Preservation and reuse of BSM searches: ATLAS review

—(Re)interpretation of the LHC results for new physics 2022

A timeline on Reinterpretation

- Development of Tools and the Progression of Collaboration Standard
- 2000: 1st PHYSTAT
- 2010: introduction of Workspaces
- 2010: First proposition of Recast
- 2012: ATLAS profile likelihoods scans released for Higgs coupling
- 2017: CMS Simplified Likelihoods
- 2018: Release of analysis preservation and systematic reinterpretation with Recast within ATLAS

*ATLAS development highlighted in blue

A timeline on Reinterpretation

Development of Tools and the Progression of Collaboration Standard

- 2019: <u>First full likelihood release</u> in ATLAS for SUSY searches
 - Using json schema of Histfactory class of likelihood
- 2019: ATLAS publication of full statistical likelihoods PUB note released (JSON HF)
- 2020: First full likelihood release regularly in ATLAS for SUSY searches
- 2022: "Simple Analysis: Generator-level Analysis
 Framework" pub note released—Framework going public!
- 2022: Snowmass: "Reinterpretation and Long-Term Preservation of Data and Code"

Tools used by ATLAS for reinterpretation

-Introducing the players

Preserved Item	Tools/Service used by ATLAS			
Data product	HEPData			
Likelihood	Simple likelihood			
LIKCIIIIOOG	JSON HistFactory			
Truth Level Pipeline	SimpleAnalysis/Rivet			
Full Reco Pipeline	Recast			
Preservation of ML Model/optimization	ONNX enable better reinterpretation from			
	Data product Likelihood Truth Level Pipeline Full Reco Pipeline Preservation of ML Model/optimization			

++Increased level of Information/
Precision

Increase precision enable better reinterpretation from original analysis!

Level 0: HEPData

-Storing of experimental data product from analyses for reinterpretation

- Previously: Table-based webpage (40 year-old):
- New digital library: Paper
 - Database: Include Efficiency Map, yields, uncertainties, outflow tables
 - Reinterpretation tools: Rivet and SimpleAnalysis code, preservation of ML
 - Webservice
- Made an ATLAS requirement for publication
- Centralized tool across other HEP experiments

Level 1: Statistical Model (Simple Likelihood)

- -Saving the most of our experiment results in one variable
- Previously, often HEPData information is used to construct approximate likelihood
- Likelihood: Great bang for the buck: encapsulate information about Limits, data/MC plots, yield take, and systematics. ->Best object that can be provided!
- ATLAS started providing them on HEPData since 2019 (SUSY)

Reinterpretation from likelihood p(theory|data) ~ p(data|theory) * p(theory) New Result! Theoretical Prior of New Model

Simple Likelihood Pubnote

Existing Exp. Likelihood (What We Provide)

Level 1: HistFactory JSON

See "Publishing statistical models discussion" on Tuesday"

—pyhf as a pure-Python implementation of HistFactory with JSon

- PyHF: HistFactory in full python
- Increasingly used by ATLAS analyses (24 analyses published-up-to-date)
- Results in easy to read json format: <u>Database</u>
- Reinterpretation:
 - 1. Publishes statistical model (Likelihood) in json file format
 - 2. New version of SModel and MadAnalysis5 allow for automatic reinterpretation from pyHF json file

Level 2: SimpleAnalysis

See tutorial by Giordon Stark Wednesday

-Truth level pipeline preservation

- Preserves the analysis code pipeline
- Allow for reinterpretation up to the truth level
 - Detector effect can be added: public simulation like Delphes or internally by ATLAS fast simulation
- Experimentalist friendly input format (HepMC, DAOD, ROOT n-tuple, DELPHES)
- Large list of <u>ATLAS SUSY analyses</u> available:
- For public use: can be used external to ATLAS

SimpleAnalysis PubNote

Available list of Analyses

Level 10: Recast

-Full Analysis pipeline preservation

- Preservation of original analysis pipeline for re-interpretaion
- Contain full detector simulation information + original code/ workflow
- Reinterpretation with full workflow + simulation effect
- Made a requirement for publication in Exotics, HDBS and SUSY
- Implementation Internal to ATLAS: some reinterpretation results published with the tool
- Software fully open source!
- Future: Allow for an interface to submit reinterpretation request online

model

preservation of the original analysis pipeline for collaboration-approvable results

new

sample

9

gen, sim & reco

Level 10+: ONNX/NN

See talk by Dan Guest later today

-Beyond usual pipeline preservation: Reuse of ML training results

- ML development significantly improve analyses sensitivity. Theorists would like to make use of the BDTs/NN.
- ONNX(Open Neural Network Exchange)
- BDT preservation -> convert to standalone c++ in SimpleAnalysis
- Non-BDT NN -> Preservation by Serializing through Onnx
- Can be preserved with SimpleAnalysis to be reused
- 2 analyses already have ML encapsulated in the workflow

