s_{2}}^{s}\left(p ; p_{1}, p_{2}\right) b_{s_{1}}^{\dagger}\left(p_{1}\right) a_{s_{2}}^{\dagger}\left(p_{2}\right)|0\rangle
\end{aligned}
$$

$\Phi^{s}(p)$: a normalized wavefunction;
$\Phi_{s_{1} s_{2}}^{s}\left(p ; p_{1}, p_{2}\right)$: two particle LFWF, related to the boost invariant wavefunction

$$
\sqrt{P^{+}} \Phi_{s_{1} s_{2}}^{s}\left(p ; p_{1}, p_{2}\right)=\Psi_{s_{1} s_{2}}^{s}\left(x_{i}, q_{i}^{\perp}\right)
$$

[Harindranath and Kundu PRD 59116013 (1999)]

The Jacobi momenta:

$$
p_{i}^{+}=x_{i} P^{+} \text {and } q_{i}^{\perp}=p_{i}^{\perp}+x_{i} P^{\perp}
$$

such that

$$
\sum_{i} x_{i}=1, \quad \sum_{i} q_{i}^{\perp}=0
$$

The two particle LFWF ${ }^{2}$

$$
\begin{aligned}
\Psi_{s_{1} s_{2}}^{a s}\left(x, q^{\perp}\right) & =\frac{1}{\left[m^{2}-\frac{m^{2}+\left(q^{\perp}\right)^{2}}{x}-\frac{\left(q^{\perp}\right)^{2}}{1-x}\right]} \frac{g}{\sqrt{2(2 \pi)^{3}}} T^{a} \chi_{s_{1}}^{\dagger} \frac{1}{\sqrt{1-x}} \\
& \times\left[-2 \frac{q^{\perp}}{1-x}-\frac{\left(\sigma^{\perp} \cdot q^{\perp}\right) \sigma^{\perp}}{x}+\frac{i m \sigma^{\perp}(1-x)}{x}\right] \chi_{s}\left(\epsilon_{s_{2}}^{\perp}\right)^{*}
\end{aligned}
$$

χ : two component spinor; m: dressed quark mass= bare quark mass
[Harindranath and Kundu PRD 59116013 (1999);
Zhang and Harindranath, PRD 48, 4881 (1993)]
${ }^{2}$ Independent of the momentum of the bound state.

Two-component formalism:[Zhang and Harindranath, PRD 48, (1993)]

The quark field decompostion

$$
\psi=\psi_{+}+\psi_{-}
$$

where $\psi_{ \pm}=\Lambda_{ \pm} \psi$ and $\Lambda_{ \pm}$are the projection operators.
One uses the constraint equations in the light-cone gauge to eliminate the redundant degree of freedom and express the fields in terms of physically independent degrees of freedom. ${ }^{3}$

$$
A_{a}^{\perp}, \quad \psi^{+} \rightarrow " \text { good" }
$$

$$
A_{a}^{-}, \quad \psi^{-} \rightarrow " \text { bad" }
$$

Fixing of gauge simplifies the relativistic fermion structure

[^0]
Drell-Yan Frame $q^{+}=0$

Initial momentum: $\quad p^{\mu}=\left(p^{+}, \mathbf{0}^{\perp}, \frac{M^{2}}{p^{+}}\right)$,
Final momentum: $\quad p^{\prime \mu}=\left(p^{+}, \boldsymbol{q}^{\perp}, \frac{\boldsymbol{q}^{\perp 2}+M^{2}}{p^{+}}\right)$, Invariant momentum transfer: $q^{\mu}=\left(p^{\prime}-p\right)^{\mu}=\left(0, \boldsymbol{q}^{\perp}, \frac{\boldsymbol{q}^{\perp 2}}{p^{+}}\right)$.

Flag
$\boldsymbol{p}^{\perp}=0 \quad \Longrightarrow \quad q^{2}=-\boldsymbol{q}^{\perp 2}$.

Recipe: To extract the four GFFs

$$
\mathcal{M}_{s s^{\prime}}^{\mu \nu}=\frac{1}{2}\left[\left\langle p^{\prime}, s^{\prime}\right| \theta_{i}^{\mu \nu}(0)|p, s\rangle\right]
$$

where the Lorentz indices $(\mu, \nu) \equiv\{+,-, 1,2\},\left(s, s^{\prime}\right) \equiv\{\uparrow, \downarrow\}$ is the helicity of the initial and final state. $\uparrow(\downarrow)$ positive (negative) spin projection along z - axis.

