Reinterpretation of CMS search for LLPs using endcap muon detectors

Christina Wang (Caltech)
(Re)interpreting the results of new physics searches at the LHC 12/15/2022

In collaboration with Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Andrea Mitridate, Michele Papucci, Cristián Peña, Si Xie

Long-Lived Particles

 $m \ll \Lambda$: Scale suppression

- Long-lived particles are common in SM as well as BSM theories
- Well motivated and predicted in many BSM models: SUSY, Heavy neutral leptons, Higgs portals ...

Recent CMS Result: Muon System as a Sampling Calorimeter for LLPs

(Phys. Rev. Lett. 127, 261804)

LLP decay and resulting particle shower is detected with a large hit multiplicity

- Excellent background suppression from shielding material
- Steel interleaved with active chambers → sampling calorimeter

Experimental Signature: Displaced Showers in the Muon System

- Large cluster of CSC hits (>100 hits) in the muon system with no jets or tracks
- Muon system acts as a sampling calorimeter: sensitive to a broad range of decays
 CMS Simulation Supplementary

CMS Search Result

- The CMS paper interpreted the search result in Higgs-portal to scalar LLP
- Along with the CMS result, we released a set of detector response function
 parameterized using only gen-level LLP information that would allow for recasting
 of the analysis with other models: https://www.hepdata.net/record/104408
 - 3 events observed
 - 2 ±1 background events predicted

Twin Higgs model as benchmark model

Delphes Module for Recasting

- Integrated the CSC cluster objects with the detector response functions as official Delphes classes and modules: https://github.com/delphes/delphes/pull/103
 - Validated that we are able to reproduce the limits from CMS for all 3 decay modes to within 30%
- We recasted the CMS analysis in a number of models: dark scalar, dark photon, ALPs, inelastic DM, hidden valley models, and HNL
 - Will focus on dark scalar, hidden valley, and HNL today
- We also invite everyone to use the new Delphes module for CSC clusters to reinterpret the analysis for any other model that predicts LLPs!
 - GMSB, RPV, split SUSY, milli-charged particles, charged LLP (stau) ...

Light Scalar Model

$$\mathcal{L}_{\mathrm{DS}}$$
 Higgs portal $\mathcal{L}_{\mathrm{SH}} = \mathcal{L}_{\mathrm{SM}} + rac{1}{2} \partial_{\mu} \hat{S} \, \partial^{\mu} \hat{S} - rac{\mu_{S}^{2}}{2} \hat{S}^{2} - \left(oldsymbol{A_{HS}} \hat{S} + oldsymbol{\lambda_{HS}} \hat{S}^{2}
ight) \hat{H}^{\dagger} \hat{H}$ controls the controls $\hat{H} - \hat{S}$ mixing $\hat{B}r(H o SS)$

No reach in this analysis (due to MET > 200 GeV cut)

Production and decay channels are decoupled

Light Scalar Reinterpretation

- m_S controls the decay mode and affects the acceptance
- 3 search strategies considered for phase 2:
 - Solid line: same analysis strategy and simply scale the result by luminosity
 - Dot-dashed line: increase Nhit cut until 0 bkg is achieved
 - Dotted line: remove MET cut and require 2 CSC clusters

Light Scalar Model

• With Phase 2 Projection, we will be able to reach **BR(h → SS) ~ 5e-5** at lifetime of a few meters, complementary to dedicated LLP experiments that are most sensitive to cτ of 10 - 100 m

Hidden Valley Models

- We assume ρ_h to decay into η_hη_h,
 targeting high LLP multiplicity
- ^ηh is the LLP and decays to γγ to be conservative and it's hard to probe with other searches

Hidden Valley Reinterpretation

LLP mass = 8 GeV

- Reaching BR 3e-3 with 137fb⁻¹ and 1e-4 with 3ab⁻¹
- Currently there are no other experiments that set limit on this model