3 b-jets+

Search for supersymmetry in final states with missing transverse momentum and three or more b-jets in 139 fb⁻¹ of proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

One Lepton MultiJets

Search for R-parity-violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using $\sqrt{s} = 13 \text{ TeV}$ proton–proton collision data

The ATLAS Collaboration

ANA-SUSY-2018-30

SA with Onnx

ANA-SUSY-2019-04

SA with Onnx

Source Code

GitLab

Two existing analyses already contain Onnx

ATLAS Re-interpretation Effort Highlights

Spin-0 dark matter mediators and invisible Higgs decays

• Arxiv: 2211.05426

From SUSY tt0L, tt1L tt2L

- Spin-0 DM/ttH->inv results
- Utilized RECAST and Statistical Combination with PyHF

Analysis	Best fit $\mathcal{B}_{H o ext{inv}}$	Observed upper limit	Expected upper limit
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	$0.52^{+0.23}_{-0.16}$
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	$0.80^{+0.40}_{-0.26}$
tt2L	$-0.08^{+0.20}_{-0.19}$	0.36	$0.40^{+0.18}_{-0.12}$
$t\bar{t}H$ comb.	$0.08^{+0.15}_{-0.15}$	0.38	$0.30^{+0.13}_{-0.09}$

ttH (H-> inv) Reinterpretation

Active learning through Mono-H(bb) Recast

See talk by Irina Morales Thursday

- Reinterpretation from Mono-H(bb) to Dark Higgs Model (4 params: $\{x\} = \{ (m_z, m_{DM}, m_s, g_{DM}) \}$
- Active learning reinterpretation Gaussian Process to determine exclusion contours
 - Training: 10 hyperparameters determined from RECAST data
 - Inference: Gaussian Process prediction of limits and their uncertainties
- > High Efficiency, Full accuracy Limit setting with active learning of samples using RECAST
- HDBS Effort in Dark Z search plans to use the same method

Graphics from Irina Espejo, Patrick Rieck and Zubair Bhatti

Improved the Dark Higgs Limit, using recast and active learning

PMSSM and RPC-RPV Summary

• RPC-RPV:

- · Recast of signals with a variable RPV coupling.
- Leading to changes in phenomenology: MET > LLP > no MET
- PMSSM: SUSY summary middle ground (19 params) between MSSM(>100+ free param) and Simplified Model (Used by individual Analysis with focus on a production process)
 - Reinterpretation tools for an improved workflow!
 - Run1 summary paper: Reran every analysis with original workflow
 - Run 2 summary in preparation: Workflow Utilizes reinterpretation tools mentioned
 - Full/simplified Likelihood
 - SimpleAnalysis
 - RECAST
 - Run 3: use result from Run2 to steer the ship towards uncovered phase space. RECAST=streamlined workflow!

RPC-RPV reinterpretation Contour (Previous results: <u>ATLAS-CONF-2018-003</u>)

(Previous results: Arxiv:

1508.06608)

A growing number of analyses!

-With the new re-interpretation workflow

- yy→tautau and tau g-2 interpretation (Accepted by RPL)
- Dark Matter and Dark Energy Summary 13 TeV 2016
- VLQ pair search combination 13 TeV 2016
- VV/VH and II/Iv search combination 13 TeV 2016
- Reinterpretation of EW Run 1 analyses in 5-D pMSSM
- W heavy resonance search combination
- Search HBSM H/A constra
- Reinterpretation of many F
- Search for the pair produ
- Studies on H(125) effective

Short Title	•	Group	¢	Document number	¢	Date	\$	√s (TeV)	\$	Links
search		search		search		search				
Active Learning Mono-H(bb) Recast		EXOT		ATL-PHYS-PUB-2022-04	45	2022-11-07	7	13	<u></u>	Occuments Internal
HEFT interpretations of HH bbtautau+bbyy searches		HDBS		ATL-PHYS-PUB-2022-01	19	2022-03-18	8	13	<u></u>	Occuments Internal
CalRatio jet reinterpretation		EXOT		ATL-PHYS-PUB-2020-00	07	2020-03-27	7	13	<u></u>	Occuments Internal
SUSY Likelihoods for Reinterpretation		SUSY		ATL-PHYS-PUB-2019-02	29	2019-08-02	2	13	<u></u>	Occuments Internal
Displaced jet response		SUSY		ATL-PHYS-PUB-2019-02	25	2019-07-1	5	13	<u></u>	Occuments Internal
R-Hadron Event Generation and Simulation		SUSY		ATL-PHYS-PUB-2019-01	19	2019-05-2	1	13	<u></u>	Occuments Internal
Higgsino pair; disappearing track reinterpretation		SUSY		ATL-PHYS-PUB-2017-01	19	2017-12-09	9	13	<u></u>	Occuments Internal
Search BSM combination 2HDM prospects HL-LHC		HIGG		ATL-PHYS-PUB-2013-01	15	2013-10-08	В	14	Ē	Documents Internal

Summary

-Reinterpretation effort in ATLAS

- Tools and Collaboration Standard has driven the development of reinterpretation on ATLAS. Up to 91 analyses now contain the RECAST workflow. Requirement for new publication.
- Growing numbers of reinterpretation publications being done within the collaboration with existing tools
- Newly released information tools available for external reinterpretation (SimpleAnalysis made fully public)

The Future

-To Run 3 and Beyond

Reuse not just our data, but also analysis studies and more!

