### Nuclear matter studies at sPHENIX

#### C-J. Naïm

Center for Frontiers in Nuclear Science

**QEIC** meeting

December 19th 2022





# Drell-Yan process as a golden probe

How can we probe the gluon density in nuclei at sPHENIX?

### References

- [Arleo, Naïm, Platchkov, JHEP01(2019)129]
- [Arleo, Naïm, JHEP07(2020)220]
- [sPH-TRG-2020-001]

# Drell-Yan in proton-proton collisions

At large momentum transfer in pp, scale  $Q \gg \Lambda_{QCD} \approx 200 \text{ MeV}$ 

$$pp \to \gamma^{\star}/Z^{0} \to \ell^{+}\ell^{-} + X$$

Factorization of cross section = approximation

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_{1} f_{i}^{\mathsf{p}}\left(\mathbf{x}_{1},\mu\right) \int \mathrm{d}x_{2} f_{j}^{\mathsf{p}}\left(\mathbf{x}_{2},\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(\mathbf{x}_{1},\mathbf{x}_{2},\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{p}}^{n}}{Q^{n}}\right)$$

- $\bullet$   $x_1$ ,  $x_2$ : fraction of momentum carried by the parton in proton;
- $f_{i,j}$ : Parton Distribution Function (PDF), *universal* non perturbative;
- ullet  $\hat{\sigma}_{ij}$  : partonic cross section calculable in perturbation theory .

### Drell-Yan partonic cross section very weel known!

CFNS QCD meeting 3 / 27

### Drell-Yan in proton-nucleus collisions

### Cross section in pA collisions assuming collinear factorization

$$\frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_{1} f_{i}^{\mathsf{p}}\left(x_{1},\mu\right) \int \mathrm{d}x_{2} f_{j}^{\mathsf{A}}\left(x_{2},\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_{1},x_{2},\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{A}}^{n}}{Q^{n}}\right)$$

Probing the PDF of a nucleus (without nuclear effects)

$$f_i^{\mathsf{A}} = Z f_i^{\mathsf{p}} + (A - Z) f_i^{\mathsf{n}}$$
  
 $\sigma_{\mathrm{pA}} = Z \sigma_{\mathrm{pp}} + (A - Z) \sigma_{\mathrm{pn}} \approx \mathsf{A} \sigma_{\mathrm{pp}}$ 

### Investigate nuclear effects via:

$$R_{\rm pA} \equiv \frac{1}{A} \frac{\mathsf{d}\sigma_{\rm pA}}{\mathsf{d}\sigma_{\rm pp}} \approx 1$$

#### because

- nuclear PDF effects (nPDF)
- energy loss/broadening effects

## sPHENIX experiment

### A transitional experiment...



- o pp, pA, and AA data:
- QGP, Hadron Physics, CNM; 170+ physics papers with 24k
- citations;

  Last run in this form 2016.





- o pp. pA, and AA data;
- Jet and beauty quarkonia physics;
- o Drell-Yan.





- ep and eA, with several nuclei;
- Transition PHENIX to EIC;
- Large coverage
- of tracking, calorimetry and PID.



2000 2017 - 2022 After 2025 *Time* 

### Drell-Yan at sPHENIX



- Possible to access small  $x \sim 10^{-2}$  to  $10^{-3}$ ;
- Complementary measurements from fixed targets to LHC.

6 / 27

# Luminosity expected at sPHENIX

| Year | Species                    | $\sqrt{s_{NN}}$ | Cryo    | Physics     | Rec. Lum.                             | Samp. Lum.                 |
|------|----------------------------|-----------------|---------|-------------|---------------------------------------|----------------------------|
|      |                            | [GeV]           | Weeks   | Weeks       | z  <10 cm                             | z  < 10  cm                |
| 2023 | Au+Au                      | 200             | 24 (28) | 9 (13)      | $3.7 (5.7) \mathrm{nb^{-1}}$          | 4.5 (6.9) nb <sup>-1</sup> |
| 2024 | $p^{\uparrow}p^{\uparrow}$ | 200             | 24 (28) | 12 (16)     | 0.3 (0.4) pb <sup>-1</sup> [5 kHz]    | 45 (62) pb <sup>-1</sup>   |
|      |                            |                 |         |             | 4.5 (6.2) pb <sup>-1</sup> [10%-str]  |                            |
| 2024 | p <sup>↑</sup> +Au         | 200             | _       | 5           | 0.003 pb <sup>-1</sup> [5 kHz]        | $0.11~{ m pb^{-1}}$        |
|      |                            |                 |         |             | $0.01~{ m pb^{-1}}~[10\%\mbox{-}str]$ |                            |
| 2025 | Au+Au                      | 200             | 24 (28) | 20.5 (24.5) | 13 (15) nb <sup>-1</sup>              | 21 (25) nb <sup>-1</sup>   |

- 2024 (pp & pAu):
   Commissioning and pp reference data and pAu cold QCD;
- 2025 (AuAu):
   Large statistics data collection for jets and heavy flavor observables.

