

Machine Learning LHC Likelihoods.

Humberto Reyes-González University of Genoa

Introduction

- Likelihood functions (full statistical models) parametrise the full information of an LHC analysis; wether it is New Physics (NP) search or an SM measurement.
- Their preservation is a key part of the LHC legacy.

Usage:

- Resampling
- Reinterpretation with different statistical approaches.
- Reinterpretation in the context of different NP models.
- •

Challenges:

- LHC likelihoods are often high-dimensional complex distributions.
- We want precise descriptions that can be efficiently reinterpreted.

Important steps forward:

- ATLAS started publishing full likelihoods of NP searches ATL-PHYS-PUB-2019-029.
- Release of the pyhf package to construct statistical models 10.21105/joss.02823, L Heinrich, M Feickert, G Stark
- Theorists have started profiting from this arXiv:2009.01809, arXiv:2012.08192, SModelS collaboration
- Supervised learning with DNN likelihood arxiv:1911.03305 A Coccaro, M. Perini, L Silvestrini, R Torre

Our approach: Unsupervised Learning with Normalizing Flows

LHC likelihoods in a nutshell

Bayes theorem:

$$P(\Theta, x) = P_{x}(x \mid \Theta)\pi_{\Theta}(\Theta) = P_{\Theta}(\Theta \mid x)\pi_{x}(x)$$

LHC Statistical model:

Test Statistic:

$$t(\mu) = -2\log\frac{L(\mu; \hat{\theta}(\mu))}{L(\hat{\mu}, \hat{\theta}(\hat{\mu}))}$$

Best- fits:

$$L(\hat{\mu}; \hat{\theta})$$

Where μ are observables

best-fit $\theta(\mu)$

Introduction.

BASIC PRINCIPLE:

Following the change of variables formula, perform a series of **bijective**, **continuous**, **invertible** transformations on a *simple* probability density function (pdf) to obtain a *complex* one.

Choosing the transformations

THE OBJECTIVE:

To perform the right transformations to accurately estimate the complex underlying distribution of some observed data.

THE RULES OF THE GAME:

- The transformations (bijectors) must be invertible
- They should be sufficiently expressive
- And computationally efficient (including Jacobian)

THE STRATEGY

Let Neural Networks learn the parameters of Autoregressive Normalizing Flows.

Autoregressive Rational-Quadratic-Spline Flows (A-RQS, arXiv:1906.04032)

5

Evaluation metric.

- Two-sample 1D Kolgomonov - Smirnov test (ks test):

$$D_{n,m} = \sup_{x} |F_n(x) - F_m(x)|$$

- -Computes the p-value for two sets of 1D samples coming from the same unknown distribution.
- -We average over ks test estimations and compute the median over dimensions.
- -Optimal value 0.5

Example Likelihoods

$$P_{\Theta}(\Theta \mid x = \text{obs})$$

ElectroWeak fit Likelihood

- EW observables.
- Including recent measurements of top mass (CMS) and W mass (CDF).
- •8 parameters of interest (Wilson coefficients of SMEFT operators)
- •32 nuisance parameters.
- Ref. arXiv:2204.04204

Flavor fit likelihood.

- •Flavor observables related to $b \rightarrow sl^+l^-$ transitions
- •12 parameters of interest (Wilson coefficients of SMEFT operators)
- 77 nuisance parameters.
- Ref. arXiv:1903.09632

Electro Weak fit Likelihood

Hyperparameters:

N_{train}	Flow	N bij	N knots	Range	Hidden layers	L1 factor	N epochs	N iters.
10^4								
10^5	A-RQS	2	6	[-6,6]	128×3	0	200	12
$2\cdot 10^5$								

Results:

N_{train}	KS-test
10^{4}	0.453
10^{5}	0.4803
$2 \cdot 10^5$	0.486

Test sample: 300k

Flavor fit Likelihood

Hyperparameters:

N_{train}	Flow	N bij	N knots	Range	Hidden layers	L1 factor	N epochs	N iters.
$egin{array}{c} 10^5 \ 5 \cdot 10^5 \ 10^6 \ \end{array}$	A-RQS	2	16	[-6,6]	1024×3	10^{-4}	1200	12

Results:

	N_{train}	KS-test
	10^5	0.457
4	$-5\cdot 10^5$	0.482
	10^6	.4806

Test sample: 500k

Flavor fit Likelihood

EXTRA: Supervised Learning Profiled Likelihoods

$$P_{profiled}(n_s) = P(n_S | \mu = 1, \hat{\theta}(\mu = 1))$$

EXAMPLE ATLAS-SUSY-2018-04, 2 SRS*:

*Data generated with SModelS' Pyhf interface

Conclusions

- The preservation of LHC likelihoods is of vital importance (for theorists also).
- Introduced unsupervised learning of Likelihoods with Normalizing Flows.
- · Normalizing Flows show great capacity of learning complex high dimensional functions.
- Complementary, we can directly learn profiled likelihoods; useful for fast NP-search reinterpretation.

