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Simplified dark matter models

Simplified dark matter models describe effective dark matter (DM) interactions without integrating out 

the mediating particle.

They’re a useful tool for studying how both low and high energy experimental probes affect BSM physics.

In this talk I will discuss recent global constraints of s-channel vector-mediated simplified dark matter 

models with GAMBIT (arXiv:2209.13266).

Image from Kahlhoefer (2017) [27]



Models

No lepton couplings
 -> To avoid strong di-lepton searches.

No axial-vector quark couplings

Flavour universal couplings
-> To require minimal flavour violation.

Mass generation mechanism has no 
observable impact on experiments
-> Could be achieved by e.g. a dark Higgs 
with mass well above the other particle 
masses.
-> example model studied in [2]

[2] M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042

Assumptions:
Scalar DM:

Dirac fermion DM:

Majorana fermion DM:

In each model, there are 4 or 5 model parameters: DM mass (mDM), Mediator mass (mM), mediator-quark coupling (gq), mediator-DM 
coupling (gDM) (either vector or axial-vector)



Unitarity violation

The presence of an axial-vector couplings for the Dirac and Majorana models implies a bound from unitarity: [3]

Vector DM models will face strong unitarity violation, but to date no unitarity bound for this model exists in the 

literature. -> An upcoming paper…

[3] F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016



Constraints



Relic DM should be non-relativistic -> Majorana 

model should be suppressed. 

This should have very weak direct detection 

constraints relative to the other models.

Constraints - Direct Detection



Constraints - Dijets

Limits are formed from the most constraining dijet 

search at a given mediator mass, scaled by the 

branching fraction into quarks.



Constraints - Monojets

Fluctuations in individual signal regions tends to drive our 
likelihood to regions that fit these. In particular, the 2018 data for 
the CMS significantly underpredicts the # of events.

This is an artifact of the simplified likelihood, and is avoided in 
their full fit of control and signal regions.



2 Annihilation channels: 

● DM DM -> quark pair

● DM DM -> mediator pair

Only the Dirac fermion DM model has dominant 

velocity independent (s-wave) annihilation to quarks. 

The other models will have weak gamma ray 

signatures when the mediator channel is closed.

Constraints - Indirect Detection



The 2 different annihilation channels will give 2 

regions in parameter space where DM is not 

overproduced.

Direct and indirect detection signals are scaled by the 

proportion of DM that each candidate would 

comprise: 

Constraints - Relic Abundance



Scans

Each scan has 4 or 5 model parameters and 7 nuisance 
parameters. 

Collider: 

    1) uncapped

    2) capped collider likelihood

Relic Density: DM candidate …

    1) is a subcomponent of the observed abundance

    2) saturates the observed abundance.

Up to 4 scans per model.

I will only show a subset of these results.



Capped results are not necessary as any collider preferences occur where already excluded by other experiments.

Results - Scalar DM



Much of the surviving parameter space predicts a very low DM relic abundance.

Results - Scalar DM



Requiring DM abundance is saturated reduces the off-resonance allowed parameter space.

Results - Scalar DM



Results- Dirac Fermion DM

Monojet likelihood gives preference to regions along the resonance.



Results - Majorana fermion DM
Monojet excesses are also fit by this model, but not only along the resonance.



Future Prospects - DARWIN



Summary

By combining constraints from direct detection, 

indirect detection and colliders, simplified dark 

matter models can be constrained greatly.

Scalar DM: Most of the parameter space that 

survives is for large DM masses. However, most of 

that underpredicts the DM abundance.

Dirac/Majorana DM: Scans are driven toward 

monojet fluctuations. No lower bound on DM 

masses for the parameters in these scans.

Look out for vector DM unitarity study coming 

soon.

Thanks for Listening!
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