Physics prospects at the Large Hadron electron Collider (He)

Dr. Soureek Mitra
Institute of Experimental Particle Physics (ETP),
Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

Motivation

- Complementarity of the three kind of collisions for our understanding of the interaction of matter at TeV-scale
- Primary physics cases for LHeC:
 - Proton structure at $\sim 10^{-20}$ m
 - Precision QCD and EW physics
 - Probing high mass frontier for BSM signature such as ALPs, Z', LQ etc.
 - Substructure/parton dynamics inside nuclei with strong QGP implications

LHeC facility

- \bullet E_e = 60 GeV, E_p = 7 TeV
- CM energy: √s = 1.3 TeV
- ± 80 90% polarized e beam
- High luminosity: 10³⁴ cm⁻² s⁻¹ →
 O(10³) more compared to HERA
- Large acceptance: 1-179 deg.

- In this talk, I focus only on ep scattering
- Dedicated eA scattering studies are also available in the latest <u>Conceptual Design Report</u> of LHeC

A prototype LHeC detector

Accessible kinematic range

Proton PDFs

as Running

 Jet production cross section used for extracting strong coupling

Charged Current (CC) and Neutral Current (NC)

Extract m_W from diff. CC cross-section as well as from direct production

Triple gauge couplings

$$\mathcal{L}_{TGC}/g_{WWV} = ig_{1,V}(W_{\mu\nu}^{+}W_{\mu}^{-}V_{\nu} - W_{\mu\nu}^{-}W_{\mu}^{+}V_{\nu}) + i\kappa_{V}W_{\mu}^{+}W_{\nu}^{-}V_{\mu\nu} + \frac{i\lambda_{V}}{M_{W}^{2}}W_{\mu\nu}^{+}W_{\nu\rho}^{-}V_{\rho\mu}$$

$$+ g_{5}^{V}\epsilon_{\mu\nu\rho\sigma}(W_{\mu}^{+}\overleftrightarrow{\partial}_{\rho}W_{\nu}^{-})V_{\sigma} - g_{4}^{V}W_{\mu}^{+}W_{\nu}^{-}(\partial_{\mu}V_{\nu} + \partial_{\nu}V_{\mu})$$

$$+ i\tilde{\kappa}_{V}W_{\mu}^{+}W_{\nu}^{-}\tilde{V}_{\mu\nu} + \frac{i\tilde{\lambda}_{V}}{M_{W}^{2}}W_{\lambda\mu}^{+}W_{\mu\nu}^{-}\tilde{V}_{\nu\lambda},$$
 Projection for 1 ab⁻¹

Higgs production

- Expect 200k Higgs events with 1 ab⁻¹ of data
- High sensitivity in HVV coupling measurement ~ few %
- Contribute to the cross-experiment combination in all major decay channels

Anomalous tWb coupling

11

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} V_{tb} (f_1^L P_L - f_1^R P_R) t W_{\mu}^- - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (f_2^L P_L - f_2^R P_R) t W_{\mu}^- + h.c.$$

Signal 1: $pe^- \to \nu_e \bar{t} \to \nu_e W^- \bar{b} \to \nu_e \ell^- \nu_\ell \bar{b}$

Signal 2: $pe^- \to \nu_e W^- b \to \nu_e \ell^- \nu_\ell b$

Signal 3: $pe^- \to \nu_e \bar{t} \to \nu_e W^- j \to \nu_e \ell^- \nu_\ell j$

10²

L[fb⁻¹]

W-

10³

FCNC searches with top quarks

Top quark Yukawa coupling

Phys. Lett. B 770 (2017) 335

$$\mathcal{L} = -i\frac{m_t}{v}\bar{t}\left[\cos\zeta_t + i\gamma_5\sin\zeta_t\right]th$$

LQ production

2σ significance for 1 ab⁻¹

Scalar LQ production as s-channel resonance

ALPs and Z' production

Summary

- LHeC is slowly taking shape
- Excellent potential, extensive physics program
- PDFs, QCD with unprecedented precision
- Complementary coverage in EW, top, and Higgs sector can be covered
- Several BSM signals directly accessible
- Updated Conceptual Design Report available
- Stay tuned for more updates

Thank you for your attention