Example: Diagonal component of EMT

$$
\left[\mathcal{M}_{\sigma^{\prime} \sigma}^{++}\right]_{2, \mathrm{D}}=2 P^{+2} \sum_{\lambda_{2}, \lambda_{2}^{\prime}, \sigma_{1}} \int\left[x \kappa^{\perp}\right] \phi_{2 \sigma^{\prime}}^{* \sigma_{1}, \lambda_{2}^{\prime}}\left((1-x),-\boldsymbol{\kappa}^{\prime \perp}\right)\left[x \epsilon_{\lambda_{2}^{\prime}}^{i *} \epsilon_{\lambda_{2}}^{i}\right] \phi_{2 \sigma}^{\sigma_{1}, \lambda_{2}}((1-x),-\boldsymbol{\kappa}
$$

Extraction of $\boldsymbol{A}_{i}\left(q^{2}\right)$ and $\boldsymbol{B}_{i}\left(q^{2}\right)$

$$
\begin{aligned}
& \mathcal{M}_{\uparrow \uparrow}^{\boxed{++}}+\mathcal{M}_{\boxed{\downarrow}}^{\boxed{++}}=2\left(P^{+}\right)^{2} \boldsymbol{A}_{i}\left(q^{2}\right) \\
& \mathcal{M}_{\uparrow \downarrow}^{\boxed{++}}+\mathcal{M}_{\downarrow \uparrow}^{\boxed{++}}=\frac{i q^{(2)}}{M}\left(P^{+}\right)^{2} \boldsymbol{B}_{i}\left(q^{2}\right)
\end{aligned}
$$

Extraction of $\boldsymbol{D}_{i}\left(q^{2}\right)$ and $\overline{\boldsymbol{C}}_{i}\left(q^{2}\right)$

$$
\begin{aligned}
& {\left[\mathcal{M}_{\sigma^{\prime} \sigma}^{11}+\mathcal{M}_{\sigma^{\prime}}^{22}\right]_{2, \mathrm{D}} } \\
= & \sum_{\lambda_{2}, \lambda^{\prime}, \sigma_{1}} \int\left[x \boldsymbol{\kappa}^{\perp}\right] \phi_{2 \sigma^{\prime}}^{* \sigma_{1} \lambda_{2}^{\prime}}\left((1-x),-\boldsymbol{\kappa}^{\prime \perp} ; x, \boldsymbol{\kappa}^{\prime \perp}\right)\left[\mathcal{O}^{\mathbf{i i}}\right] \phi_{2 \sigma}^{\sigma_{1}, \lambda_{2}}\left((1-x),-\boldsymbol{\kappa}^{\perp} ; x, \boldsymbol{\kappa}^{\perp}\right)
\end{aligned}
$$

Extraction of $\boldsymbol{D}_{i}\left(q^{2}\right)$ and $\overline{\boldsymbol{C}}_{i}\left(q^{2}\right)$

$$
\begin{aligned}
& {\left[\mathcal{M}_{\sigma^{\prime} \sigma}^{11}+\mathcal{M}_{\sigma^{\prime} \sigma}^{22}\right]_{2, \mathrm{D}} } \\
= & \sum_{\lambda_{2}, \lambda_{2}^{\prime}, \sigma_{1}} \int\left[x \kappa^{\perp}\right] \phi_{2 \sigma^{\prime}}^{* \lambda_{1}^{\prime} \lambda^{\prime}}\left((1-x),-\boldsymbol{\kappa}^{\prime \perp} ; x, \boldsymbol{\kappa}^{\prime \perp}\right)\left[\mathcal{O}^{i i}\right] \phi_{2 \sigma}^{\sigma_{1}, \lambda_{2}}((1-x), \\
\mathcal{O}^{i i}= & \frac{1}{x}\left[\left(\boldsymbol{\kappa}^{\perp} \cdot \epsilon_{\lambda_{2}}^{\perp}\right)\left(\boldsymbol{\kappa}^{\perp} \cdot \epsilon_{\lambda_{2}}^{\perp *}+\boldsymbol{q}^{\perp} \cdot \epsilon_{\lambda_{2}^{\prime}}^{\perp *}\right)\right. \\
& +\left(\kappa^{(1)} \epsilon_{\lambda_{2}}^{(2)}\right)\left(\kappa^{(1)}+q^{(1)}\right) \epsilon_{\lambda_{2}^{\prime}}^{(2) *}+\left(\kappa^{(2)} \epsilon_{\lambda_{2}}^{(1)}\right)\left(\kappa^{(2)}+q^{(2)}\right) \epsilon_{\lambda_{2}^{\prime}}^{(1) *} \\
& \left.-\left(\kappa^{(1)} \epsilon_{\lambda_{2}}^{(2)}\right)\left(\kappa^{(2)}+q^{(2)}\right) \epsilon_{\lambda_{2}}^{(1) *}-\left(\kappa^{(1)}+q^{(1)}\right) \epsilon_{\lambda_{2}}^{(2) *}\left(\kappa^{(2)} \epsilon_{\lambda_{2}}^{(1)}\right)\right]
\end{aligned}
$$

