
Reusing Neural Networks:
Lessons learned and Suggestions for

the future

(Or: a long and oddly public note to self)
Tomasz Procter

Tomasz Procter, RIF, December 2022 1

()

INTRODUCTION
2Tomasz Procter, RIF, December 2022

The problem
● Neural Nets are becoming more and more central features of many collider

analyses.

● Use a wide variety of frameworks - tensorflow, scikit-learn, pytorch, ROOT TMVA…

● Implies:
○ Wide variety of dependencies -> heavy codes.
○ Wide variety of output formats (not all human readable).
○ ML in industry is less interested in reproducibility - scary differences between version numbers.

● And anyway, it’s rare that an analysis actually publishes their NN data...

3Tomasz Procter, RIF, December 2022

Two possible approaches
LWTNN

● Designed to take tf/sk-learn trained neural nets
and run them in C++.

● Originally developed for ATLAS trigger.
● Really lightweight: depends on Eigen, Boost only.
● Only officially supports tf or sk-learn nets (though

you can do more if you get creative)

● Human readable .json files.
● Currently in use “behind the scenes” in several

ATLAS analyses (none yet public?)

4

ONNX (used via ONNXRunTime)

● Designed to allow neural nets trained in one
context (e.g pytorch on a GPU) to be run in a
completely different one (e.g. on customers’
mobiles).

● Developed by Facebook and Microsoft (though
completely open source).

● Supports tf, pytorch, sklearn,++
● Non-human readable .onnx files.
● >= 1 analysis has published ONNX files.

Tomasz Procter, RIF, December 2022

An LWTNN
Case-Study -
 EXOTICS

5Tomasz Procter, RIF, December 2022

An LWTNN Case-Study

6Tomasz Procter, RIF, December 2022

An ONNX Case
Study:
SUSY-2019-04

7Tomasz Procter, RIF, December 2022

ATLAS SUSY-2019-04
● “Search for R-parity violating supersymmetry in a final state containing leptons

and many jets”
● Uses a NN for one of their signal regions (and four control regions).
● Published ONNX files on hepdata (thankyou!)
● Also provided a relatively complete simpleAnalysis file.

8Tomasz Procter, RIF, December 2022

The Neural Network(s)
● One network for each case 4jets-8jets
● 65 input variables - mix of event information (HT, similar), and specific jet/lepton

information (e.g. pT, η, φ, btag for lead 10 jets)
● Includes pseudo-continuous b-score for jets?!

○ Detector level.
○ simpleAnalysis suggests using 5, 1 or 0 for truth level data.
○ Paper notes this was the second most significant variable?!

● Paper describes three layer DNN:
○ But interrogating the file it seems a lot more complex - ONNX bloat? Advanced loss?

9Tomasz Procter, RIF, December 2022

Rivet ONNX Implementation:
● Minimal RivetORT class that hides the boilerplate from users.

○ For now ORT (and LWTNN) still needs to be explicitly linked during analysis compilation
void init(...){
...
 for (size_t i = 4; i < 9; ++i)
 _ORTs[i] = make_unique<RivetORT>(RivetORT(analysisDataPath(std::to_string(i)+"jets.onnx")));
...
}
void analyze(...){
...
 _ORTs[jets.size()]->compute(nn_input_vector, nn_output);
...
}

● Implementation follows simpleAnalysis very closely
○ With a couple of exceptions.

● NN bin cuts assumed from simpleAnalysis – but these are approximations!

10Tomasz Procter, RIF, December 2022

Rivet Implementation – Validation
● Cutflows:

○ Not enough leptons - 22% vs 37% of events pass 1 lep > 27GeV.
○ Too many events passing NN cut.
○ But shapes consistent once you adjust for the leptons.

● Reproduction of Figure 2:

11Tomasz Procter, RIF, December 2022

Converting ONNX
to LWTNN:
SUSY-2019-04

12Tomasz Procter, RIF, December 2022

Converting ONNX to LWTNN
● onnx2keras python module
● Use lwtnn script to convert keras -> lwtnn.
● Simple…?

13Tomasz Procter, RIF, December 2022

Converting ONNX to LWTNN
● onnx2keras python module
● Use lwtnn script to convert keras -> lwtnn.
● Simple…?

● Not quite:
○ Keras add layer was not supported (is/will be now!)
○ Slicing layer implemented as a lambda (at least after onnx2keras)

● But got it working eventually - so we also have a version using lwtnn!

● N.b. possible future direct conversion lwtnn script?

14Tomasz Procter, RIF, December 2022

Rivet LWTNN Implementation:
● Minimal RivetLWTNN header (not even a class!) that hides boilerplate.

