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On-detector  
ASIC compression 

FPGA filter stack 
~μs latency

Worldwide 
computing grid 

On-prem CPU/GPU 
filter farm 

~100 ms latency

CMS Experiment 
40MHz collision rate 
~1B detector channels

~100ns latency

Pb/s 
40MHz

10s Tb/s 
100s kHz

10s Gb/s 
~5 kHz

Exabyte-scale 
datasets

ML in 3 tiers of data processing



M.LIUOverview of HEP activities

•We aim to deploy machine learning algorithms combined with heterogeneous 
computing within each of the three reconstruction tiers at the LHC, the L1 Trigger, 
the High Level Trigger, and offline reconstruction. 


•Triggering critical physics


•Lower level reconstruction: tracking, calorimetry


•Unconventional approaches: anomaly detection 


•Heterogeneous computing as-a-service deployment


•Develop and maintain software toolkits that enable the deployment of these 
algorithms into the existing software and hardware systems of the main experiments.


•HLS4ML: deployment of ML on FPGAs for low latency, 


•SONIC : asynchronous use of ML on coprocessors respectively.
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Triggering critical physics 5

Daniel Diaz UC San Diego3 October 2022

ML-MET
• Offline algorithm DeepMET


• Shows strong performance 
compared to PUPPI/PF MET 
currently used @L1.


• Also better performance when 
using DeepMET with L1 
inputs.
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Under review as a conference paper at ICLR 2023
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Figure 1: Illustrations of the four scientific datasets in this work to study interpretable GDL models.

lack labels and models have to be trained on simulation data (Nachman & Shimmin, 2019). Here,
model interpretation is used to verify if a model indeed captures the patterns that match scientific
principles instead of some spurious correlation between the simulation environment and labels. Un-
fortunately, to the best of our knowledge, there have been no studies on interpretable GDL models
let alone their applications in scientific problems. Some previous post-hoc methods may be extended
to interpret a pre-trained GDL model while they suffer from some limitations as to be reviewed in
Sec. 2. Moreover, recent works (Rudin, 2019; Laugel et al., 2019; Bordt et al., 2022; Miao et al.,
2022) have shown that the data patterns detected by post-hoc methods are often inconsistent across
interpretation methods and pre-trained models, and may hardly offer reliable scientific insights.

To fill the gap, this work proposes to study interpretable GDL models. Inspired by the recent
work (Miao et al., 2022), we first propose a general mechanism named Learnable Randomness

Injection (LRI) that allows building inherently interpretable GDL models based on a broad range of
GDL backbones. We then propose four datasets from real-world scientific applications in HEP and
biochemistry and provide an extensive comparison between LRI-induced GDL models and previous
post-hoc interpretation approaches (after being adapted to GDL models) over these datasets.

Our LRI mechanism provides model interpretation by detecting a subset of points from the point
cloud that is most likely to determine the label of interest. The idea of LRI is to inject learn-
able randomness to each point, where, along with training the model for label prediction, injected
randomness on the points that are important to prediction gets reduced. The convergent amounts
of randomness on points essentially reveal the importance of the corresponding points for predic-
tion. Specifically in GDL, as the importance of a point may be indicated by either the existence
of this point in the system or its geometric location, we propose to inject two types of random-
ness, Bernoulli randomness, with the framework name LRI-Bernoulli to test existence importance

of points and Gaussian randomness on geometric features, with the framework name LRI-Gaussian

to test location importance of points. Moreover, by properly parameterized such Gaussian random-
ness, we may tell for a point, how in different directions perturbing its location affects the prediction
result more. With such fine-grained geometric information, we may estimate the direction of the
particle velocity when analyzing particle collision data in HEP. LRI is theoretically sound as it es-
sentially uses a variational objective derived from the information bottleneck principle (Tishby et al.,
2000). LRI-induced models also show better robustness to the distribution shifts between training
and test scenarios, which gives scientists more confidence in applying them in practice.

We note that one obstacle to studying interpretable GDL models is the lack of valid datasets that
consist of both classification labels and scientifically meaningful patterns to verify the quality of
interpretation. Therefore, another significant contribution of this work is to prepare four bench-
mark datasets grounded on real-world scientific applications to facilitate interpretable GDL research.
These datasets cover important applications in HEP and biochemistry. We briefly illustrate these four
datasets in Fig. 1 and briefly introduce them in the following.