$\bar{C}_{i}\left(q^{2}\right)$ is responsible for the non-conservation of the EMT

$$
\left\langle p^{\prime}, s^{\prime}\right| \partial_{\mu} \theta_{i}^{\mu \nu}(0)|p, s\rangle=i q^{\nu} M_{n} \bar{C}_{i}\left(q^{2}\right) \bar{U}\left(p^{\prime}, s^{\prime}\right) U(p, s) .
$$

Extraction of $D\left(q^{2}\right)$

$$
\mathcal{M}_{\uparrow \downarrow}^{\boxed{11}}+\mathcal{M}_{\downarrow \uparrow}^{\sqrt{11}}+\mathcal{M}_{\uparrow \downarrow}^{\boxed{22}}+\mathcal{M}_{\downarrow \uparrow}^{\boxed{22}}=i\left[\frac{q^{2}}{4 M} \boldsymbol{B}_{i}\left(q^{2}\right)-\frac{3 q^{2}}{M} \boldsymbol{C}_{i}\left(q^{2}\right)+2 M \bar{C}_{i}\left(q^{2}\right)\right] q^{(2)} .
$$

The quark GFFs: [JM, Mukherjee, Nair, Saha, PRD 105, (2022)]

$$
\begin{aligned}
A_{Q}\left(q^{2}\right) & =1+\frac{g^{2} C_{F}}{2 \pi^{2}}\left[\frac{11}{10}-\frac{4}{5}\left(1+\frac{2 m^{2}}{q^{2}}\right) \frac{f_{2}}{f_{1}}-\frac{1}{3} \log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right] \\
B_{Q}\left(q^{2}\right) & =\frac{g^{2} C_{F}}{12 \pi^{2}} \frac{m^{2}}{q^{2}} \frac{f_{2}}{f_{1}}, \\
D_{Q}\left(q^{2}\right) & =\frac{5 g^{2} C_{F}}{6 \pi^{2}} \frac{m^{2}}{q^{2}}\left(1-f_{1} f_{2}\right)=4 C_{Q}\left(q^{2}\right), \\
\bar{C}_{Q}\left(q^{2}\right) & =\frac{g^{2} C_{F}}{72 \pi^{2}}\left(29-30 f_{1} f_{2}+3 \log \left(\frac{\Lambda^{2}}{m^{2}}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{1}:=\frac{1}{2} \sqrt{1+\frac{4 m^{2}}{q^{2}}}, \\
& f_{2}:=\log \left(1+\frac{q^{2}\left(1+2 f_{1}\right)}{2 m^{2}}\right) .
\end{aligned}
$$

