Probing gluon Orbital Angular Momentum through Exclusive dijet production at the EIC

QCD with Electron Ion Collider (QEIC) 11

Shohini Bhattacharya

Brookhaven National Laboratory
19 December 2022

Snapshots of the nucleons

Parton Distribution Functions

Snapshots of the nucleons

Form Factors

PDFs (x) **FFs** (Δ)

Outline

1. Progress in the last 6 years

Outline

- 1. Progress in the last 6 years
 - 2. Accessing Orbital Angular Momentum (OAM) through GTMDs

Generalized Transverse Momentum dependent Distributions (GTMDs)

Definition of a (quark) GTMD correlator:

$$W_{\lambda,\lambda'}^{q[\Gamma]} = \frac{1}{2} \int \frac{dz^{-}d^{2}\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik.z} < p', \lambda' |\bar{\psi}^{q}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi^{q}(\frac{z}{2}) |p, \lambda > \Big|_{z^{+}=0}$$

Generalized **T**ransverse **M**omentum dependent **D**istributions (GTMDs)

Definition of a (quark) GTMD correlator:

$$W_{\lambda,\lambda'}^{q[\Gamma]} = \frac{1}{2} \int \frac{dz^{-}d^{2}\vec{z}_{\perp}}{(2\pi)^{3}} e^{ik.z} < p', \lambda' |\bar{\psi}^{q}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi^{q}(\frac{z}{2}) |p, \lambda > \Big|_{z^{+}=0}$$

Parameterization of correlator through GTMDs:

Generalized **T**ransverse **M**omentum dependent **D**istributions (GTMDs)

Definition of a (quark) GTMD correlator:

$$W_{\lambda,\lambda'}^{q[\Gamma]} = \frac{1}{2} \int \frac{dz^- d^2 \vec{z}_\perp}{(2\pi)^3} e^{ik.z} < p', \lambda' | \bar{\psi}^q(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi^q(\frac{z}{2}) | p, \lambda > \bigg|_{z^+=0}$$

General results:

- i. 16 leading-twist GTMDs for quarks (Meissner, Metz, Schlegel, arXiv: 0906.5323)
- ii. 16 leading-twist GTMDs for gluons (Lorce, Pasquini, arXiv: 1307.4497)
- iii. GTMDs are complex functions

1) GTMDs are the "Mother Functions"

(Meissner, Metz, Schlegel, 2009) GTMDs $(x, \vec{k}_{\perp}, \Delta)$

1) GTMDs are the "Mother Functions"

2) GTMDs contain physics beyond TMDs & GPDs

(Meissner, Metz, Schlegel, 2009) GTMDs $(x, \vec{k}_{\perp}, \Delta)$

3) Connection to Wigner functions Wigner Distribution $(x, \vec{k}_{\perp}, \vec{b}_{\perp})$ (Belitsky, Ji, Yuan, 2003)

2-D Fourier Transform
$$(\vec{\Delta}_{\perp})$$
 $\xi = 0$

(Meissner, Metz, Schlegel, 2009) GTMDs $(x, \vec{k}_{\perp}, \Delta)$

 $\Delta = 0$

FFs (Δ)

Connection to Wigner functions Wigner Distribution $(x, \vec{k}_{\perp}, \vec{b}_{\perp})$ (Belitsky, Ji, Yuan, 2003)

Wigner distributions in NRQM (Wigner, 1932)

☐ Calculate from wave-functions:

$$W(x,k) = \int \frac{dx'}{2\pi} e^{-ikx'} \psi(x + \frac{x'}{2}) \,\psi^*(x - \frac{x'}{2})$$

- ☐ Connection with probability densities & observables:
- Position-space probability:

$$|\psi(x)|^2 = \int dk \, W(x,k)$$

Expectation value of observables:

$$\langle O \rangle = \int dx \int dk \ O(x,k) W(x,k)$$

Connection to Wigner functions Wigner Distribution $(x, \vec{k}_{\perp}, \vec{b}_{\perp})$ **3**)

(Belitsky, Ji, Yuan, 2003)

Wigner distributions in NRQM (Wigner, 1932)

☐ Calculate from wave-functions:

$$W(x,k) = \int \frac{dx'}{2\pi} e^{-ikx'} \psi(x + \frac{x'}{2}) \,\psi^*(x - \frac{x'}{2})$$

- ☐ Connection with probability densities & observables:
- Position-space probability:

$$|\psi(x)|^2 = \int dk \, W(x,k)$$

Expectation value of observables:

$$\langle O \rangle = \int dx \int dk \ O(x,k) W(x,k)$$

Wigner distributions in parton physics (Belitsky, Ji, Yuan, 2003)

☐ Defined through F.T. of GTMD correlator:

$$W^{[\Gamma]}(x, \vec{k}_{\perp}, \vec{b}_{\perp})$$

Application:

Orbital Angular Momentum (OAM)

$$< L_z^q > = \\ \int dx \int d^2 \vec{k}_\perp \int d^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) \bigg|_z W_L^{q[\gamma^+]}(x, \vec{k}_\perp, \vec{b}_\perp)$$

(Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

3) Connection

Parameterization of a GTMD correlator (Meissner, Metz, Schlegel, arXiv: 0906.5323):

$$\underbrace{\frac{k - \Delta/2}{k + \Delta/2}}_{\text{CIMDS}} = \frac{1}{2M} \bar{u}(p', \lambda') \left[\mathbf{F_{1,1}} + \frac{i\sigma^{i+}k_{\perp}^{i}}{P^{+}} \mathbf{F_{1,2}} + \frac{i\sigma^{i+}\Delta_{\perp}^{i}}{P^{+}} \mathbf{F_{1,3}} + \frac{i\sigma^{ij}k_{\perp}^{i}\Delta_{\perp}^{j}}{M^{2}} \mathbf{F_{1,4}} \right] u(p, \lambda)$$

an, 2003)

istributions in parton physics Yuan, 2003) elitsky,

lator:

Wigner distr (Wign

☐ Calculate from wave-functions:

$$W(x,k) = \int \frac{dx'}{2\pi} e^{-ikx'} \psi(x + \frac{x'}{2}) \, \psi^*(x - \frac{x}{2})$$

- ☐ Connection with probability densities & observables:
- Position-space probability:

$$|\psi(x)|^2 = \int dk \, W(x,k)$$

Expectation value of observables:

$$\langle O \rangle = \int dx \int dk \ O(x,k) \ W(x,k)$$

$\Delta = 0$

PDFs (x)

Orbital Angular Momentum (OAM)

Intuitive definition OAM $< L_z^q > =$ $\int dx \int d^2 \vec{k}_{\perp} \int d^2 \vec{b}_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp}) \left| W_L^{q[\gamma^+]}(x, \vec{k}_{\perp}, \vec{b}_{\perp}) \right|$

(Lorce, Pasquini, 2011 / Hatta, 2011 / Ji, Xiong, Yuan, 2012)

Connection

Parameterization of a GTMD correlator (Meissner, Metz, Schlegel, arXiv: 0906.5323):

 $\underline{\mathbf{GTMDS}} \stackrel{k+\Delta/2}{=} \frac{1}{2M} \, \bar{u}(p',\lambda') \left[\mathbf{F_{1,1}} + \frac{i\sigma^{i+}k_{\perp}^{i}}{P^{+}} \, \mathbf{F_{1,2}} + \frac{i\sigma^{i+}\Delta_{\perp}^{i}}{P^{+}} \, \mathbf{F_{1,3}} + \frac{i\sigma^{ij}k_{\perp}^{i}\Delta_{\perp}^{j}}{M^{2}} \, \mathbf{F_{1,4}} \right] u(p,\lambda)$

istributio s in parton physics

lator:

elitsky, Yuan, 2003)

an, 2003)

e from wave-functions:

$$W(x,k) = \int \frac{dx'}{2\pi} e^{-ikx'} \psi(x + \frac{x'}{2}) \, \psi^*(x - \frac{x}{2})$$

ection with probability densities &

Orbital Angular Momentum (OAM)

$L_z^{q,g} = -\int dx \int d^2 \vec{k}_\perp \frac{\vec{k}_\perp^2}{M^2} F_{1,4}^{q,g}(x, \vec{k}_\perp^2)$

Relation between GTMD
$$m{F_{1,4}^{q,g}}$$
 & OAM $(\vec{b}_{\perp} imes \vec{k}_{\perp}) \Big|_z W_L^{q[\gamma^+]}(x, \vec{k}_{\perp}, \vec{b}_{\perp})$

Intuitive definition

latta, 2011 /

Ji, Xiong, Yuan, 2012)

OAM

Observables for GTMDs: State of the art

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

"Elliptic" Wigner distribution:

$$W(x, \vec{k}_{\perp}, \vec{b}_{\perp}) \approx W_0(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|)$$

 $+ 2\cos 2 (\phi_k - \phi_b) W_1(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|)$

Main result:

$$\frac{d\sigma}{dy_1 dy_2 d^2 \vec{\Delta}_{\perp} d^2 \vec{P}_{\perp}} \propto z(1-z)[z^2 + (1-z)^2] \int d^2 k_{\perp} d^2 k'_{\perp} S(k_{\perp}, \Delta_{\perp}) S(k'_{\perp}, \Delta_{\perp})$$

$$\times \left[\frac{\vec{P}_{\perp}}{P_{\perp}^2 + \epsilon^2} - \frac{\vec{P}_{\perp} - \vec{k}_{\perp}}{(P_{\perp} - k_{\perp})^2 + \epsilon^2} \right] \cdot \left[\frac{\vec{P}_{\perp}}{P_{\perp}^2 + \epsilon^2} - \frac{\vec{P}_{\perp} - \vec{k}'_{\perp}}{(P_{\perp} - k'_{\perp})^2 + \epsilon^2} \right]$$

$$\approx d\sigma_0 + 2\cos 2\left(\phi_{P_\perp} - \phi_{\Delta_\perp}\right)d\tilde{\sigma}$$

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

"Elliptic" Wigner distribution:

$$W(x, \vec{k}_{\perp}, \vec{b}_{\perp}) \approx W_0(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|)$$

 $+ 2\cos 2 (\phi_k - \phi_b) W_1(x, |\vec{k}_{\perp}|, |\vec{b}_{\perp}|)$

Main result:

$$\frac{d\sigma}{dy_1 dy_2 d^2 \vec{\Delta}_{\perp} d^2 \vec{P}_{\perp}} \propto z(1-z)[z^2 + (1-z)^2] \int d^2 k_{\perp} d^2 k'_{\perp} S(k_{\perp}, \Delta_{\perp}) S(k'_{\perp}, \Delta_{\perp})$$