# Drell-Yan at NLO - $\sqrt{s} = 200$ GeV - pp collisions





- At NLO:  $q\bar{q} \rightarrow \gamma^*$  and  $qg \rightarrow \gamma^*q + X$ ;
- qg contribution becomes significant at  $p_{\perp} \sim$  4 GeV;
- $\bullet$   $\sim$  80 % of qg contribution for 4  $\lesssim$   $p_{\perp}$   $\lesssim$  15 GeV.

CFNS QCD meeting 8 / 27

# nPDF (EPPS16)





9 / 27

- $\bullet \ \sigma^{\rm DY} \propto \left( u^{\rm p} \bar{u}^{\rm A} + u^{\rm A} \bar{u}^{\rm p} \right) \ {\rm for} \ {\rm p}_{\perp} < {\rm M}; \\$
- $\bullet \ \sigma^{\rm DY} \propto \left( q^{\rm p} g^{\rm A} + q^{\rm A} g^{\rm p} \right) \ {\rm for} \ 4 \lesssim \, {\rm p}_{\perp} \lesssim 15 \ {\rm GeV};$
- Huge uncertainties, especially in EMC/shadowing regions;
- Reduce others nPDF uncertainties thanks to DGLAP evolution.

CFNS QCD meeting

# Transport properties of cold nuclear matter (CNM)

### Definition

$$\hat{q} \equiv \frac{\mu^2}{\lambda} = \frac{d\Delta p_{\perp}^2}{dL}$$

- ullet  $\lambda$  is the parton mean free path in the medium;
- ullet  $\mu$  the typical momentum transferred during 1 soft collision;
- $\Delta p_{\perp}^2$  the transverse momentum exchanged between the propating parton and the medium.



CFNS QCD meeting 10 / 27

### CNM effects in Drell-Yan

### Initial-state energy loss (small formation time $t_f \lesssim L$ )

$$\langle E \rangle_{\rm LPM} \propto \alpha_s \hat{q} L^2$$

### Broadening effect

$$\Delta p_{\perp}^2 = \hat{\mathbf{q}} L$$

### Transport coefficient: scattering property of the medium

$$\hat{q}\left(x,Q^2=\Delta p_\perp^2\right) = \frac{4\pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x) = \hat{q}_0 \left[\frac{10^{-2}}{x}\right]^{0.3}$$

Two different obervables to probe the transport coefficient of CNM

# Drell-Yan at SPS energy

[Arleo, Naïm, Platchkov, JHEP01(2019)129]





12 / 27

- nPDF effect cannot alone describe prelimnary E906 data;
- Energy loss effect at  $\sqrt{s} = 15$  GeV leads to a strong suppression.

# Drell-Yan at LHC energy

#### [CMS-PAS-HIN-18-003]

Drell-Yan in pPb at  $\sqrt{s}=8.16$  TeV



- No suppression observed;
- LPM energy is suppressed at high beam energy;
- DY at LHC/RHIC: clean probe to constrain nPDF?

$$\Delta E^{\text{LPM}}/E 
ightarrow 0$$

## Drell-Yan: a clean probe of the saturation scale I

### $p_{\perp}$ spectra: an observable to probe transport properties

$$\Delta 
ho_{\perp}^2 = \left\langle 
ho_{\perp}^2 \right
angle_{
m hA} - \left\langle 
ho_{\perp}^2 
ight
angle_{
m hp} = rac{\mathcal{C}_R + \mathcal{C}_{R'}}{2\mathcal{N}_c} \left( \hat{q}_{
m A} \mathcal{L}_{
m A} - \hat{q}_{
m p} \mathcal{L}_{
m p} 
ight)$$

Low energy picture:  $t_{hard} \lesssim L$ :



- Drell-Yan:  $C_a + 0 = 4/3$ ;
- Quarkonia (octet) in pA:  $C_g + C_{[Q\bar{Q}]_8} = 3 + 3$ .

CFNS QCD meeting 14/27

## Drell-Yan: a clean probe of the saturation scale II

[Arleo, Naïm, JHEP07(2020)220]



- Simple model used at high energy  $\hat{q}(x) \propto \hat{q}_0 \times x^{-0.25}$ ;
- Extraction of  $\hat{q}_0 = 0.051 \pm 0.02 \text{ GeV}^2/\text{fm}$ .

CFNS QCD meeting 15 / 27

# Extraction of the transport coefficient



• New (strong?) constraint from Drell-Yan data at sPHENIX.