The gluon GFFs

$A_{G}\left(q^{2}\right)=\frac{g^{2} C_{F}}{8 \pi^{2}}\left[\frac{29}{9}+\frac{4}{3} \ln \left(\frac{\Lambda^{2}}{m^{2}}\right)-\int d x\left(\left(1+(1-x)^{2}\right)+\frac{4 m^{2} x^{2}}{q^{2}(1-x)}\right) \frac{\tilde{f}_{2}}{\tilde{f}_{1}}\right]$
$B_{G}\left(q^{2}\right)=-\frac{g^{2} C_{F}}{2 \pi^{2}} \int d x \frac{m^{2} x^{2}}{q^{2}} \frac{\tilde{f}_{2}}{\tilde{f}_{1}}$
$D_{G}\left(q^{2}\right)=\frac{g^{2} C_{F}}{6 \pi^{2}}\left[\frac{2 m^{2}}{3 q^{2}}+\int d x \frac{m^{2}}{q^{4}}\left(x\left((2-x) q^{2}-4 m^{2} x\right)\right)\right] \frac{\tilde{f}_{2}}{\tilde{f_{1}}}$
$\bar{C}_{G}\left(q^{2}\right)=\frac{g^{2} C_{F}}{72 \pi^{2}}\left[10+9 \int d x\left(x-\frac{4 m^{2} x^{2}}{q^{2}(1-x)}\right) \frac{\tilde{f}_{2}}{\tilde{f}_{1}}-3 \ln \left(\frac{\Lambda^{2}}{m^{2}}\right)\right]$
where,

$$
\begin{aligned}
& \tilde{f}_{1}:=\sqrt{1+\frac{4 m^{2} x^{2}}{q^{2}(1-x)^{2}}} \\
& \tilde{f}_{2}:=\ln \left(\frac{1+\tilde{f}_{1}}{-1+\tilde{f}_{1}}\right)
\end{aligned}
$$

Plots of GFFs

Plot of $A\left(q^{2}\right)$:

Figure: Plot of the GFFs $A_{i}\left(q^{2}\right)$ a as function of q^{2}, with $m=0.3 \mathrm{GeV}$ and $g=1$.
Infer: Conservation of mometum

$$
\sum_{i} A_{i}(0)=1
$$

Plot of $B\left(q^{2}\right)$:

Infer: anomalous gravitomagnetic moment

$$
\sum_{i} B_{i}(0)=0
$$

Conservation of total angular momentum:

$$
J(0)=\frac{1}{2}[(A(0)+B(0)]
$$

Plot of $D\left(q^{2}\right)$:

Figure: Plot of the GFFs $D_{i}\left(q^{2}\right)$ a as function of q^{2}, with $m=0.3 \mathrm{GeV}$ and $g=1$.

A comparision: [Metz etal Phys. Lett. B, 820:136501(2021)]

Figure: Plot of electron GFF $D_{e}\left(q^{2}\right)$ as function of q^{2}, here we set $m=0.511 \mathrm{MeV}$, $\alpha=\frac{1}{137}$.

A comparision: [Metz etal Phys. Lett. B, 820:136501(2021)]

Figure: Plot of electron GFF $D_{e}\left(q^{2}\right)$ as function of q^{2}, here we set $m=0.511 \mathrm{MeV}$, $\alpha=\frac{1}{137}$.

Plot of $\bar{C}\left(q^{2}\right)$:

Figure: Plot of the GFFs $\bar{C}_{i}\left(q^{2}\right)$ a as function of q^{2}, with $m=0.3 \mathrm{GeV}$ and $g=1$.

$$
\text { Infer: } \sum_{i} \bar{C}_{i}(0)=0
$$

Wave packets [Chakrabarti and Mukherjee (2005), Diehl (2002)]

- Densities corresponds to probablity hence two momentum integral
- Dependence of average momentum and momentum transfer
- These probablities are preferably studied in impact parameter space and so is pressure distributions
- Not only yields the Fourier transformed pressure in the impact parameter space but also gives smooth plots for the distribution
- Use Gaussian wave function with a rational choice of width