Cosine angular modulation
$$\vec{P}_{\perp} = \frac{\vec{P}_{\perp} - \vec{k}_{\perp}}{(P_{\perp} - k_{\perp})^2 + \epsilon^2} \cdot \left[\frac{\vec{P}_{\perp} - \vec{k}_{\perp}}{(P_{\perp} - k_{\perp})^2 + \epsilon^2}\right] \cdot \left[\frac{\vec{P}_{\perp}}{P_{\perp}^2 + \epsilon^2} - \frac{\vec{P}_{\perp} - \vec{k}_{\perp}'}{(P_{\perp} - k_{\perp}')^2 + \epsilon^2}\right]$$

$$\approx d\sigma_0 \left(2\cos 2\left(\phi_{P_{\perp}} - \phi_{\Delta_{\perp}}\right)\right) \vec{\sigma}$$

$$\vec{P}_{\perp} = \frac{1}{2}(\vec{j}_{2\perp} - \vec{j}_{1\perp})$$

$$pprox d\sigma_0 + 2\cos 2\left(\phi_{P_\perp} - \phi_{\Delta_\perp}\right) l\tilde{\sigma}$$

$$ec{P}_{\perp}=rac{1}{2}(ec{j}_{2\perp}-ec{j}_{1\perp})$$

Exclusive dijet production in lepton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

"Fllintic" Wigner distribution

Exclusive dijet production in ultra-peripheral collisions at small-x (Hagiwara et al., arXiv: 1706.01765)

Same cosine angular correlation observed in UPC

Main resum

$$\frac{d\sigma}{dy_1 dy_2 d^2 \vec{\Delta}_{\perp} d^2 \vec{P}_{\perp}} \propto z(1-z)[z^2 + (1-z)^2] \int d^2 k_{\perp} d^2 k'_{\perp} S(k_{\perp}, \Delta_{\perp}) S(k'_{\perp}, \Delta_{\perp})$$

$$pprox d\sigma_0 \left(2\cos 2\left(\phi_{P_\perp} - \phi_{\Delta_\perp} \right) l ilde{\sigma}
ight) = rac{1}{2} (ec{j}_{2\perp} - ec{j}_{1\perp})$$

$$ec{P}_{\perp} = rac{1}{2}(ec{j}_{2\perp} - ec{j}_{1\perp})$$

Exclusiv

Coming up: epton-ion collisions at small-x (Hatta, Xiao, Yuan, arXiv: 1601.01585)

What happens if target is polarized?

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

Main result:

$$\frac{d\sigma}{dy_1 dy_2 d^2 \vec{\Delta}_{\perp} d^2 \vec{P}_{\perp}} \propto z(1$$

Cosine angula

 $\approx d\sigma_0$

What happens if in addition lepton is polarized?

arXiv: 2201.08709 (2022)

Signature of the gluon orbital angular momentum

Shohini Bhattacharya, 1, * Renaud Boussarie, 2, † and Yoshitaka Hatta 1, 3, ‡

Exclusive double quarkonium production (SB, Metz, Ojha, Tsai, Zhou, arXiv: 1802.10550)

Color Singlet Model: (Kuhn et. al., 1979, ...)

Main result:

$$\frac{1}{2} \left(\tau_{XY} - \tau_{YX} \right) \approx 2 \operatorname{Re.} \left\{ -\frac{\varepsilon_{\perp}^{ij} \Delta_{a\perp}^{j}}{M} C \left[\frac{k_{a\perp}^{i}}{M} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$$

Exclusive double quarkonium production (SB, Metz, Ojha, Tsai, Zhou, arXiv: 1802.10550)

Color Singlet Model: (Kuhn et. al., 1979, ...)

Main result:

$$\frac{1}{2} \left(\tau_{XY} - \tau_{YX} \right) \approx 2 \operatorname{Re.} \left\{ -\frac{\varepsilon_{\perp}^{ij} \Delta_{a\perp}^{j}}{M} C \left[\frac{k_{a\perp}^{i}}{M} F_{1,4}(x_a, \vec{k}_{a\perp}) F_{1,1}(x_b, \vec{k}_{b\perp}) \right] C \left[F_{1,1}^*(x_a, \vec{p}_{a\perp}) F_{1,1}^*(x_b, \vec{p}_{b\perp}) \right] \right\}$$

This linear combination of polarization observables is sensitive to gluon OAM

Single-exclusive pp collisions (Boussarie, Hatta, Xiao, Yuan, arXiv: 1807.08697)

Main result:

Access Weiszacker-Williams gluon GTMD

Example: Result for $\chi_1 \chi_1$ production

Unpolarized & Linearly-polarized GTMDs

arXiv: 1912.08182 (2019)

Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Samuel Wallon^{3, 4}

arXiv: 1912.08182 (2019)

Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Samuel Wallon^{3, 4}

The CMS Collaboration

Michael Murray's talk, DIS 2022

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

$$\left(Im. \mathbf{F_{1,2}} \Big|_{\Delta=0} = -f_{1T}^{\perp}\right)$$

arXiv: 1912.08182 (2019)

Probing the gluon Sivers function with an unpolarized target: GTMD distributions and the Odderons

Renaud Boussarie, Yoshitaka Hatta, Lech Szymanowski, and Samuel Wallon^{3, 4}

The CMS Collaboration

Michael Murray's talk, DIS 2022

Angular correlations in exclusive dijet photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

arXiv: 2106.13466 (2021)

Probing the gluon tomography in photoproduction of di-pions

Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

arXiv: 1702.04387 (2017)

Generalized TMDs and the exclusive double Drell-Yan process

Shohini Bhattacharya, Andreas Metz, and Jian Zhou²

First & only process sensitive to quark GTMDs

arXiv: 1702.04387 (2017)

Example of an observable

Generalized TMDs and the exclusive dou

Shohini Bhattacharya, Andreas Metz, a

$$\frac{1}{2} (\tau_{XY} - \tau_{YX}) = \frac{4}{M_a^2} (\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j) \text{Re.} \left\{ C^{(-)} \left[F_{1,1} \phi_{\pi} \right] C^{(+)} \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}^* \phi_{\pi}^* \right] - C^{(+)} \left[G_{1,4} \phi_{\pi} \right] C^{(-)} \left[\vec{\beta}_{\perp} \cdot \vec{p}_{a\perp} G_{1,1}^* \phi_{\pi}^* \right] \right\}$$

