Neuroscience in A3D3:
annual project updates



A3Da3: using ML for low-latency, real-time
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Main feams

« UW —1tools for low-latency detection/prediction of neuradl
events
— Faculty: Amy Orsborn, Eli Shlizerman, Scott Hauk

— Trainees: Michael Nolan, Jinguan Li, Trung Le, Leo Scholl, Xiaohan
Lu, Aidan Yokuda, Lauren Petersen

» Purdue - tools for large-scale data analysis and system-
identification
— Faculty: Maria Dadarlat, Eli Shlizerman
— Trainees: Megan Lipton, Seungbin Park



Low-latency example application: closed-loop
stimulation to alter sleep-spindle events

: : « “Spindles” are oscillation events
Local field potential measurements :
(electrical activity of groups of neurons) that occur during sleep/rest

spindle (~rare) « Thought to contribute to

/ learning

« Currently: detfect a spindle
100 UV | starting and stimulate to disrupt
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« Goal: predict spindle will occur,
1s stimulate to prevent




Low-latency example application: closed-loop
stimulation to alter sleep-spindle events

Detect brain state (spindles), stimulate in real-time to disrupt
- Insights into brain state’s impact on brain function/behavior

Achieving this requires
completing 3 major
goals:

1. New algorithms to
reconstruct/predict
neural signals

2. New algorithms to
predict spindle events

3. Hardware-
Implementation for
low-latency
prediction
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Progress on goal 1.
Algorithms to reconstruct/predict broad-band neural signals (1/3)

« Found that existing autoencoder methods for neural data are
band-limited to model size
— Limits reconstructions of broad-band neural data such as micro-
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Progress on goal 1.
Algorithms to reconstruct/predict broad-band neural signals (2/3)

 MRAE architecture improves reconstruction accuracy and
bandwidth for longer reconstruction fime windows

« MRAE method is more scalable
— better reconstruction accuracy for fixed model size
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Progress on goal 1.
Algorithms to reconstruct/predict broad-band neural signals (3/3)

« Alternative model architecture using tfranstormers may significantly
Improve reconstruction bandwidth

RNN PSID = current state of the art
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Progress on goal 3.
FPGA implementation of algorithms for neural dato

« Use existing published model (Latent Factor Dynamical Analysis,
LFADs; Pandarinath et al., Nature Methods 2018)

« Apply to publicly available datasets

— Nevural Latent Benchmarks ( )
« Scale down model to explore FPGA implementation with hsl4m
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https://neurallatents.github.io/

Large-scale data analysis example: data-driven
feature extraction

Dodcrlo’r lab, Purdue
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» Large-scale brain
recording + behavioral
monitoring

— = |ldentify brain-
behavior relationships,

structure from the data - ~3,000 neurons
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Key Outcomes and Achievements

* Training and professional development

— NeuroAl weekly seminar ( ) to promote
discussion at the intersection of Al and neuroscience (undergrad, grad,
postdoc, faculty)

— Postbacc Lauren Petersen started in Orsborn lab August 2022
— Neuro-Al workshop hosted at UW September 2022

« Communication and outreach with research community
— NeuroAl seminars (open to all)

— Conference workshop proposal planned for Computational Systems
Neuroscience Conference (CoSYNe), 2023

— Submitted algorithm to Neural Latents Benchmark challenge, currently the
#1 entry in some performance categories


https://github.com/shlizee/NeuroAI

Key Products

» Poster presentations

— Nolan, Pesaran, Shlizerman, & Orsborn, AIRUW workshop, University of
Washington, May 2022

— Lipton & Dadarlat, Neural Control of Movement Conference, July 2022

« Papers

— Nolan, Pesaran, Shlizerman & Orsborn, “Mulfi-block RNN autoencoders
enable broadband ECoG signal reconstruction”, bioarxiv 2022

— Le, Shlizerman, “STNDT:. Modeling Neural Population Activity with @
Spatiotemporal Transformer”, Arxiv 2022

— Dadarlat, Canfield, & Orsborn, “Neural plasticity in sensorimotor brain-
machine interfaces” Annual Reviews of Biomedical Engineering, in press



Impact

« Within neuroscience:

— Developing improved modeling capabilities for broadband neural data
V\T/illdqllow autoencoder approaches to be applied to a wider range of
studies

— Developing improved methods for mulfi-modal modeling for
neuroscience will open new ways to mine rich datasets (e.g. neural and
behavioral recording; multi-scale neural measurements)

— Developing the first methods to implement these approaches with low
latency will enable new real-time applications

« Other disciplines:

— Potential extensions of multi-modal modeling methods to other
experimental datasets

— Anomaly detection in fime-series signals has broad applications
» Teaching & Education:

— Cross-discipline fraining in ML and neuroscience will increase workforce
skills in neural engineering



Next year

« Confinued progress on existing efforts:
— Broadband neural signal reconstruction and prediction algorithms
— Un/semi-supervised clustering of neural data
— Hardware implementation of existing algortinms

* New directions
— Extend algorithms to new datasets, modalities
— Explore tfransformer network applications
— Joint behavior + neural data feature learning