Pressure and Shear force distributions

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{2 M \boldsymbol{b}^{\perp}} \frac{d}{d \boldsymbol{b}^{\perp}}\left[\boldsymbol{b}^{\perp} \frac{d}{d \boldsymbol{b}^{\perp}} \widetilde{D}_{a}\left(\boldsymbol{b}^{\perp}\right)\right]-M \widetilde{\bar{C}}_{a}\left(\boldsymbol{b}^{\perp}\right) \quad \delta^{i j}+s_{a}(r)\left(\frac{r^{i} r^{j}}{r^{2}}-\frac{1}{3} \delta^{i j}\right) \quad \text { [Polyakov \& Schweitzer 2018] } \\
\\
\\
-\frac{\boldsymbol{b}^{\perp}}{M} \frac{d}{d \boldsymbol{b}^{\perp}}\left[\frac{1}{\boldsymbol{b}^{\perp}} \frac{d}{d \boldsymbol{b}^{\perp}} \widetilde{D}_{a}\left(\boldsymbol{b}^{\perp}\right)\right]
\end{array} \\
& \text { [Freese, Miller (2021)] } \\
& \text { FT: } \widetilde{\mathcal{F}}_{a}\left(\boldsymbol{b}^{\perp}\right)=\frac{1}{2 \pi} \int_{o}^{\infty} d \boldsymbol{q}^{\perp 2} J_{0}\left(\boldsymbol{q}^{\perp} \boldsymbol{b}^{\perp}\right) \mathcal{F}_{a}\left(q^{2}\right)
\end{aligned}
$$

$\mathcal{F}:=(A, B, D, \bar{C}) \quad J_{0}:=$ Bessel function of the zeroth order $\boldsymbol{b}^{\perp}:=$ Impact parameter $M:=$ mass of the dressed quark state.

Forces: Normal and Tangential [Chakrabarti etal. (2020), Aniki (2019)]

The combination of pressure and shear defines the normal and the tangential forces experienced by a ring of radius b^{\perp}

$$
\begin{aligned}
F_{n}\left(\boldsymbol{b}^{\perp}\right) & =2 \pi \boldsymbol{b}^{\perp}\left(p\left(\boldsymbol{b}^{\perp}\right)+\frac{1}{2} s\left(\boldsymbol{b}^{\perp}\right)\right), \\
F_{t}\left(\boldsymbol{b}^{\perp}\right) & =2 \pi \boldsymbol{b}^{\perp}\left(p\left(\boldsymbol{b}^{\perp}\right)-\frac{1}{2} s\left(\boldsymbol{b}^{\perp}\right)\right) .
\end{aligned}
$$

The energy density and pressure distributions [Lorce etal. (2019)]

$$
\begin{aligned}
\mu_{i}\left(\boldsymbol{b}^{\perp}\right) & =M\left[\frac{1}{2} A_{i}\left(\boldsymbol{b}^{\perp}\right)+\bar{C}_{i}\left(\boldsymbol{b}^{\perp}\right)+\frac{1}{4 M^{2}} \frac{1}{\boldsymbol{b}^{\perp}} \frac{d}{d \boldsymbol{b}^{\perp}}\right. \\
& \left.\times\left(\boldsymbol{b}^{\perp} \frac{d}{d \boldsymbol{b}^{\perp}}\left[\frac{1}{2} B_{i}\left(\boldsymbol{b}^{\perp}\right)-4 C_{i}\left(\boldsymbol{b}^{\perp}\right)\right]\right)\right], \\
\sigma_{i}^{r}\left(\boldsymbol{b}^{\perp}\right) & =M\left[-\bar{C}_{i}\left(\boldsymbol{b}^{\perp}\right)+\frac{1}{M^{2}} \frac{1}{\boldsymbol{b}^{\perp}} \frac{d C_{i}\left(\boldsymbol{b}^{\perp}\right)}{d \boldsymbol{b}^{\perp}}\right], \\
\sigma_{i}^{t}\left(\boldsymbol{b}^{\perp}\right) & =M\left[-\bar{C}_{i}\left(\boldsymbol{b}^{\perp}\right)+\frac{1}{M^{2}} \frac{d^{2} C_{i}\left(\boldsymbol{b}^{\perp}\right)}{d \boldsymbol{b}^{\perp 2}}\right], \\
\sigma_{i}\left(\boldsymbol{b}^{\perp}\right) & =M\left[-\bar{C}_{i}\left(\boldsymbol{b}^{\perp}\right)+\frac{1}{2} \frac{1}{M^{2}} \frac{1}{\boldsymbol{b}^{\perp}} \frac{d}{d \boldsymbol{b}^{\perp}}\left(\boldsymbol{b}^{\perp} \frac{d C_{i}\left(\boldsymbol{b}^{\perp}\right)}{d \boldsymbol{b}^{\perp}}\right)\right], \\
\Pi_{i}\left(\boldsymbol{b}^{\perp}\right) & =M\left[-\frac{1}{M^{2}} \boldsymbol{b}^{\perp} \frac{d}{d \boldsymbol{b}^{\perp}}\left(\frac{1}{\boldsymbol{b}^{\perp}} \frac{d C_{i}\left(\boldsymbol{b}^{\perp}\right)}{d \boldsymbol{b}^{\perp}}\right)\right] .
\end{aligned}
$$