# Probe the coherence length via the broadening





- Probe the coherence lenght between low and high energy picture;
- Need to have better statistics to conclude → sPHENIX experiment.

# Drell-Yan analysis at sPHENIX

#### **Processes:**

- Charmonium  $(J/\psi, \psi')$
- Bottomonium (Υ)
- Open-Charm (D mesons)
- Bottom (B mesons)
- Drell-Yan

#### Procedure:

- **Simulate all QCD processes** in sPHENIX softwares and identify the contribution of each of them in HMDY region (4 i M i 8 GeV);
- Fit the mass spectrum with the following function:

$$\mathsf{f}(\mathsf{M})_{\mathrm{fit}} = \alpha_1 \mathsf{f}(\mathsf{M})_{\mathrm{MC}}^{\mathsf{Charmonium}} + \alpha_2 \mathsf{f}(\mathsf{M})_{\mathrm{MC}}^{\mathsf{DY}} + \alpha_3 \mathsf{f}(\mathsf{M})_{\mathrm{MC}}^{\mathrm{OC}} + \alpha_4 \mathsf{f}(\mathsf{M})_{\mathrm{MC}}^{\mathrm{Bottom}} + \alpha_5 \mathsf{f}(\mathsf{M})_{\mathrm{MC}}^{\mathsf{Bottomium}}$$

# Simulation by using sPHENIX software



- Very close shape from DY, Bottomium and OC contributions;
- ullet Bottom is **less steeper** compared to OC, especially at M  $\gtrsim$  4 GeV;
- Tail from charmonium/bottomium at low mass: QED radiation.

CFNS

## Drell-Yan - kinematic phase space





20 / 27

- Probe mainly high  $p_T$ : good for gluons!
- When  $M \sim p_{\mathsf{T}}$ ,  $x_{1/2} \sim \sqrt{M^2 + p_{\mathsf{T}}^2} e^{\pm y}/\sqrt{s}$ ;
- At forward:  $x \sim 10^{-3} 10^{-2}$ , shadowing region.

CFNS QCD meeting

### Internal jet structure

How can we probe the hadronization process at sPHENIX?

### Reference

• [Y-T. Chien et al., Phys Rev D.105.L051502]

## Internal jet structure

- Access the dynamics of hadronization;
- Charge-energy correlation for Leading (L) and Next-to-Leading particles (NL).



Parton shower evolution + non-perturbative gluon splitting

# Charge-energy correlation

- Compare the number of same charge particles  $h_1$  and  $h_2$  and the opposite charge particles  $h_1$  and  $\bar{h_2}$ ;
- Access to the "string-like hadronization".



### Observable:

$$r_c(X) = \frac{\mathrm{d}\sigma_{h_1 h_2}/\mathrm{d}X - \mathrm{d}\sigma_{h_1 \overline{h_2}}/\mathrm{d}X}{\mathrm{d}\sigma_{h_1 h_2}/\mathrm{d}X + \mathrm{d}\sigma_{h_1 \overline{h_2}}/\mathrm{d}X}$$

where h1 (L) ,h2 (NL)  $\in$  ( $\pi^{\pm}, K^{\pm}, p$ )

# Charge-energy scaling



- **Significant differences** in  $r_c$  observed for various flavor combinations;
- **Remarkable scaling** as a function of  $p_{\perp}^{\text{jet}}$ .

# Hadronization process

#### Formation time

$$t_f = \frac{2z(1-z)P}{k_{\perp}^2}$$

- P: total momentum of L and NL particles;
- $k_{\perp}$ : relative transverse momentum between L and NL particles;
- z: momentum fraction of NL particle.

### Goals

- Charge-energy correlation with  $t_f$  for pions, kaons and protons;
- Probe the flavor dependence of the hadronization process inside a jet.

### Formation time



- Two relevant regions:
  - Perturbative region for  $t_f \lesssim 10$  fm;
  - **②** Non-perturbative region for  $t_f \gtrsim 10$  fm.
- Difference in time formation between different mesons.

CFNS QCD meeting 26 / 27

### Conclusion

#### Drell-Yan at sPHENIX

- Unique opportunity to probe CNM effects;
- No LPM energy loss expected at sPHENIX energy;
- Complementary phase space between fixed targets and LHC energies;
- Can give an additional contraint on the transport coefficient.

**Not only DY** ... use the mass spectrum fit to study the Upsilon suppression (mass dependance of energy loss).

#### Jets at sPHENIX

- Unique opportunity to probe the internal jet structure;
- **Remarkable scaling** of  $r_c$  as a function of  $p_{\perp}$  jet;
- Access to the flavor dependence of the hadronization time.

CFNS QCD meeting 27 / 27