This observable is sensitive to OAM & spin-orbit correlation

First & only process sensitive to quark GTMDs

arXiv: 1702.04387 (2017)

Example of an observable

Generalized TMDs and the exclusive dou

Shohini Bhattacharya, Andreas Metz, a

$$\frac{1}{2} (\tau_{XY} - \tau_{YX}) = \frac{4}{M_a^2} (\varepsilon_{\perp}^{ij} \Delta q_{\perp}^i \Delta_{a\perp}^j) \text{Re.} \left\{ C^{(-)} \left[F_{1,1} \phi_{\pi} \right] C^{(+)} \left[\vec{\beta}_{\perp} \cdot \vec{k}_{a\perp} F_{1,4}^* \phi_{\pi}^* \right] - C^{(+)} \left[G_{1,4} \phi_{\pi} \right] C^{(-)} \left[\vec{\beta}_{\perp} \cdot \vec{p}_{a\perp} G_{1,1}^* \phi_{\pi}^* \right] \right\} \right\}$$

arXiv: 2208.00021 (2022)

First proof of factorization

This o

 $m(p_b)$ q' $\gamma_1^*(q_1, \lambda_1)$ $\gamma_2^*(q_2, \lambda_2)$ $N(p_a, \lambda_a)$

GTMDs and the factorization of exclusive double Drell-Yan

Miguel G. Echevarria^{a,b}, Patricia A. Gutierrez Garcia^c, Ignazio Scimemi^c

First & only process sensitive to quark GTMDs

Our recent work

Signature of the gluon orbital angular momentum

Shohini Bhattacharya, 1, * Renaud Boussarie, 2, † and Yoshitaka Hatta 1, 3, ‡

In Collaboration with:

Based on:

Renaud Boussarie (CPHT, CNRS)

Yoshitaka Hatta (BNL)

PRL 128, 182002 (arXiv: 2201.08709)

Inspiration

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

We took a fresh look at this 2016 paper

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1, 2 Feng Yuan, 3 and Yong Zhao 1, 3

Longitudinal single spin asymmetry (SSA):

$$\frac{d\Delta\sigma}{dydQ^{2}d\Omega} = \sigma_{0}h_{p}\frac{2(\bar{z}-z)(q_{\perp}\times\Delta_{\perp})}{q_{\perp}^{2}+\mu^{2}} \left[16\beta(1-y)\mathfrak{Im}[F_{g}^{*}+4\xi^{2}\bar{\beta}F_{g}^{\prime*}][\mathcal{L}_{g}+8\xi^{2}\bar{\beta}\mathcal{L}_{g}^{\prime}] + (1+(1-y)^{2})\mathfrak{Im}[F_{g}^{*}+2\xi^{2}(1-2\beta)F_{g}^{\prime*}][\mathcal{L}_{g}+2\bar{\beta}(1/z\bar{z}-2)(\mathcal{L}_{g}+4\xi^{2}(1-2\beta)\mathcal{L}_{g}^{\prime})]\right]$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

Schematic structure of SSA (oversimplified):

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

Moment of GPD

Signature of OAM is sinusoidal angular modulation

Longitudinal single spin asymmetry (SSA):

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}})(\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$
 Moment of OAM

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

Issues with SSA:

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\mathfrak{Im} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

Issues with SSA:

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta}) \left(\overline{z} - z \right) \left[\Im \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$

SSA vanishes for symmetric jet configurations $z=\bar{z}=\frac{1}{2}$

Summary of the 2016 paper

arXiv: 1612.02438 (2016)

Hunting the Gluon Orbital Angular Momentum Electron-Ion Collider

Xiangdong Ji, 1,2 Feng Yuan, 3 and Yong Zhao 1,3

Third pole at $x = \pm \xi$ \longrightarrow potentially dangerous for collinear factorization

"Compton Form Factor":
$$\mathcal{L}_g(\xi) = \int dx \frac{x^2 \xi L_g(x,\xi)}{(x^2 - \xi^2 + i\xi\epsilon)^3}$$

Issues with SSA:

$$q_{\perp} = q_{1\perp} - q_{2\perp}$$

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}} - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\Im \mathfrak{m} \left(F_g^*(\xi | \mathcal{L}_g(\xi)) \right) \right]$$

(See Cui, Hu, Ma, 1804.05293)

SSA vanishes for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

Our work

Signature of the gluon orbital angular momentum

Shohini Bhattacharya, 1, * Renaud Boussarie, 2, † and Yoshitaka Hatta 1, 3, ‡

Distinct feature in our work

Double spin asymmetry (DSA):-

Both electron & incoming proton are longitudinally polarized

Scattering amplitude

- 6 leading-order Feynman diagrams
- Scattering amplitude:

$$A \propto \int dx \int d^2k_{\perp} \, \mathcal{H}(x,\xi,q_{\perp},k_{\perp},\Delta_{\perp}) \, x f_g(x,\xi,k_{\perp},\Delta_{\perp})$$
 Hard part Soft part

Scattering amplitude

Twist expansion:

• Twist-2 amplitude: Proportional to gluon GPD

$$A_T^2 = \frac{ig_s^2 e_{em} e_q}{N_c} \frac{1}{q_\perp^2 + \mu^2} \left(\bar{u}(q_1) \not\in_\perp v(q_2) \right) \int dx \frac{1}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)}$$

$$\times \left(1 + \frac{2\xi^2 (1 - 2\beta)}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)} \right) \int d^2k_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$A_L^2 = \frac{ig_s^2 e_{em} e_q}{N_c} \frac{1}{(q_\perp^2 + \mu^2)^2} 4\xi z \overline{z} QW(\bar{u}(q_1)\gamma^- v(q_2)) \int dx \frac{1}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)} \times \left(1 + \frac{4\xi^2 \bar{\beta}}{(x + \xi - i\varepsilon)(x - \xi + i\varepsilon)}\right) \int d^2k_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