• ActsTrack is a particle tracking dataset in HEP that is used to reconstruct the properties, such
as the kinematics of a charged particle given a set of position measurements from a tracking
detector. Tracking is an indispensable step in analyzing HEP experimental data as well as particle
tracking used in medical applications such as proton therapy (Schulte et al., 2004; Thomson,
2013; Ai et al., 2022). Our task is formulated differently from traditional track reconstruction
tasks: We predict the existence of a z ! µµ decay and use the set of points from the µ’s to verify
model interpretation, which can be used to reconstruct µ tracks. ActsTrack also provides a
controllable environment (e.g., magnetic field strength) to study fine-grained geometric patterns.
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• Improve triggering capability of signatures crucial for CMS physics program in high luminosity 
operational conditions: higher rate, pileup, more granular detectors (talk1, talk2 at fast ml workshop)

• B-tagging, Missing transverse energy, tau leptons


• Design and develop algorithms for signatures challenging for traditional methods

• Long lived particles: LLP jet tagging in the CMS Level-1 trigger

• Low momentum: e.g tau3mu GNN tagger, potential of orders of magnitude improvement in signal 

efficiency Pan’s talk in fast ml.
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14 TeV, 200 PUCMS Phase-2 Simulation Preliminary

b-tag NN (AUC = 0.801)

Large GRU (AUC = 0.811)

Receiver operating characteristic 
curve showing the misidentification 
probability vs b jet efficiency where 
misidentification probability is defined 
as the probability to incorrectly 
identify a jet originating from a light 
quark or gluon.


The blue line is the b-tag NN used in 
these studies, while the orange line is 
a more complex architecture that 
better mimics offline algorithms for b-
tagging by using a gated recurrent 
unit (GRU) but is too large to be run 
in the Level-1 Trigger environment.
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B-tagging

MET resolution

https://indico.cern.ch/event/1156222/contributions/5076140/attachments/2522106/4336963/Algorithms.pdf
https://indico.cern.ch/event/1156222/contributions/5062786/attachments/2522073/4336901/FastML_Diaz-NewAlgosL1.pdf
https://indico.cern.ch/event/1156222/contributions/5058406/attachments/2521944/4336607/fastML.pdf
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Tracking and Calorimeter Clustering 6HGCAL Results
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Left – predicted clusters from SPVCNN.
Right – event display from HGCAL.

Each point represents an energy deposit in the calorimeter. Each color corresponds to a cluster.

Elabd et al. GNNs for Tracking on FPGAs

FIGURE 2 | Example graphs showing 2 of the sectors for one event with pmin
T = 2GeV, z0 < 15 cm, !φ/!r < 0.0006, 8 φ sectors, and 2 η sectors. True track

segments are denoted by blue edges, while false track segments are denoted by gray.

FIGURE 3 | Efficiency (left) and purity (right) of the hitgraphs studied for different numbers of η and φ sectors based on 50 events in train_1.

input graphs will be truncated. For smaller graphs that have
fewer nodes or edges, we zero-pad the feature matrices to create
“null” nodes and add connections between “null” nodes to create
“null” edges. We discuss the effects of the graph truncation and
zero-padding on the network performance in section 7.

Figure 4 shows the 95th percentile for the number of nodes
and edges in each sector depending on the number of sectors
chosen. For example, the 95th percentile graph size for 8 φ

sectors and 2 η sectors is 113 nodes and 196 edges for this 2GeV
graph construction. Depending on the range of applicability for
a given FPGA implementation, a different graph construction
and segmentation strategy can be adopted. In particular, if a
more relaxed set of graph construction criteria is adopted, a
greater number of nodes and edges will be included per event. In
the Supplementary Material, we demonstrate how the number
of nodes and edges vary when considering 1GeV graphs. In

Frontiers in Big Data | www.frontiersin.org 4 March 2022 | Volume 5 | Article 828666

Elabd et al. GNNs for Tracking on FPGAs

FIGURE 12 | Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock cycles (right) for a constant fixed point precision of

ap_fixed<14,7> as a function of the reuse factor for the resource-optimized implementation. Input graphs consist of 448 nodes and 896 edges. Each clock cycle

corresponds to 5 ns.

FIGURE 13 | Resource usage estimates as a percentage after logic synthesis (left) and latency and II in clock cycles (right) for a constant reuse factor of 1 and a bit

width of ap_fixed<14,7> as a function of the number of nodes nnodes. The number of edges is fixed to nedges = 2nnodes, as is empirically observed for the 2GeV

graphs. Each clock cycle corresponds to 5 ns.