Image from K Cranmer

- Key insights in re-interpretation is being carried over to Higgs physics, not just BSM topics
- Towards the direction of more open data/ open tools for reinterpretation/preservation (Recast for public request)
- Novel physics papers ideas: Recasting SUSY models into little Higgs/Extra dimension Kaluza Klein Models
- Tools: Further automation in data preservation(HEPData), optimization workflow in analysis/ ML models.

Acknowledgement

Thank you Giordon Stark, Matthew Feikert

Back up

What is re-interpretation?

-And its importance in the BSM context

- Reinterpretation: The reusing of experimental results for alternative physics hypothesis
- Advantages: 1. Reuse of data/workflow/optimization 2. Less labor intensive 3. Time saving

- Two types of Reinterpretation
- > 1. Re-interpretaion (Single data-> Many theory)
 > 2. Combination (Many data -> Single theory)
 Abundance of theoretical ideas vs experimental results available "Combination of results (E.G. Higgs combination)

What is re-interpretation?

-And its importance in the BSM context

- Reinterpretation: The reusing of experimental results for alternative physics hypothesis
- **Advantages**: 1. Reuse of data/workflow/optimization 2. Less labor intensive 3. Time saving

- Two types of Reinterpretation
 > 1. Re-interpretation (Single Both performed on ATLAS using various tools developed year out tools developed year

Available reinterpretation tools

Within Experiment

Outside of Experiment

Folded Reinterpretation(With Detector Effect) Tools:

Re-interpretation effort on ATLAS

-A timeline

Recast for reinterpretation on ATLAS

Recast has been adopted as the ATLAS standard for reinterpretation

 Yaml based implementation At reinterpretation time At publication time Run dataset Archiving data/ Preserving the through the background **New Signal Dataset** original analysis preserved analysis estimation (I.E. pipeline pipeline histograms) Signal Region Signal Region CLs < 0.05! CLs < 0.05! RECAST 24 original analysis (w.r.t model A) original analysis (recast to model B)

Rivet

-Truth level analysis

- Transfer function based: From Generator level to Reconstruction Level
- Relies on analysis-provided acceptance/efficiencies

PMSSM

LeptoQuark Reintepretation

Contours from the following five dedicated analyses are included in the plots:

- $b\tau t\nu / t\tau b\nu$: "Search for new phenomena in pp collisions in final states with tau leptons, b-jets, and missing transverse momentum with the ATLAS detector" [17].
- $t\tau t\tau$: "Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ -lepton in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector" [18].
- $b\ell b\ell$: "Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector" [19].
- $t\ell t\ell$: "Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector" [20].
- $b\ell t\nu / t\ell b\nu$: "Search for pair-produced scalar and vector leptoquarks decaying into third-generation quarks and first- or second-generation leptons in pp collisions with the ATLAS detector" [21].

Contours from the following reinterpretations of searches for pair production of supersymmetric particles are included in the plots:

- stop-0 ℓ : "Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s} = 13$ TeV with the ATLAS detector" [22].
- sbottom-0 ℓ : "Search for new phenomena in final states with b-jets and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector" [23].

ATLAS RECAST Run 2 wins

- SUSY, Exotics, and HDBS have successfully demonstrated RECAST as part of analysis pipeline: total of 91 analyses with RECAST workflow repos
 - Need to increase number of validated workflows
- RECAST as an enabling technology (c.f. Ben Hodkinson's SUSY Workshop talk on pMSSM scan)
- Recasting of analyses resulted in ATLAS PUB notes from Exotics that extended the scope of the original publications!

ATL-PHYS-PUB-2019-032

ATL-PHYS-PUB-2020-007

ATL-PHYS-PUB-2021-020

Other effort:

- Analysis Preservation:
 - SUSY, Exotics and HDBS have made RECAST a publication requirement:
 - Up to 91 analyses now contain the RECAST workflow
- Reinterpretation effort Publication plans:
 - PMSSM summary
 - RPC-RPV paper
 - Active reinterpretation of Mono-H(bb)
 - Summary Plots from ATLAS Searches for Pair-Produced Leptoquarks
 - Constraints on spin-0 dark matter mediators and invisible Higgs decays