○ For now LWTNN still needs to be explicitly linked during analysis compilation
void init(...){
...
 for (size_t i = 4; i < 9; ++i)
 _lwgs[i] = mkGraphLWTNN(analysisDataPath(std::to_string(i)+"j.json"));
...
}
void analyze(...){
...
 map<string, double> nn_output = _lwgs[jets.size()]->compute(nn_input);
...
}

● Already released in Rivet 3.1.7
○ See also example analysis.
○ And already used internally by an ATLAS W+Jets analysis.

● Analysis implementation otherwise identical to ONNX.

15Tomasz Procter, RIF, December 2022

LWTNN-ONNX results comaprison
● Results effectively identical

○ Over 100k hepmc events tested, variety of models, only floating point differences (n.b. lwtnn
uses double, onnx uses float)

● Performance: LWTNN slightly faster (but negligible compared to analysis time)
● Both are thread safe.

16

1l_nn_7j_4b
(no-smearing)

1l_nn_5j_4b
(no-smearing)
Note ONNX
deficit ends up in
overflow

Tomasz Procter, RIF, December 2022

Conclusions -
For experiments and
re-interpreters.

17Tomasz Procter, RIF, December 2022

Final comparison
LWTNN

● Already used internally by some ATLAS analyses
- zero extra effort to publish

● Ultra-lightweight, but doesn’t cover all
conceivable cases - No pytorch support*/some
weird layers

● No support for ROOT TMVA
● Human readable files - could reconstruct network

by hand if you needed too.
● Only has a C++ interface*

18

ONNX

● Relatively easy to convert models to onnx

● Heavier and more complex, but should cover
just about every network conceivable.

● Limited experimental support for ROOT TMVA
● Non human readable files - are we confident

these are truly preserved?
● Interfaces to any language reasonably used in

science (C/C++, Python, Julia?,...)

(* if you’re willing to get hacky, this is very circumventable)

Tomasz Procter, RIF, December 2022

Final Notes for Analyses:
● Above all, please publish your nets! - ideally, on HEPData in a preservable format.
● Please avoid variables which aren’t accessible at truth (e.g, continuous b-score!)

○ Or if essential, please provide a detailed efficiency map.

● Cuts based on network score – please publish cut-values too!
● Ultra-complex network structures?

○ If essential, describe exactly what it does in detail.

● We’d like as much validation material as possible – more can go wrong.
● Are they valid to reinterpret at all (cf. CMS talk this morning):

○ Not asking for detector level networks (e.g. b-tagger).
○ Let us try!

● Rivet can support both formats – please use in your internal routines (and let me
know if the interface works/can be improved)

19Tomasz Procter, RIF, December 2022

Final Notes for Reinterpreters:
● Where networks are available, they can be worked with.
● I personally have a slight preference for lwtnn…

○ Format I can investigate easily.
○ More confident the results will be the same forever.
○ Personally, only need C++, and all the extra dependencies/boilerplate from ONNX will probably

be a pain.
○ Particularly in ATLAS, there are quite a few of these just lying about.

● …but I’ll take whatever I can get
○ I’m confident I’ll be able to convert most networks into lwtnn from onnx.
○ Rivet should be able to deal with both (though may require you to link against external libraries

yourself)

● Happy (and hope to) to discuss further!

20Tomasz Procter, RIF, December 2022

BONUS
21Tomasz Procter, RIF, December 2022

What the files look like inside:
LWTNN
{
 "input_sequences": [],
 "inputs": [
 {
 "name": "node_0",
 "variables": [
 {
 "name": "n_jet",
 "offset": 0,
 "scale": 1
 },
 {
 "name": "n_bcat",
 "offset": 0,
 "scale": 1
 },
 ……
"layers": [
 {
 "activation": "rectified",
 "architecture": "dense",
 "bias": [
 -0.1086258739233017,
 0.10020996630191803,
 0.04119415581226349,

……

22

ONNX
^H^F^R^Gpytorch^Z^C1.7:<80>^3^D
F
^Ginput.1^R^B11^Z^GSlice_0"^ESlice*^K
^Daxes@^A ^A^G*^K
^Dends@^B ^A^G*^M
^Fstarts@^@ ^A^G
>^R^B12^Z
Constant_1"^HConstant*"
^Evalue*^V^H^B^P^GJ^Pÿÿÿÿÿÿÿÿ^B^@^@^@^@^@^@^@ ^A^D