The energy density and pressure distributions [Lorce etal. (2019)]

$$
\left.\begin{array}{rl}
\mu_{i}\left(\boldsymbol{b}^{\perp}\right) & =M\left[\frac{1}{2} A_{i}\left(\boldsymbol{b}^{\perp}\right)+\bar{C}_{i}\left(\boldsymbol{b}^{\perp}\right)+\frac{1}{4 M^{2}} \frac{1}{\boldsymbol{b}^{\perp}} \frac{d}{d \boldsymbol{b}^{\perp}}\right. \\
& \left.\times\left(\boldsymbol{b}^{\perp} \frac{d}{d \boldsymbol{b}^{\perp}}\left[\frac{1}{2} B_{i}\left(\boldsymbol{b}^{\perp}\right)-4 C_{i}\left(\boldsymbol{b}^{\perp}\right)\right]\right)\right], \\
\sigma_{i}^{r}\left(\boldsymbol{b}^{\perp}\right) \\
\sigma_{i}^{t}\left(\boldsymbol{b}^{\perp}\right) \\
\sigma_{i}\left(\boldsymbol{b}^{\perp}\right)
\end{array}\right\} \begin{array}{r}
\sigma_{i}=\frac{\left(\sigma_{i}^{r}+\sigma_{i}^{t}\right)}{2} \\
\Pi_{i}=\sigma_{i}^{r}-\sigma_{i}^{t} .
\end{array}
$$

Analysis of Pressure distributions

[Burkert, Nature (2018)]

Infer: 1) The net repulsive force (inner region) and the attractive force (outer region) are balanced
2) Satisfies Von-Laue condition:

$$
\int_{0}^{\infty} d^{2} \boldsymbol{b}^{\perp} p\left(\boldsymbol{b}^{\perp}\right)=0
$$

Analysis of Shear Force

Analysis of Force

Energy density

Radial and tangential Pressure

Isotropic Pressure and Pressure Anisotropy

Note:

- Stress anisotropy in self-gravitating systems has been a subject of study
- It has been shown to affect the physical properties, stability and structure of stellar matter. [Dev, Gleiser (2002), Dev, Gleiser (2003), Silva etal. (2015)]
- Vanishes at the center and positive everywhere
- Ensures that radial pressure is always larger than tangential pressure

Concluding remarks

- EMT encapsulates the momentum, energy and pressure distributions.
- Though nucleon scattering by a gravitational field is not feasible, it's noteworthy that the GFFs can be extracted from experimental data.
- Analysis of quark and gluon GFFs in dressed quark model satisfies the sum rule.
- The pressure and shear distributions along with 2D distributions of quark and gluon are studied.
- The GFFs, pressure and shear force exhibit similar qualitative nature when compared to existing phenomenological models.

Backup

Gaussian wave packet

LFWF is replaced by the Gaussian wave packet

$$
\frac{1}{16 \pi^{3}} \int \frac{d^{2} \boldsymbol{p}^{\perp} d p^{+}}{p^{+}} \phi(p)\left|p^{+}, \boldsymbol{p}^{\perp}, \lambda\right\rangle
$$

with $\phi(p)=p^{+} \delta\left(p^{+}-p_{0}^{+}\right) \phi\left(\boldsymbol{p}^{\perp}\right)$. We choose a Gaussian shape for $\phi\left(\boldsymbol{p}^{\perp}\right)$ in transverse momentum :

$$
\phi\left(\boldsymbol{p}^{\perp}\right)=e^{-\frac{p^{\perp 2}}{2 \Delta^{2}}}
$$

where Δ is the width of Gaussian.
[Chakrabarti, D. and Mukherjee, A. (2005). Phys. Rev. D, 72:034013]
[Diehl, M. (2002). Eur. Phys. J. C, 25:223-232.

[^0]: ${ }^{3}$ Terminology: Gell-Mann and Fritzsch [Harindranath hep-ph/9410390v1]