(thousands of nodes and edges). In order to make this possible,
multiple improvements were made including an optimization
of the memory access of the input data and the instantiation
of multiple parallel processing engines. This implementation
is applicable for FPGA-CPU coprocessing workflows in both

the software-based high-level trigger and offline computing.
The conversion of the trained model, specified using PYTORCH

GEOMETRIC, into high-level synthesis (HLS) code is achieved
automatically using a custom converter integrated into hls4ml,
a source-to-source compiler.

Frontiers in Big Data | www.frontiersin.org 14 March 2022 | Volume 5 | Article 828666

Talk at Fast ML workshop

fast ml workshop Talk

GNN 
 tracking

https://indico.cern.ch/event/1156222/contributions/5062801/attachments/2521271/4336402/2022%20FastML%20Workshop%20--%20SPVCNN%20(Final).pdf
https://indico.cern.ch/event/1156222/contributions/5062812/attachments/2520225/4335518/FastML%20Presentation.pdf
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Anomaly detection 7

Goal:
• Learn the latent representation (unsupervised)
• Dimensionality reduction (low-dim)
• Feature detection
• Anomaly detection
• Generative models

03/31/2022 Sergei Gleyzer                                                  PH482/PH582 Lecture 15

Auto-Encoders

Convolutional AE
• Images
Recurrent AE
• Sequences
Denoising AE
• Add noise, try to recover original

03/31/2022 Sergei Gleyzer                                                  PH482/PH582 Lecture 17

Auto-Encoders
ConvAE

• Unbiased model agnostic approach with encoded latent space of auto-encoder. E.g.: 
physics objects (electrons, muons, jets, MET) momenta, train on Standard Model 
events (ttbar, QCD, W/Z+jets etc) (talk1, talk2 at fast ml workshop)


• Challenging though worthwhile: design to detect new physics signature, inclusive 
trigger for ultra-rare SM processes?


https://indico.cern.ch/event/1156222/contributions/5076140/attachments/2522106/4336963/Algorithms.pdf
https://indico.cern.ch/event/1156222/contributions/5062786/attachments/2522073/4336901/FastML_Diaz-NewAlgosL1.pdf


M.LIU

Heterogeneous computing as-a-service 8

• Heterogeneous computing as-a-service:


• Resource usage/scalability/flexibility


• Significant progress towards integration of SONIC in CMS:


• Developed and tested a miniAOD (one step in CMS 
data processing) workflow: offloading 3 ML algorithms 
with SONIC: scaling, throughput etc with GPU in cloud/
T2 (Purdue). (Talk at fast ml workshop)


• Important step going beyond ‘proof of concept’ 
demonstration, develop HEP data specific support with 
industry partners.


• Adapt/enhance commercial service’s support for HEP: 
graphCore, ragged batching for irregular data patterns in 
NVIDIA triton. (Talk at fast ml workshop)
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Idea 2: Inference as a Service

Adjust the number of GPUs per 
client-CPU core to get as close to the 

“sweet spot” as possible

Inference as a Service:

The good:
•Better efficiency
•Can improve model-building flexibility
•Can access remote GPUs

The “bad”:
•Adds complexity* (e.g. need new
producers for algorithms and must 
instantiate and keep track of servers)
*Don’t be scared: end users will not have to deal with implementation.  
We aim to create an easy-to-use final product
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MiniAOD demonstration

MiniAOD derivation = step in offline processing

Three ML-based algorithms in workflow 
can be easily SONIC-ized:
• Jet tagger
•MET regression
• Tau ID

These algos take up about 10% of per-event latency

https://indico.cern.ch/event/1156222/contributions/5062792/attachments/2521165/4335134/October_3_FastML_SONIC.pdf
https://indico.cern.ch/event/1156222/contributions/5062792/attachments/2521165/4335134/October_3_FastML_SONIC.pdf
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Next year 9

• Continue to make progress in existing efforts:


• Hardware L1 trigger: HLS4ML support/implementation, board implementation, emulator


• Demonstration of SONIC in CMS production, and in HPC, working closely with USCMS O&C 
operations program.


• Close collaboration with other areas in A3D3: 


• Develop and maintain HLS4ML support: general, scalable support of various GNN architectures.


•Graph generation in GNN needs new mathematical formulation for edge device 
implementations.


• Brainstorm new ideas: tau3mu anomaly detection with GNNs—> inclusive trigger for low 
momentum signature.


• As the number of projects grow, will improve the HEP area organization with e.g. sub-areas. 


•Opportunity in integrating postdocs and students.