Relation between GTMD $F_{1,4}^{q,g}$ & OAM

gh exclusive dijet production

g amplitude

Twist expansion:

• Twist-3 amplitude: Proportional to gluon OAM

$$A_T^3 = -\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(\overline{z} - z)}{(q_\perp^2 + \mu^2)^2} \bar{u}(q_1) \epsilon_\perp \cdot \gamma_\perp v(q_2) \int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)}\right) \int d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$-\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(2\xi)^2 z\overline{z} W}{(q_\perp^2 + \mu^2)^2} \bar{u}(q_1) \gamma^- v(q_2) \int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \int d^2k_\perp \epsilon_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$A_{L}^{3} = \frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{16\xi^{2}(\overline{z}-z)z\overline{z}QW}{(q_{\perp}^{2}+\mu^{2})^{3}} \bar{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(1 + \frac{8\xi^{2}(1-\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right) \int d^{2}k_{\perp} \, q_{\perp} \cdot \mathbf{k_{\perp}} \, x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

Scattering amplitude

Twist expansion:

• Twist-3 amplitude: Proportional to gluon OAM

$$A_T^3 = -\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(\overline{z} - z)}{(q_\perp^2 + \mu^2)^2} \overline{u}(q_1) \epsilon_\perp \cdot \gamma_\perp v(q_2) \left(\int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)} \right) \right) d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$- \frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(2\xi)^2 z \overline{z} W}{(q_\perp^2 + \mu^2)^2} \overline{u}(q_1) \gamma^- v(a_2) \int dx \frac{x}{(a_2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)} \right) \int d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$
Factorization-breaking third poles at $x = \pm \xi$

Twist expansion:

Twist-3 amplitude: Proportion

Note: Gluon GPDs may contain $\sim \theta(\xi-|x|)(x^2-\xi^2)^2$ (See Radyushkin, 9805342)

Hence, integrals containing third poles are divergent

$$A_T^3 = -\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(\overline{z} - z)}{(q_\perp^2 + \mu^2)^2} \overline{u}(q_1) \epsilon_\perp \cdot \gamma_\perp v(q_2) \left(\int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)} \right) \right) d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

$$ig_s^2 e_{em} e_q \ 2(2\xi)^2 z \overline{z} W_{\overline{g}(g_1)} \gamma_{\overline{g}(g_2)} \int dx \frac{x}{(x^2 - \xi^2 + i\xi\varepsilon)^2} \left(2\xi + \frac{(2\xi)^3 (1 - 2\beta)}{(x^2 - \xi^2 + i\xi\varepsilon)} \right) \int d^2k_\perp q_\perp \cdot \mathbf{k}_\perp x f_g(x, \xi, k_\perp, \Delta_\perp)$$

Factorization-breaking third poles at $x=\pm \xi$

$$A_{L}^{3} = \frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{16\xi^{2}(\overline{z}-z)z\overline{z}QW}{(q_{\perp}^{2}+\mu^{2})^{3}} \overline{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(1 + \frac{8\xi^{2}(1-\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right) \int d^{2}k_{\perp} \ q_{\perp} \cdot \mathbf{k_{\perp}} \ xf_{g}(x,\xi,k_{\perp},\Delta_{\perp}) d^{2}k_{\perp} + \frac{1}{2} \int d^{2}k_{\perp} \ dx \cdot \mathbf{k_{\perp}} \cdot \mathbf{k$$

Scattering amplitude

Twist evnansion:

Switch off the factorization-breaking third poles by setting $z=\bar{z}=\frac{1}{2}$

$$A_{T}^{3} = -\frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{2(\overline{z}-z)}{q_{\perp}^{2} + \mu^{2})^{2}} \overline{u}(q_{1})\epsilon_{\perp} \cdot \gamma_{\perp}v(q_{2}) \left(\int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(2\xi + \frac{(2\xi)^{3}(1-2\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right)\right) d^{2}k_{\perp}q_{\perp} \cdot \mathbf{k}_{\perp} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

$$-\frac{ig_s^2 e_{em} e_q}{N} \frac{2(2\xi)^2 z \overline{z} W}{(z^2 + v^2)^2} \overline{u}(q_1) \gamma^- v(q_2) \int dr - \frac{x}{(z^2 + v^2)^2} \sqrt{u(q_1)} \gamma^- v(q_2) \int dr - \frac{x}{(z^2 + v^2)^2} \sqrt{u(q_2)} \sqrt{u(q_1)} \gamma^- v(q_2) \int dr - \frac{x}{(z^2 + v^2)^2} \sqrt{u(q_2)} \sqrt{u(q_$$

Factorization-breaking third poles at $x=\pm \xi$

$$A_{L}^{3} = \frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{16\xi^{2}(\overline{z}-z)z\overline{z}QW}{(q_{\perp}^{2}+\mu^{2})^{3}} \bar{u}(q_{1})\gamma^{-}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(1 + \frac{8\xi^{2}(1-\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right) \int d^{2}k_{\perp} q_{\perp} \cdot \mathbf{k_{\perp}} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp}) dx dx dx$$

Scattering amplitude

Twist evnansion:

Switch off the factorization-breaking third poles by setting $z=\bar{z}=\frac{1}{2}$

$$A_{T}^{3} = -\frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{2(\overline{z}-z)}{q_{\perp}^{2} + \mu^{2})^{2}} \overline{u}(q_{1})\epsilon_{\perp} \cdot \gamma_{\perp}v(q_{2}) \int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}} \left(2\xi + \frac{(2\xi)^{3}(1-2\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}\right) \int d^{2}k_{\perp}q_{\perp} \cdot \mathbf{k}_{\perp} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

Recall: Not possible in SSA

Factorization-breaking third poles at $x=\pm \xi$

Issues with SSA:

$$A_I^3 \quad q_\perp = q_{1\perp} - q_{2\perp} \qquad \frac{d\sigma}{dy dQ^2 d\Omega} \sim \sigma_0 h_p \, \sin(\phi_{q_\perp} - \phi_\Delta) \, \left(\overline{z} - z\right) \, \ln \left(F_g^*(\xi) \mathcal{L}_g(\xi)\right) \, \right]$$
 SSA vanishes for symmetric jet configurations $z = \overline{z} = \frac{1}{2}$

$$\frac{8\xi^{2}(1-\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)} d^{2}k_{\perp} q_{\perp} \cdot \mathbf{k}_{\perp} x f_{g}(x,\xi,k_{\perp},\Delta_{\perp})$$

Scattering amplitude

Twist evnansion:

Switch off the factorization-breaking third poles by setting $z=\bar{z}=\frac{1}{2}$

$$-\frac{ig_s^2 e_{em} e_q}{N_c} \frac{2(2\xi)^2 z \overline{z} W}{(q_{\perp}^2 + \mu^2)^2} \bar{u}(q_1) \gamma^- v(q_2) \int dx \frac{x}{(x^2 - \xi^2 + i\xi \varepsilon)^2} \int d^2 k_{\perp} \epsilon_{\perp} \cdot \mathbf{k}_{\perp} \, x f_g(x, \xi, k_{\perp}, \Delta_{\perp})$$

DSA is sensitive to OAM through an interference between twist-2 amplitude A^2 & twist-3 amplitude A_T^3 (No third pole)

$$A_{L}^{3} = \frac{ig_{s}^{2}e_{em}e_{q}}{N_{c}} \frac{16\xi^{2}(\overline{z}-z)z\overline{z}QW}{(q_{\perp}^{2}+\mu^{2})^{3}} \overline{u}(q_{1})\gamma^{-}v(q_{2}(\int dx \frac{x}{(x^{2}-\xi^{2}+i\xi\varepsilon)^{2}}) + \frac{8\xi^{2}(1-\beta)}{(x^{2}-\xi^{2}+i\xi\varepsilon)}) \int d^{2}k_{\perp} \ q_{\perp} \cdot \mathbf{k_{\perp}} \ xf_{g}(x,\xi,k_{\perp},\Delta_{\perp}) d^{2}k_{\perp} + \frac{16\xi^{2}(\overline{z}-z)z\overline{z}QW}{(z^{2}-\xi^{2}+i\xi\varepsilon)} d^{2}k_{\perp} + \frac{16\xi^{2}(\overline{z}-z)z\overline{z}QW}{(z^{2}-\xi^{2}+i\xi\varepsilon)}$$

Scattering amplitude

Main result (z = 1/2):

DSA's OAM part:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

Scattering amplitude

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

Main result (z = 1/2):

DSA's OAM part:

Consequence:

Elimination of factorization-breaking third poles at $x=\pm \xi$

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \mathfrak{Re} \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

$$\mathcal{L}_{g}(\xi) = \int_{-1}^{1} dx \frac{x^{2} L_{g}(x,\xi)}{(x-\xi+i\epsilon)(x+\xi-i\epsilon)} \mathcal{H}_{g}^{(2)}(\xi) = \int_{-1}^{1} dx \frac{\xi^{2} H_{g}(x,\xi)}{(x-\xi+i\epsilon)^{2}(x+\xi-i\epsilon)^{2}}$$

Scattering amplitude

Main result (z = 1/2):

DSA's OAM part:

Scattered lepton angle

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

Signature of gluon OAM is cosine angular modulation

Elusive dijet production

(Boussarie, Grabovsky, Szymanowski, Wallon, 1606.00419)

Schematic structure of SSA (oversimplified):

$$\frac{d\sigma}{dydQ^2d\Omega} \sim \sigma_0 h_p \sin(\phi_{q_{\perp}}) - \phi_{\Delta_{\perp}}) (\overline{z} - z) \left[\Im \mathfrak{m} \left(F_g^*(\xi) \mathcal{L}_g(\xi) \right) \right]$$

Jet angle affected by gluon emissions

ude

→ Jet 1

Scattered lepton angle

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

Signature of gluon OAM is cosine angular modulation

Scattering amplitude

Main result (z = 1/2):

DSA's OAM part:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \mathcal{D} \right]$$

"Compton Form Factors":

$$O(x,\xi) \equiv \int d^2 \widetilde{k}_{\perp} \frac{\widetilde{k}_{\perp}^2}{M^2} F_{1,2}(x,\xi,\widetilde{\Delta}_{\perp} = 0)$$

$$\mathcal{O}(\xi) = \int_{-1}^{1} dx \frac{xO(x,\xi)}{(x-\xi+i\epsilon)^2(x+\xi-i\epsilon)^2}$$

		8	3 1			
Scattering amplitude						
Not the end of the	he story:					

Scattering amplitude

Not the end of the story:

• Interference between unpolarized & helicity GPD (z=1/2):

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \Re \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right]$$

Helicity GPD

Scattering amplitude

Not the end of the story:

• Interference between unpolarized & helicity GPD (z=1/2):

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \Re \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right]$$