^B11^B12^R^B13^Z Reshape_2"^GReshape
<95>^A
^Ginput.1
$_model.deep.sequence.0.linear.weight
"_model.deep.sequence.0.linear.bias^R^B14^Z^FGemm_3"^DGemm*^O
^Ealpha^U^@^@<80>? ^A^A*^N
^Dbeta^U^@^@<80>? ^A^A*^M
^FtransB^X^A ^A^B
^V
^B14^R^B15^Z^FRelu_4"^DRelu
<90>^A
^B15
$_model.deep.sequence.1.linear.weight
"_model.deep.sequence.1.linear.bias^R^B16^Z^FGemm_5"^DGemm*^O
……

Tomasz Procter, RIF, December 2022

Full Cutflows
Rivet
>=1 baseline lep: 29.1599% (46.08%)
>=1 siglep: 29.1599% (38.18%)
>=1 lead lep >= 27GeV: 22.8088% (37.36%)
-------------- 1 lepton category ------------
 20*GeV 40*GeV 60*Gev 80*GeV 100*GeV
>=4jets: 20.8156%, 15.3704%, 7.24739%, 3.05076%, 1.36089%
==4jets: 2.13609%, 6.13112%, 4.28612%, 2.14606%, 1.05078%
==5jets: 4.32596%, 5.02235%, 2.05078%, 0.708924%, 0.253644%
==6jets: 5.37082%, 2.75001%, 0.67488%, 0.158628%, 0.0439966%
==7jets: 4.62578%, 1.05087%, 0.178005%, 0.0278783%, 0.00975821%
==8jets: 2.52944%, 0.318079%, 0.0515322%, 0.00466212%, 0.00271047%

==4jets,>=4btags: 0.0390215% (0.05%)
==5jets,>=4btags: 0.166727% (0.20%)
==6jets,>=4btags: 0.39751% (0.39%)
==7jets,>=4btags: 0.498463% (0.42%)
==8jets,>=4btags: 0.36171% (0.27%)

==4jets,>=4btags,NN4jbin4: 0.0390215% (0.02%)
==5jets,>=4btags,NN5jbin4: 0.166727% (0.06%)
==6jets,>=4btags,NN6jbin4: 0.396259% (0.12%)
==7jets,>=4btags,NN7jbin4: 0.495651% (0.13%)
==8jets,>=4btags,NN8jbin4: 0% (0.10%)
>=4jets, 4b: 20.8156%, 15.3704%, 7.24739%, 3.05076%, 1.36089%

23

Paper

Tomasz Procter, RIF, December 2022

Full Cutflows (lepton adjusted)
Rivet
-------------- 1 lepton category ------------
 20*GeV 40*GeV 60*Gev 80*GeV 100*GeV
>=4jets: 34.0953%, 25.1762%, 11.871%, 4.99704%, 2.2291%
 (30.8%) (19.7%) (9.0%) (3.8%) (1.7%)
==4jets: 3.49884%, 10.0426%, 7.02052%, 3.51518%, 1.72115%
==5jets: 7.08577%, 8.22645%, 3.3591%, 1.16119%, 0.41546%
==6jets: 8.79723%, 4.50442%, 1.10543%, 0.259827%, 0.072065%
==7jets: 7.57687%, 1.72128%, 0.291567%, 0.0456638%, 0.0159836%
==8jets: 4.14314%, 0.521002%, 0.084408%, 0.00763639%, 0.00443965%

==4jets,>=4btags: 0.0639159% (0.05%)
==5jets,>=4btags: 0.273092% (0.20%)
==6jets,>=4btags: 0.651108% (0.39%)
==7jets,>=4btags: 0.816466% (0.42%)
==8jets,>=4btags: 0.592469% (0.27%)

==4jets,>=4btags,NN4jbin4: 0.0639159% (0.02%)
==5jets,>=4btags,NN5jbin4: 0.273092% (0.06%)
==6jets,>=4btags,NN6jbin4: 0.649059% (0.12%)
==7jets,>=4btags,NN7jbin4: 0.81186% (0.13%)
==8jets,>=4btags,NN8jbin4: 0% (0.10%)

24

Paper

Tomasz Procter, RIF, December 2022

NN binning

25Tomasz Procter, RIF, December 2022

GAMBIT
implementation (via
LWTNN)
SUSY-2019-04

26Tomasz Procter, RIF, December 2022

GAMBIT IMPLEMENTATION
● Backending LWTNN for GAMBIT actually quite easy:

○ Advantage of small, simple code with minimal dependencies.

● Example analysis seems to run ok….
● But this is at a very early stage.

27Tomasz Procter, RIF, December 2022