Outlook

- Paper in preparation arXiv 2301.xxxx.
- · User friendly Tensorflow implementation of NFs in dev: https://github.com/riccardotorre/NFTF2 dev
- · Learning full statistical models with Conditional Normalizing Flows.
- · Learning profiled likelihoods from Pyhf statistical models.

THANKYOU!

LHC-like new physics search Likelihood.

Hyperparameters:

N_{train}	Flow	N bij	Hidden layers	L1 factor	N epochs	N iters.
10^{4}	MAF	2	256×3	0	20	4
10^{5}	MAF	2	128×3	10^{-4}	20	4
$2\cdot 10^5$	MAF	2	64×3	10^{-4}	20	4

Results:

N_{train}	KS-test	W-distance	F- norm	$\mathrm{HPDIe}_{1\sigma}$	$\mathrm{HPDIe}_{2\sigma}$	$\mathrm{HPDIe}_{3\sigma}$	time (s)
10^{4}	0.479	$1.083 \cdot 10^{-2}$	0.913	$2.211 \cdot 10^{-2}$	$1.374 \cdot 10^{-2}$	$1.3003 \cdot 10^{-2}$	86.65
10^{5}	0.502	$5.33 \cdot 10^{-3}$	0.527	$2.157 \cdot 10^{-2}$	$8.147 \cdot 10^{-3}$	$1.07 \cdot 10^{-2}$	317.89
$2\cdot 10^5$.507	$4.82 \cdot 10^{-3}$	0.316	$1.883 \cdot 10^{-2}$	$9.355 \cdot 10^{-3}$	$9.903 \cdot 10^{-3}$	561.82

Test sample: 300k

BACKUP

Autoregressive Flows

Coupling Flows:

- Dimensions are divided in two sets: x^A and x^B
- We transform x^B with bijectors trained with x^A .
- The bijector parameters are functions of a NN.
- The Jacobian J is triangular -> $\det J = \prod_i J_{ii}$
- Jacobian is easily computed!
- Direct sampling AND density estimation.
- Less expressive.

Autoregressive Flows:

- Dimension x^i is transformed with bijectors trained with $y_{1:i-1}$
- Bijector parameters are trained with Autoregressive NNs.
- The Jacobian J is also triangular thus...
- Jacobian is easily computed!
- Direct sampling OR density estimation.
- More expressive.

The loss function:

 $-\log(p_{AF}(target_{dist}))$

Introduction.

Let's get formal...

- If Z is a random variable with pdf P_Z , g is an invertible function such that Y = g(Z) and $f = g^{-1}$, then we can obtain the pdf p_Y of the random variable Y as

$$p_Y(y) = p_Z(f(y)) |\det(Df(y))| = p_Z(f(y)) |\det(Dg(f(y))|^{-1}$$
 where $Dg(z) = \frac{\partial g}{\partial z}$ $Df(y) = \frac{\partial f}{\partial y}$ - N transformations are possible since...

$$f = f_1 \circ \dots f_{N-1} \circ f_N$$

$$\det Df(y) = \prod_{i=1}^{N} \det(Df_i(x_i)) \qquad \text{where} \qquad x_i = g_i \circ \dots \circ g_1(z) = f_{i+1} \circ \dots \circ f_N(y)$$

- Since p_Z is parametrised by ϕ and the bijector g by θ , we can compute the \log probability of some measured data $\mathcal{D} = \{y^{(i)}\}_{i=1}^M$ given the parameters $\Theta = (\theta, \phi)$ as

$$\log p(\mathcal{D}|\Theta) = \sum_{i=1}^{M} \log p_{Y}(y^{(i)}|\Theta) = \sum_{i=1}^{M} \log p_{Z}(f(y^{(i)}|\theta)|\phi) + \log|\det Df(y^{(i)}|\theta)|$$