Helicity contributes to the same angular modulation as that of OAM

DSA is a simultaneous probe of gluon OAM & it's helicity

Numerical estimate of cross section

See backup slides for details on how we modelled GPDs and OAM

Numerical estimate of cross section

Realistic EIC kinematics

\sqrt{s} [GeV]	$oldsymbol{Q^2} \ [\mathrm{GeV^2}]$	y	ξ
120	2.7		
	4.8 0.7		$\lesssim 10^{-3}$
	10.0		

Focus on:
$$z=ar{z}=rac{1}{2}$$

Numerical estimate of cross section

Realistic EIC kinematics

\sqrt{s} [GeV]	$Q^2 \ [\mathrm{GeV}^2]$	y	ξ
120	2.7		
	4.8	4.8 0.7	
	10.0		

Focus on:
$$z = \bar{z} = \frac{1}{2}$$

Cross section:

$$\frac{d\sigma}{dy dQ^2 d\phi_{l_{\perp}} dz dq_{\perp}^2 d^2 \Delta_{\perp}} = \frac{\alpha_{em} y}{2^{11} \pi^7 Q^4} \frac{\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu}}{(W^2 + Q^2)(W^2 - M_J^2) z \overline{z}}$$

Numerical estimate of cross section

Realistic EIC kinematics

\sqrt{s} [GeV]	$Q^2 \ [{ m GeV}^2]$	y	ξ
	2.7		
120	4.8	0.7	$\lesssim 10^{-3}$
	100		

Focus on:

$$z = \bar{z} = \frac{1}{2}$$

Study cross section as differential in the skewness variable

Cross section:

$$dydQ^2dzd\xi d\delta \phi$$
 $d\sigma$
 $dydQ^2d\phi_{l_\perp}dzdq_\perp^2d\delta \Delta_\perp = \frac{lpha_{em}y}{2^{11}\pi^7Q^4}$

Relation between skewness & jet momenta:

$$\xi = \frac{q_{\perp}^2 + z\bar{z}Q^2}{-q_{\perp}^2 + z\bar{z}(Q^2 + 2W^2)}$$

Numerical estimate of cross section

Numerical estimate of cross section

Numerical estimate of cross section

OAM

Total

Helicity

0.0018

$$\mathbf{DSA:} \qquad \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathfrak{Re} \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] - \mathfrak{Re} \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right]$$

Numerical estimate of cross section

 $Q^2 = 10$

DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \Re \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] - \Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right]$$

Numerical estimate of cross section

DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathcal{H}_g^{(1)*}(\xi) \left(\tilde{\mathcal{H}}_g^{(2)}(\xi) + \frac{q_{\perp}^2 - Q^2/4}{q_{\perp}^2 + Q^2/4} \mathcal{L}_g(\xi) \right)$$

Numerical estimate of cross section

DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathcal{H}_g^{(1)*}(\xi) \left(\frac{\tilde{\mathcal{H}}_g^{(2)}(\xi)}{q_{\perp}^2 + Q^2/4} \mathcal{L}_g(\xi) \right)$$

 $\tilde{\mathcal{H}}_{g}^{(2)}$ & \mathcal{L}_{g} interfere positively/negatively depending upon sign of $q_{\perp}^{2} - \frac{Q^{2}}{4}$

Cancellation expected between Helicity & OAM at small $oldsymbol{x}$

Cancellation expected between Helicity & OAM at small x

$$\Delta G(x) pprox - L_g(x)$$

$$\mathbf{DSA:} \quad \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \big|_{\delta\phi=0} \sim \mathcal{H}_g^{(1)*}(\xi) \left(\frac{\tilde{\mathcal{H}}_g^{(2)}(\xi)}{q_{\perp}^2 + Q^2/4} \frac{q_{\perp}^2 - Q^2/4}{q_{\perp}^2 + Q^2/4} \frac{\mathcal{L}_g(\xi)}{q_{\perp}} \right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta G(x) \qquad \qquad L_g(x)$$

Cancellation expected between Helicity & OAM at small x

$$\Delta G(x) pprox - L_g(x)$$

DSA:
$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu}$$

Unique opportunity to study interplay between

$$\Delta G(x) \& L_g(x)$$

which has been so far only studied theoretically!

Caveat:

• In practice, measurements are done in a window in z around z=1/2Corrections of order $\sim (z-1/2)^2$ should be calculable in k_t -factorization approach

GTMDs: Big picture

• GTMDs are the holy grail of spin physics

GTMDs: Big picture

• GTMDs are the holy grail of spin physics

GTMDs: Big picture

• GTMDs are the holy grail of spin physics

Summary of our work

- GTMDs are the holy grail of spin physics
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) + \Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary of our work

- GTMDs are the holy grail of spin physics
- DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$+\Re \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary of our work

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

• DSA in exclusive dijet production is a unique observable to access the gluon OAM @ EIC:

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) + \Re \left[\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary of our work

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

Consequence:

DSA in exclusive dijet production.