Hidden Valley Reinterpretation

- At low lifetime, the current search strategy limits the sensitivity by applying a jet veto, where the LLPs that decay in muon system are vetoed by LLPs decayed in tracker that create jets in the same direction
 - In this model, LLPs originating from the same dark quark usually come from the same direction
- At long lifetime, higher LLP multiplicity results in more stringent limit than the scalar model

Heavy Neutral Leptons

- Latest HNL searches at the LHC use prompt lepton triggers (e/μ) and displaced vertex signature targeting leptonic decays of W*/Z*
- Tau mixing is not covered yet at the LHC
- Muon detector shower: target HNLs decaying in the muon system, sensitive to particle showers from the displaced lepton and inclusive W*/Z* decays

HNL Reinterpretation

Paper on arXiv

- Can reach mixings as low as ~5 x 10⁻⁷ and HNL masses between 1 and 6 GeV for both electron and τ-type
 - Strategy 1: Maintains high MET trigger but with a tighter N_{hit} cut.
 - Strategy 2: Lower MET cut > 50 GeV and increased Nhit. Enabled by the new dedicated trigger for Run 3

Summary

- Presented reinterpretation and sensitivity projections in a number of benchmark models, significantly extending the physics scope of recent CMS result
- We highlight a few representative models: dark scalar model, heavy neutral leptons, and hidden valley models
- For most benchmark models, the analysis covers previously unconstrained regions of the parameter space and is complementary to dedicated LLP experiments
 - New dedicated trigger in run3 would also open up possibilities for more models and search strategies
- We invite anyone interested to use the new Delphes class/module to reinterpret the analysis with their favorite model
 - Example code on delphes repo: https://github.com/delphes/delphes/blob/master/examples/ExampleCscCluster.py

BACKUP SLIDES

Light Scalar Model

Inelastic Dark Matter Model

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + i e_D \hat{X}^\mu \bar{\chi}_1 \gamma^\mu \chi_2 - \frac{\epsilon}{2 \cos \theta_W} \hat{X}_{\mu\nu} \hat{B}^{\mu\nu}$$

- χ_1 is stable and χ_2 is the long-lived
- LLP energy and MET are decoupled

iDM Reinterpretation

- ullet controls the scalar lifetime and production
- Scalar mass controls the decay mode and affects the acceptance

$$\mathbf{ALPS} \qquad \mathcal{L} = \frac{1}{2} \left(\partial_{\mu} a \right)^2 + \frac{a}{4\pi f_a} \left(\alpha_s c_{GG} G^a_{\mu\nu} \widetilde{G}^{a,\mu\nu} + \alpha_2 c_{WW} W^a_{\mu\nu} \widetilde{W}^{a,\mu\nu} + \alpha_1 c_{BB} B_{\mu\nu} \widetilde{B}^{\mu\nu} \right) + \dots$$

gluon-coupled ALP

$$(c_{GG} \neq 0, c_{BB} = c_{WW} = 0)$$

main production channels

$$a \to \eta \pi \pi$$

 $a \rightarrow 3\pi$

$$a \to \pi\pi\gamma$$

main decay channels for current reach

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} a \right)^2 + \frac{a}{4\pi f_a} \left(\alpha_s c_{GG} G^a_{\mu\nu} \widetilde{G}^{a,\mu\nu} + \alpha_2 c_{WW} W^a_{\mu\nu} \widetilde{W}^{a,\mu\nu} + \alpha_1 c_{BB} B_{\mu\nu} \widetilde{B}^{\mu\nu} \right) + \dots$$

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} a \right)^2 + \frac{a}{4\pi f_a} \left(\alpha_s c_{GG} G^a_{\mu\nu} \widetilde{G}^{a,\mu\nu} + \alpha_2 c_{WW} W^a_{\mu\nu} \widetilde{W}^{a,\mu\nu} + \alpha_1 c_{BB} B_{\mu\nu} \widetilde{B}^{\mu\nu} \right) + \dots$$