Elimination of factorization-breaking third poles at $x=\pm \xi$

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^* A_{\nu} \sim -\Re \left[\left\{ \mathcal{H}_g^{(1)*}(\xi) + \frac{4q_{\perp}^2}{q_{\perp}^2 + \mu^2} \mathcal{H}_g^{(2)*}(\xi) \right\} \mathcal{L}_g(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$+\Re \left(\mathcal{H}_g^{(1)*}(\xi) \tilde{\mathcal{H}}_g^{(2)}(\xi) \right) \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary of our work

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

• DSA in exclusive dijet production is

Consequence:

Elimination of factorization-breaking third poles at $x=\pm \xi$

DSA is a unique observable to study interplay between gluon OAM & helicity $\left|\mathcal{L}_g(\xi)\right| \cos(\phi_{l_\perp} - \phi_{\Delta_\perp})$

$$+ \Re \left[\mathcal{H}_g^{(1)*}(\xi) \, \tilde{\mathcal{H}}_g^{(2)}(\xi) \right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Summary of our work

DSA does not vanish for symmetric jet configurations $z = \bar{z} = \frac{1}{2}$

DSA in exclusive dijet production is

Consequence:

Elimination of factorization-breaking third poles at $x=\pm \xi$

DSA is a unique observable to study interplay between gluon OAM & helicity $\mathcal{L}_g(\xi) \cos(\phi_{l_\perp} - \phi_{\Delta_\perp})$

$$+ \Re \left[\mathcal{H}_g^{(1)*}(\xi)\,\tilde{\mathcal{H}}_g^{(2)}(\xi)\right] \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

Signature of gluon OAM is cosine angular modulation

First realistic numerical calculation of observable sensitive to OAM @ EIC

Backup slides

Numerical estimate of cross section

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \mathfrak{Re} \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

$$\begin{aligned} \textbf{Helicity} & \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \\ & \times \mathfrak{Re} \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right] \end{aligned}$$

Numerical estimate of cross section

Ingredients for non-perturbative functions

Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ — Very simple formula

$$\int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu}^{*} A_{\nu} = -\frac{2^{10}\pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{em} e_{q}^{2} \frac{(1+\xi)\xi Q^{2}}{(q_{\perp}^{2}+\mu^{2})^{2}} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}})$$

$$\times \Re \left[\left\{ \mathcal{H}_{g}^{(1)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \left(\mathcal{H}_{g}^{(2)*} - \frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2)*} \right) \right\} \mathcal{L}_{g} + \left(\mathcal{E}_{g}^{(1)*} + \frac{4q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2)*} \right) \frac{\mathcal{O}}{2} \right]$$

$$\begin{aligned} \textbf{Helicity} & \int d\phi_{q_{\perp}} L^{\mu\nu} A_{\mu} A_{\nu} = \frac{2^{10} \pi^4}{N_c} h_l h_p \alpha_s^2 \alpha_{em} e_q^2 \frac{(1 - \xi^2) \xi Q^2}{(q_{\perp}^2 + \mu^2)^2} |l_{\perp}| |\Delta_{\perp}| \cos(\phi_{l_{\perp}} - \phi_{\Delta_{\perp}}) \\ & \times \mathfrak{Re} \left[\left(\mathcal{H}_g^{(1)*} - \frac{\xi^2}{1 - \xi^2} \mathcal{E}_g^{(1)*} \right) \left(\tilde{\mathcal{H}}_g^{(2)} - \frac{\xi^2}{1 - \xi^2} \tilde{\mathcal{E}}_g^{(2)} \right) \right] \end{aligned}$$

Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model $(H_g,\, ilde{H}_g)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)

$$\begin{pmatrix} H_g(x,\boldsymbol{\xi}) \\ \tilde{H}_g(x,\boldsymbol{\xi}) \end{pmatrix} = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \boldsymbol{\xi}\alpha - x) \times \frac{15}{16} \frac{[(1-|\beta|)^2 - \alpha^2]^2}{(1-|\beta|)^5} \times \begin{cases} \beta \, G(\beta) \\ \beta \, \Delta G(\beta) \end{cases}$$

Numerical estimate of cross section

- Neglect contributions from $\,(E_g,\,\tilde{E}_g)\,,\,F_{1,2}\,$ —— Very simple formula
- Model (H_q, \tilde{H}_q) according to the Double distribution approach (see for instance Radyushkin, 9805342)

$$\begin{pmatrix} H_g(x,\boldsymbol{\xi}) \\ \tilde{H}_g(x,\boldsymbol{\xi}) \end{pmatrix} = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \boldsymbol{\xi}\alpha - x) \times \frac{15}{16} \frac{[(1-|\beta|)^2 - \alpha^2]^2}{(1-|\beta|)^5} \times \begin{cases} \beta \, G(\beta) \\ \beta \, \Delta G(\beta) \end{cases}$$

Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model $(H_g,\, ilde{H}_g)$ according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^g(\mathbf{x}) = x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine twist-three}$$

Numerical estimate of cross section

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model (H_q, \tilde{H}_q) according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^g(\mathbf{x}) \approx x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine wist-three}$$

$$H_g(x') = x' G(x')$$

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model $(H \tilde{H})$ according to the Double distribution approach (see for instance Radyushkin, 9805342) arXiv: 2207.03378 (2022)

Small-x evolution of the gluon GPD E_q

Yoshitaka Hatta^{1, 2} and Jian Zhou³

$$E_g(x) \propto H_g(x)$$

$$L_{can}^g(\boldsymbol{x}) \approx x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine wist-three}$$

$$H_g(x') = x' G(x') \qquad \text{Neglect } E_g$$

Numerical estimate of cross section

Ingredients for non-perturbative functions

- Neglect contributions from $(E_g, \tilde{E}_g), F_{1,2}$ Very simple formula
- Model (H_q, \tilde{H}_q) according to the Double distribution approach (see for instance Radyushkin, 9805342)
- Model for OAM:
 - 1. "OAM density": (Hatta, Yoshida, 1207.5332)

$$L_{can}^g(\mathbf{x}) \approx x \int_x^1 \frac{dx'}{x'^2} (H_g(x') + E_g(x')) - 2x \int_x^1 \frac{dx'}{x'^2} \Delta G(x') + \text{ genuine twist-three}$$

2. Use the Double distribution approach to construct $xL_g(x,\xi)$ from $xL_g(x)$ (GPD-like approach)